
Les classes et les objets en Java

L. Nerima
Université de Genève

I
S
I Automne 2022 - L. Nerima Classes 2

Références

v * Conception objet en Java avec BlueJ, David Barnes et
Michael Kölling, 4e édition, Pearson Education, 2009

Version anglaise: Objects First with Java, A Practical
Introduction using BlueJ, 6th Edition, Pearson, 2016

v * Bersini, Hugues, La programmation orientée objet, 7e
édition, Eyrolles, 2017.

v JAVA: de l’esprit à la méthode, Michel Bonjour, Gilles
Falquet, Jacques Guyot et André Legrand, 2e édition,
Vuibert, 1999 (Chapitre 6). PDF disponible sur le site Web
du séminaire Java.

v Programmer en Java, Claude Delannoy, 10e édition,
Eyrolles, 2017.

* Idées de lecture pour la semaine de lecture !

I
S
I Automne 2022 - L. Nerima Classes 3

Plan

v La modélisation orientée objet
v Les classes en Java (rappels sur les classes)
v Classe et instances (objets)
v Déclaration de classes en Java
v Exemples de classe: rectangle, cercle, …
v Les classes dans l'environnement BlueJ
v Création d’instances
v Invocation de méthodes sur un objet
v Assignation et compatibilté des types
v Sous-classes
v La référence

I
S
I Automne 2022 - L. Nerima Classes 4

La modélisation orientée objet
Approche centrée sur les objets et les classes d’objets (regroupement
d’objets de même type).

Tout est objet: le système informatique sera constitué (uniquement)
d’objets. Les objets communiquent entre eux et avec l’extérieur (p.e.
interface utilisateur)

Les objets sont:
v Les objets du domaine de l’application

v les objets du monde (réel perçu) du domaine d’application
donneront lieu à des objets informatique

v Les artefacts du système informatique:
v fenêtres, menus, boîtes de dialogue, …
v événements, transactions, règles

I
S
I Automne 2022 - L. Nerima Classes 5

Les classes en Java - rappels
Tout ce que nous avons vu concernant les classes et les objets en UML
(voir cours BD) et Python demeure vrai en Java (sauf la syntaxe), à
savoir:

v la notion de classe étend celle de type de données
v une classe est un moule pour fabriquer des objets de même

structure et de même comportement
v un objet est une instance d’une et d’une seule classe
v une méthode définit une action élémentaire que l’on peut

effectuer sur un objet
v un message est une demande d’exécution d’une méthode à un

objet

I
S
I Automne 2022 - L. Nerima Classes 6

Classes et instances (objets)

Rectangle
largeur
hauteur
perimetre()
surface()
diagonale()
doubler()

Disque
rayon
perimetre()
surface()
doubler()

r1:Rectangle

r2:Rectangle

r3:Rectangle
d1:Disque

d2:Disque

CLASSES

INSTANCES
(OBJETS)

I
S
I Automne 2022 - L. Nerima Classes 7

Déclaration de classes en Java
v En Java, la déclaration d’une classe s’écrit:

class Rectangle {
…

}
v Une classe peut posséder des variables d’instance (propre à chaque

instance):
class Rectangle {
double largeur, hauteur;

…
}

v Une classe peut posséder des variables (ou constantes) de classe, qui
ne seront pas créées dans ses instances. La déclaration est précédée
du mot static:
class Disque {
static final double pi=3.141595;

…
}

I
S
I Automne 2022 - L. Nerima Classes 8

Déclaration de classes en Java (suite)
v Les méthodes de classe détermine le comportement des instances

(objets). La déclaration d’une méthode est composées des éléments
suivants:

v Le type du résultat, ou void si la méthode ne produit pas de
résultat

v Le nom de la méthode
v Le type et le nom des paramètres entre ()
v Le bloc d’instructions délimité par {}
v Exemples
double perimetre() {return 2*(largeur+hauteur);}
double surface() {return largeur*hauteur;}
double diagonale() {

return Math.sqrt(largeur*largeur+hauteur*hauteur)}
void doubler() {largeur*=2; hauteur*=2;}

I
S
I Automne 2022 - L. Nerima Classes 9

Constructeur de classe
v Le constructeur de classe est une méthode spéciale qui indique comment

initialiser une instance
v Règle de nommage: le constructeur doit porter le même nom que la classe

class Rectangle {
double largeur, hauteur;
Rectangle(double initL, double initH){ // constructeur d'objets

largeur=initL;
hauteur=initH;

}
…

}

v Ce constructeur initialise les deux variables d’instance largeur et hauteur
v Constructeur par défaut: si aucun constructeur n’est définit pour une

classe, implicitement Java en crée un (mais qui n’initialise pas les variables
d’instance)

I
S
I Automne 2022 - L. Nerima Classes 10

La classe Rectangle complète
public class Rectangle {

double largeur, hauteur;
public Rectangle(double initL, double initH){ // constructeur d'objets

largeur=initL;
hauteur=initH;

}
double perimetre() {return 2*(largeur+hauteur);}
double surface() {return largeur*hauteur;}
double diagonale() {

return Math.sqrt(largeur*largeur+hauteur*hauteur)}
void doubler() {largeur*=2; hauteur*=2;}

}

I
S
I Automne 2022 - L. Nerima Classes 11

La classe Disque

class Disque {

double diametre;

static final double pi=3.14159;

Disque(double initD) {diametre=initD;}

double perimetre() {return pi*diametre;}

double surface() {return (pi*diametre*diametre)/ 4;}

double rayon() {return diametre/2;}

void doubler() {diametre*=2;}

}

I
S
I Automne 2022 - L. Nerima Classes 12

Les classes dans l’environnement BlueJ
La commande New Class de BlueJ génère automatiquement

public class Rectangle
{

private int x; // une variable d ’instance

public Rectangle() // un constructeur d ’objets Rectangle
{

x=0;
}

public int sampleMethod(int y) //un exemple de méthode
{

return x + y;
}

}

I
S
I Automne 2022 - L. Nerima Classes 13

Création d’instances en Java

v Pour créer une instance (objet), on invoque un constructeur avec
l’instruction new. P.e. :

new Rectangle(5, 10); // création d’un rectangle de larg. 5, haut. 10
v Pour se référer à l’objet créé, nous avons besoin d’une référence (ou

variable). La déclaration d’une référence se fait comme pour les types de
base (int, double, char, boolean,…) en faisant précéder le nom de la
référence par le nom de la classe:

Rectangle r1, r2; // déclaration de deux rectangles
v L’assignation se fait au moment de la création de l’instance

r1 = new Rectangle(5, 10); r2 = new Rectangle(2, 2);
v Il est possible de déclarer la référence et de créer l’objet en même temps:

Rectangle r1 = new Rectangle(5, 10)
v Dans BlueJ on peut créer des instances « à la main » :

click droit sur le rectangle de la classe > new nomConstructeur(param)

I
S
I Automne 2022 - L. Nerima Classes 14

Invocation des méthodes sur une instance

v L’invocation d’une méthode se fait en désignant l’instance (par la
référence) et en la faisant suivre du nom de la méthode et des
paramètres effectifs données sous forme d’expression, s’il y a lieu:
instance.méthode(expr1, expr2, …)

v Par exemple, pour obtenir la surface du rectangle r1, on écrira:
r1.surface()

v Si la méthode possède des paramètres, les expressions passées en
paramètre sont évaluées puis affectées aux paramètres correspondants
de la méthode

v Si l’on veut invoquer une méthode sur l’instance courante, on écrira:
this.méthode(expr1, expr2, …)

I
S
I

Automne 2022 - L. Nerima Classes
15

Un exemple de programme complet
class TestRectDisk1{

public static void main (String args[]) {

Rectangle r1=new Rectangle(2,4);

Rectangle r2=new Rectangle(3,4);

System.out.println("diagonale de r1: "+r1.diagonale());

System.out.println("périmètre de r2: "+r2.perimetre());

r2.doubler();

System.out.println("périmètre de r2: "+r2.perimetre());

Disque d1,d2; d1=new Disque(2); d2=new Disque(4);

System.out.println("rayon de d1: "+d1.rayon());

System.out.println("périmètre de d2: "+d2.perimetre());

d2.doubler();

System.out.println("périmètre de d2: "+d2.perimetre()); }

}

I
S
I

Automne 2022 - L. Nerima Classes
16

Déclaration de plusieurs constructeurs

v Il est parfois pratique de proposer plusieurs constructeurs pour une même classe
(permettant plusieurs formes de représentations selon les utilisateurs)

v Pour se faire il suffit de définir un nouveau constructeur deavnt se distinguer des
autres par le nombre et / ou le type de ses paramètres

v Par exemple, pour la classe Rectangle nous pouvons ajouter un constructeur qui
construit un rectangle à partir du coin supérieur gauche (x1,y1) et du coin
inférieur droit (x2, y2)

class Rectangle {

double largeur, hauteur;

Rectangle(double initL, double initH){

largeur=initL;

hauteur=initH;

}

Rectangle(double x1, double y1, double x2, double y2){

largeur=Math.abs(x2-x1);

hauteur=Math.abs(y2-y1);

}

…

}

I
S
I Automne 2022 - L. Nerima Classes 17

Méthodes de classe

v Nous avons vu qu’il était possible de déclarer des variables de classe
v Il est également possible de déclarer des méthodes de classe
v Ces méthodes sont destinées à agir sur la classe (plutôt que sur les instances)
v Tout comme pour les variables de classe, la déclaration des méthodes de classe

est précédée du mot static
v L’invocation à une méthode de classe se fait en faisant précéder le nom de la

méthode par celui de la classe
nom_de_la_classe.méthode(expr1, expr2, …)

v Exemple:
class Rectangle {

static double echelle=1.0; // variable de classe
double largeur, hauteur;
static void modifierEchelle(double e) { // méthode de classe

echelle=e;
}

}

v Invocation:
Rectangle.modifierEchelle(4)

I
S
I Automne 2022 - L. Nerima Classes 18

Méthodes de classe: commentaires

v La « célèbre » méthode main que nous avons utilisé jusqu’à
maintenant pour écrire nos programmes était en fait une
méthode de classe

v Déclaration:
static void main(String args[])

v La programmation avec des classes qui contiennent
exclusivement des variables de classes et des méthodes de
classes nous ramème dans le paradigme de la programmation
procédurale

I
S
I Automne 2022 - L. Nerima Classes 19

Défintion de sous-classes en Java

v En Java le mot réservé extends permet de déclarer une sous-
classe à partir d’une classe de base ou super-classe

v La sous-classe hérite de tout ce qui a été défini dans la super-
classe (variables et méthodes)

v Déclaration:
class Particulier_1 extends Général {… }
class Particulier_2 extends Général {… }

v Le constructeur de la sous-classe peut utiliser le constructeur de
la super classe en invoquant super(…)

Général

Particulier_1 Particulier_2

est unest un

I
S
I

class Carré extends Rectangle{
Carre(double initC){

super(initC,initC);
}
double côté() {return this.hauteur;}

}

v super est utilisée pour atteindre le constructeur de la super-classe
Rectangle

Automne 2022 - L. Nerima Classes 20

Exemple: Carre extension de Rectangle

Carré

est un

côté()

Rectangle
largeur
hauteur

perimetre()
surface()
diagonale()
doubler()

I
S
I Automne 2022 - L. Nerima Classes 21

Utilisation de la classe « Carré »

class TestCarré {
public static void main (String args[]) {

Carré c1=new Carré(4);
System.out.println("dimension c1: "+c1.largeur+"/"+c1.hauteur);
System.out.println("surface c1: "+c1.surface());
System.out.println("côté de c1 "+c1.côté());

}
}
v Sortie:

dimension c1: 4/4
surface c1: 16
coté de c1: 4

I
S
I Automne 2022 - L. Nerima Classes 22

Assignation et compatibilité des types
v Affectation des objets: supposons qu’une variable (référence) soit de type

(classe) C; on peut alors lui affecter un objet de la classe C ou d’une sous-
classe de C

v Exemple:
Rectangle r;
r = new Carre(4);

v Par contre, l’inverse n’est pas possible:
Carre c;
c = new Rectangle(5, 0); // Erreur à la compilation !!!

v Lorsqu’on est sûr du type, on peut le changer (garde de type):
Rectangle r;
Carre c;
r = new Carre(4); // r désigne bien un carré
…
c = (Carre) r; // c = r aurait été refusé à la compilation

v Attention: à l’exécution un contrôle de type est exécuté et si r n’est pas de
type carré, un erreur d’exécution se produira

I
S
I Automne 2022 - L. Nerima Classes 23

Exercice de déclaration de classe
v Ecrire une classe « tamagotchi » t.q.

v un tamagotchi est caractérisé par (variables d’instance)
vun nom (String)
vun âge (entier)
vun âge de sagesse (entier)
vun niveau d’énergie (entier)

v une variable de classe (c-à-d static)
v min énergie valable pour tous les tamagotchis

v 1 constructeur qui initialise:
v le nom (passé en paramètre)
v l’âge (à 0)
v l’âge de sagesse (de 20 à 30, passé en paramètre)
v le niveau d’énergie (à 8)

v une méthode manger (qui augmente l’énergie)
v une méthode vieillir (qui augmente l’âge et diminue l’énergie)

v voir l’énoncé complet : série 3, exercice 4

I
S
I Automne 2022 - L. Nerima Classes 24

Rappel de la référence

v En Java:
v 8 types primitifs: boolean, char, int, float, double…
v tous les autres types sont des types « référence », comprenant

les classes (comme les chaînes de caractères) et les tableaux
(array)

v le but d’une variable référence et de référencer un objet, c’est-à-
dire un moyen de désigner un objet

v une variable de type référence stocke l ’adresse
mémoire où un objet réside

v on appelle plus simplement « référence » une variable
de type référence

v si une référence ne se réfère à aucun objet, sa valeur
est « null »

I
S
I Automne 2022 - L. Nerima Classes 25

La référence : exemple
v Déclaration de la classe Tamagotchi (voir série 3 d’exercices Java)

public class Tamagotchi {
String nom; // variable d ’instance
Int age; // ‘’
…
public Tamagotchi(String n) // constructeur de tamagotchi
…
}

v déclaration de trois références et instanciations de deux objets:
Tamagotchi t1 = new Tamagotchi(‘’Louis‘’);
Tamagotchi t2 = new Tamagotchi(‘’Louis‘’);
Tamagotchi t3 = t1;

I
S
I Automne 2022 - L. Nerima Classes 26

La référence : exemple (suite)

v Après ces instructions, il y a en mémoire:
3 références (t1, t2 et t3)
2 objets de type tamagotchi (avec le même nom: Louis)

t1 et t3 se réfèrent tous les deux au premier objet tamagotchi
t2 se réfère au deuxième objet tamagotchi

I
S
I Automne 2022 - L. Nerima Classes 27

Opérateurs pour les références

v En Java, il existe seulement 3 opérateurs pour les
références:
v = pour l ’affectation
v == et != pour tester l ’égalité resp. l ’inégalité

v Toutes les autres opérations souhaitées sont à définir
avec des méthodes

v Exception: les références de type String possède deux
opérateurs supplémentaires: + et += (concaténation de
chaînes de caractères)

I
S
I Automne 2022 - L. Nerima Classes 28

Référence: la signification de =

v La signification de = (affectation) pour les références est
exactement la même que pour les types primitifs: la
valeur contenue dans la référence de droite est
recopiée dans la référence de gauche

v comme la référence contient l ’adresse mémoire où
réside l ’objet référencé, c ’est cette adresse qui est
recopiée dans la référence affectée (et non les valeurs
stockées dans l ’objet !)

I
S
I Automne 2022 - L. Nerima Classes 29

Référence: la signification de == et !=

v L ’expression t1==t2

v teste si la valeur (référence) contenue dans la variable
t1 est égale à la valeur contenue dans t2

v Comme les valeurs sont des références adresses
mémoire d ’objets, cela revient à tester si d1 et d2 se
réfèrent au même objet

v L’opérateur != teste l ’inégalité

I
S
I Automne 2022 - L. Nerima Classes 30

Référence: la signification de == et != (suite)

v Pour tester l ’égalité du contenu de deux objets, on
utilise la méthode

equals
définie sur dans la classe Object

I
S
I Automne 2022 - L. Nerima Classes 31

Exemple

v Soit les déclarations:
Tamagotchi t1 = new Tamagotchi(‘’Louis‘’);

Tamagotchi t2 = new Tamagotchi(‘’Louis‘’);

Tamagotchi t3 = t1;

v que valent les expressions suivantes ?
t1 == t2 // rép: …

t1 != t2 // rép: …

t1 == t3 // rép: …

t1.equals(t2) // rép: …

I
S
I Automne 2022 - L. Nerima Classes 32

Exemple

v Soit les déclarations:
Tamagotchi t1 = new Tamagotchi(‘’Louis‘’);
Tamagotchi t2 = new Tamagotchi(‘’Louis‘’);
Tamagotchi t3 = t1;

v que valent les expressions suivantes ? Réponses:
t1 == t2 // faux car t1 et t2 référencent des objets diff.
t1 != t2 // vrai
t1 == t3 // vrai car t1 et t3 référencent le même objet
t1.equals(t2) // vrai car l’objet référencé par t1 et l ’objet

// référencé par t2 contiennent la même valeur
// (dans la variable nom)

