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A DECENTRALIZED APPROACH FOR DETECTING
DYNAMICALLY CHANGING DIFFUSE EVENT SOURCES
IN NOISY WSN ENVIRONMENTS
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Giovanna Di Marzo Serugendo2

1IIIA-CSIC, Spanish National Research Institute, Campus UAB, Bellaterra, Spain
2Centre Universitaire d’Informatique, University of Geneva, Switzerland

& Localizing dynamically changing diffuse event sources in real environments is still an open
problem in wireless sensor networks (WSN). The dynamism of the environment, the energy limita-
tions of the sensors, and the noise associated to the sensors’ measurements pose a challenge that begs
a realistic solution. In this article we propose a decentralized approach to detect diffuse event
sources in dynamic and noisy environments, using a wireless sensor network infrastructure.
Our approach is gradient based and follows a distributed and decentralized algorithm based on
local interactions and local knowledge of the environment. Reported experiments show that our
approach efficiently adapts in tracking the event sources as they appear, is scalable, and is robust
to noise and failures.

INTRODUCTION

The localization of diffuse event sources and plumes is a problem that
appears in a wide range of real-world applications such as toxic gas detec-
tion, detection of underwater leaks, or detection of acoustic and heat
sources. Diffuse events are huge phenomena that can spread in a 2D or
3D space without a regular shape. A diffuse event consists of one source
and its plume. The source is the focus of the event, whereas the plume is
the area or space the diffuse event covers. Plume sizes and shapes are con-
stantly changing due to the environment dynamism that acts over them
(the wind, obstacles, etc.).
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In some scenarios, the source is fixed and does not vary with time,
although the plume varies constantly. A recent well-known example is the
eruption of the Eyjafjallajökull volcano in Iceland. The source is well known
and somehow fixed, whereas the changing ash plume is the main point of
concern. In other scenarios, the sources themselves vary (in location and
number) over time and it is imperative to detect all of them as quickly
as possible. For instance, in 2002 the tanker Prestige was damaged and
began losing its cargo during a storm. The Prestige was carrying approxi-
mately 81,000 tons of oil. The oil spread over the sea near the Spanish
and Portuguese coasts. Due to the wind and sea currents and the way the
tanker sank, the oil split into several disjointed spots. The different spots
of oil moved over the sea and continued splitting into new spots, rendering
the recuperation of the oil and the cleaning process difficult. Ultimately,
this accident led to a huge ecological disaster, the oil spills stretching
further than 1000 km. The detection and tracking of the spots was a diffi-
cult task that could have been simplified with the use of sensor networks.
Another real-world example of dynamically changing diffuse event sources
is the bush fires in Australia in 2009. Because of the wind, embers were
blown ahead of the fire front, and new spot fires then started where the
embers landed. In this particular example, the presence of smoke compli-
cated the localization of the main fire focuses. Infrared vision sensors, as
used in the project Spread,1 have been used to localize hot temperature
spots and to predict fire movement, thus demonstrating the usefulness of
sensors in tracking fire. In scenarios where sources are dynamically chan-
ging, localizing as soon as possible all diffuse event sources is crucial
(e.g., to avoid the spreading of toxic gas and possible large disasters). We
consider that the sensor network and the localization of diffuse event
sources may play a key role in these kinds of scenarios.

So far, approaches exploiting WSN have essentially concentrated on
detecting plumes using centralized algorithms (Ruair and Keane 2007),
on detecting a single source (global optimum) in static and noise-free
environments (Blatt and Hero 2006; Ermis and Saligrama 2006), or detect-
ing multiple sources with sensors well distributed in the environment and
following a centralized strategy (Weimer, Sinopoli, and Krogh 2009). More
generally, regarding the detection of static diffuse event sources in
non-noisy environments, Ruair and Keane (2007) demonstrated that exist-
ing algorithms for target tracking do not scale well when they are applied to
the localization of diffuse events. These algorithms require that each sensor
reports the data to the sink when it reads a sensor value higher than a
threshold. Because diffuse events can cover large areas, a large number
of sensors would try to report the data to the sink, producing a network
overload. Figure 1 shows a diffuse event and a sensor network used to moni-
tor it. The network overload is produced when all ‘‘positive sensors,’’
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sensors that are inside the diffuse event, try to send the information to the
sink. To avoid this problem, our proposal is to find the sensor with higher
value, and then only one sensor will send the information to the sink.

To the best of our knowledge, with the exception of our previous
preliminary work (Fernandez-Marquez, Arcos, and Serugendo 2010), the
problem of detecting dynamically changing diffuse event sources in noisy
WSN environments has not been addressed. Our work focuses on the
detection of diffuse event sources in dynamic and noisy environments.
The main task is to detect not only the main event source (i.e., location
of the global optimum given, for instance, by the highest temperature or
the highest density of oil) but also any residual event sources that may
become new principal events (i.e., local optima becoming global opti-
mum). Thus, the goal is to detect all event sources dynamically appearing
over time in the system. Additionally, any realistic solution to the problem
has to deal with the imprecision related to sensors’ measurements and the
noise introduced by the environmental changes (e.g., weather conditions
or ocean currents).

To track diffuse event sources, we consider sensor networks covering
large areas created by a vast number of connected devices spread randomly
in the environment. Despite the improvement in the technology, which
has made possible the development of ultra-small, fully autonomous, and
communicating sensors (characterized by small size, low power consump-
tion, low cost and low computation power), one of the most important
requirements in a WSN remains the design of energy-efficient algorithms

FIGURE 1 Diffuse event example. (Figure is provided in color online.)
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able to extend the network lifetime (Vinyals, Rodriguez-Aguilar, and
Cerquides 2011).

Therefore, a quick detection of dynamically changing diffuse event
sources in large sensing areas requires decentralized self-organizing
approaches able to adapt to the dynamicity of the environment, robust to
noise, and that scale without being greedy on energy consumption. This
article proposes a decentralized multiagent approach, following a gradient-
based strategy and exploiting local interactions among sensors. It detects
all the diffuse event sources as soon as they appear and has the additio-
nal advantage of limiting the energy consumption of the sensors.

The article is organized as follows. First, we discuss related works. Then,
we briefly explain the lower-power listening mode assumed in this article
for the sensors. Next, we describe our model and approach. Then, we
report on simulations and discuss the performance of our approach in
terms of messages sent, number of sensors’ measurements, resilience to
noise and failures. We also performed a study on the impact of the para-
meters used. Finally, we present conclusions and future work.

RELATED WORK

Localization of diffuse event sources differs from target tracking (Yang
and Feng 2006) and environment monitoring (Corkill, Holzhauer, and
Koziarz 2007). These related problems are concerned either with the pre-
diction of object movements or with the creation of a model to monitor the
changes in a specific area. Because of the dynamicity of the environment,
diffuse events are phenomena whose behavior and appearance are unpre-
dictable or difficult to model. The use of WSN further complicates the
situations, because it involves a high latency when tracking objects.

The problem of localizing diffuse event plumes in a WSN has been
addressed in Ruair and Keane (2007), proposing a multiagent system
(MAS) approach to map the contours of large diffuse events. Agents are
distributed over a WSN, playing different roles: an agent playing the leader
role and operating on one sensor, and multiple agents playing the member
role and operating on sensors adjacent to the location of the leader agent.
Agents change their roles by following a gradient-based strategy with the
aim of covering an event’s contour (plume). The proposed mechanism
can be adapted to deal with multiple sources, but it has not been demon-
strated to be enough for dynamic and noisy environments.

Blatt and Hero (2006) and Ermis and Saligrama (2006) proposed dif-
ferent algorithms to detect and localize sources that emit acoustic waves.
They consider static and noise-free environments, and their goal is to assess
the global optimum value avoiding the local optima of the acoustic signals.
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When the cost of the sensors is expensive, sensors are allocated strate-
gically and a centralized solution produces good results (Weimer, Sinopoli,
and Krogh 2009). When the data sampling periods are much longer than
the communication time, a centralized approach for detection and localiza-
tion is feasible. Indeed, the time required to coordinate the nodes is
shorter than the sampling time. This solution, however, does not scale to
a large number of nonexpensive sensors spread randomly over the space,
because we cannot assume that all nodes are sampling at each period.

Finally, as the main studies in dynamic multimodal optimization have
demonstrated (Blackwell 2007; Lung and Dumitrescu 2007), in highly
dynamic environments, detecting only the global optima is not sufficient
(the diversity of the exploration is a required feature). A current trend
in dynamic multimodal optimization is to localize most of the best local
optima in order to guarantee a fast adaptation to environmental changes
(Fernandez-Marquez and Arcos 2009).

Our work proposes a similar approach to that of Ruair and Keane
(2007). However, we focus on the diffuse event sources location instead
of mapping the contours of diffuse events. Moreover, we adopt some ideas
from dynamic optimization to improve the adaptability of our approach in
dynamic environments.

SLEEP/WAKE MODES

The required lifetime of sensors for environment monitoring can reach
several years. In order to achieve this requirement, a sensor must be in
sleep mode most of the time. A sensor consumes energy while it is taking
measurements, is computing, and while it is communicating (sending or lis-
tening for data). Communication is the most energy-consuming activity of
the sensor (Croce, Marcelloni, and Vecchio 2008). The energy used in the
communication device, even in idle listening, is three orders of magnitude
higher than when the node is in the sleep mode.

Different proposals for dealing with energy efficiency at the Media
Access Control (MAC) layer in sensor networks communication have been
presented. Two main approaches can be identified (Na, Lim, and Kim
2008). On the one hand, the synchronized listening (SL) approach causes
sensors to turn on and off their radio at regular intervals; sensors must be
synchronized to communicate with each other. The synchronization has an
extra cost, and sensors cannot send data when they need to; they have to
wait for the wake-up events to do so. On the other hand, the low-power lis-
tening (LPL) approach allows sensors to send information when they want.
The only requirement is for the sender to send a large preamble data in
order to synchronise with other sensors in the communication range.

380 J. L. Fernandez-Marquez et al.
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Potential receiving sensors wake up asynchronously to detect and synchro-
nize with any detected preamble.

We consider that in emergency scenarios, such as like forest fires or gas
leaks, a sensor should not wait until the next wake-up period; the sensor
must be able to send the information in a short period of time. Therefore,
in this article we assume the LPL approach.

The LPL approach reduces the idle listening time by incorporating a
duty cycle in the physical layer. This approach is motivated by the idea that
most of the time sensors do not need to communicate, because interesting
events rarely occur. Basically, LPL increments the size of the data sent by
the transmitter and reduces the cost from the receiver. Figure 2 shows
how the receiver wakes up asynchronously and checks whether there is a
preamble or not. If the preamble is detected, the receiver continues listen-
ing until it receives the data, otherwise it turns off the radio until the next
cycle T. LPL can be applied to those devices for which switching the radio
on=off takes little time. Recently, further improvements have been realized
in both approaches (SL, LPL; Na, Lim, and Kim 2008).

Our work does not focus on the different MAC protocols proposed in
order to save energy in WSN. This brief introduction is presented only to
justify the assumption that the network can work in an asynchronous mode
and that every sensor is constantly in a sleep mode (has its communication
device off) unless it is awaken by another sensor sending some data. As
soon as a sensor has performed its duty (answering a request or transmit-
ting information) it turns off its communication device again.

OUR APPROACH

The aim of our approach is to localize the diffuse event sources as soon
as possible, minimizing sensors’ measurements and communication.
Diffuse events appear and disappear over time. Basically, the idea is to
find those sensors closest to diffuse events. One of the contributions of
this algorithm is that the search of the diffuse event sources is executed
in a decentralized way, by collaboration. This proposal produces a better
scalability when diffuse events are spread over a significant number of
sensors. Once we find the sources, the number of sensors that report the

FIGURE 2 Low-power listening (from Na, Lim, and Kim 2008).
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information about the diffuse event sources’ localization is very low com-
pared with the traditional tracking algorithms used in sensor networks,
where every sensor that samples a value higher than a fixed threshold sends
the information to the sink.

We assume a WSN where the sensors are spread randomly over a
2-dimensional space. All sensors are identical and reactive. Over the
WSN, there is a middleware that permits a set of agents to move from
one sensor to another and have access to the sensor data and sensor com-
munication devices. All agents run the same algorithm and agents have
access only to local information. Communication between agents is allowed
only when they reside in adjacent sensors, that is, a hop-by-hop communi-
cation protocol is not assumed. Sensors communicate with other sensors
only when an agent hosted in some sensor requires information.

We propose a distributed and decentralized approach based on a
mobile MAS where agents move freely over the sensor network to localize
the sources of diffuse events that are randomly appearing and disappearing
over time. Moreover, agents are responsible for monitoring the localized
events once the source is reached. They are responsible for requiring
measures from the sensors.

Our approach pursues a number of active agents fewer than the num-
ber of sensors, as we show later on. As a consequence, a low number of
environment measurements are performed. Because we cannot control
the number of active diffuse events, we include a mechanism to control
the number of mobile agents that live in the WSN. This mechanism con-
trols the number of agents in the WSN in a decentralized way and without
additional communication cost.

In order to deal with energy constraints, we use a GPS-free algorithm
with which our main goals are to reduce the number of sensors’ mea-
surements and the bandwidth used. The GPS-free approach reduces
WSN cost (Savvides, Chan, and Srivastava 2001) and works either in indoor
or underwater environments with high energy constraints.

Our approach performs two different explorations: (1) a global explo-
ration, thanks to the random generation of new agents on the WSN; and
(2) a local exploration that drives agents to the sources. Global exploration
is required to continuously monitor new diffuse events as they appear. We
consider that the system convergeswhen, for each active event, there is an agent
located at the sensor nearest its source (i.e., all event sources are monitored).

To ease the discussion, in this article we use the notion of mobile
agents. However, to further reduce computation and communication costs,
the actual movement of the agent can be replaced by moving a token
(instead of a whole agent). In that case, each sensor hosts a stationary
agent, and the movement would consist in sending a token among the sen-
sors until the token reaches the diffuse event source. The mobile agent
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approach has the advantage of providing a simpler design of the system’s
behavior. In addition, we could also consider extending the functionalities
of mobile agents, such as monitoring both the plume and the source by
applying flocking techniques. In these cases, a token-based approach would
not appropriately capture that swarm behavior.

Sensors

Sensors are responsible for creating agents. Sensors provide an infra-
structure to host agents, allowing the agents to access their data and com-
munication devices. Sensors are most of the time in the sleep state, that is,
with the wireless communication turned off and using low energy. Sensors
do not know their positions (i.e., no global position system is assumed).
Sensors are identical and they run the same software. Transmission collisions
are handled by lower MAC-layer protocols and are not considered in this arti-
cle. Sensors follow the LPL mode described earlier and no multihop proto-
col is assumed. Sensors are reactive to agents’ requests. No proactive
behavior is assumed from the sensor side. With every Tw tick, a sensor creates
an agent with probability Pa. It is important to note that the creation of an
agent does not change the communication state. If the sensor is in the sleep
state, it will stay so until it switches to the awake state because of a communi-
cation request (i.e., data received from a nearby sensor or sent on request of
the agent). The Pa parameter controls the number of agents that are created
across the whole environment. A high Pa value implies a high global explo-
ration and also a higher cost (i.e., an increment on the sensors’ measure-
ments and on the number of messages sent). Moreover, sensors send data
measurements when they receive data requests. These are sent by an agent
to a neighbor sensor when it performs local exploration. The sensor algor-
ithm is sketched in Algorithm 1. For simplicity purposes, we do not show
the change of communication state (sleep-to-awake-to-sleep-again). The
sensor is always in the sleep mode, except when it sends or receives data.

Algorithm 1 The Sensor Algorithm

if (timeElapsed(Tw)) then
if (Random() <Pa) then

CreateAgent()
end

end
if (sensorReadRequestEvent()) then

sendSensorData()
end

Detecting Dynamically Changing Diffuse Event Sources 383
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Mobile Agents

Mobile agents are responsible for actively tracking diffuse event sources
and monitoring them once they have reached the source. Mobile agents
use a WSN as an infrastructure that enables them to move over the space,
to obtain sensor data, and to communicate with other sensors or agents
using the sensors’ communication devices. The agent procedure has to
deal with uncertain data (mistaken measurements) and with a weak infra-
structure that can fail at any time (sensors can break down, sensor data
may contain noise, and communications can fail).

The goal is to design a robust agent algorithm that allows agents to
monitor diffuse events with a high performance. The agents decide when
a sensor must read a sensor data or when a sensor must communicate its
sensor data to a neighbor sensor. Sensors are managed by the agents
(i.e., they are not proactive).

In order to deal with the requirements (low number of sensor reads
and low number of communication messages), the number of active agents
must be considerably lower than the number of sensors. We consider the
following policies: (1) when an agent is created, it first checks whether
another agent exists in another sensor within its communication range,
and the agent with a higher creation timestamp finishes its execution;
and (2) when two different agents reach the same sensor, only one of them
continues its execution (i.e., two agents cannot coexist at the same sensor).

The intuition is that when agents are created, they try to reach the clo-
sest diffuse event source by following the shortest path according to a
gradient-based strategy. Specifically, each agent uses the sensor data of
the neighboring sensors in order to guide its movements and finally find
the source. Following Algorithm 2, when an agent is created, it first checks
if there is another agent placed in one of the adjacent sensors. If that is
the case, the most recent agent finishes its execution. Otherwise, it reads
the sensor data and checks if a given event plume is detected. If nothing is
detected (the measured value is too low), it finishes its execution. When
an event is detected, the execution continues by choosing ns adjacent sen-
sors and sending a sensor data request to the selected ns sensors. When all
the answers are received, the agent selects the best sensor; that is, the sen-
sor providing the highest sensor data read (e.g., highest gas concen-
tration, highest temperature). If the data of the best neighbor sensor
is higher than the data the agent has measured on its host sensor, the
agent migrates to the selected sensor. After migrating, if another agent
is already hosted at that sensor, the migrating agent finishes its execution.
Otherwise, the main loop starts again (reading the sensor data of the
host sensor).
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Algorithm 2 The Agent Algorithm

if (agentsInNeighborhood()) then
exit()

end
while (true) do

sensorData¼ readSensor()
if (sensorData <¼ 0) then

exit()
end
neighbors¼ selectAdjNodes (ns)
requestReads (neighbors)
bestSensor¼ selectBestSensor (neighbours)
if (bestSensor.data> sensorData) then

moveToSensor(bestSensor)
if (existAgentInSensor ()) then

exit()
end

end
end

When an agent reaches the source of a diffuse event (i.e., when it does
not move between consecutive reads), it continuously monitors the event
(i.e., it sends the information to the sink) until an environmental change
occurs. An event source may disappear or change its location. When it dis-
appears, the data obtained from the sensor becomes zero and the agent
finishes its execution. When an event source changes its position (i.e.,
the event moves slightly), the requests to the neighbor sensors will guide
the agent to the new source location.

EXPERIMENTS

The goal of this section is to demonstrate the performance of our
approach in simulated scenarios and to perform a study of the impact of
the parameters of our proposal. Specifically, we analyze the performance
of our approach when the number (i.e., density), of the sensors changes,
when local and global exploration vary, or when the system is subject to dif-
ferent noise levels. Moreover, we measure the exploration cost and we study
the robustness of our approach in case of network failures.

The simulation has been implemented using REPAST (Samuelson and
Macal 2006) for modeling sensors and agents, and the moving peaks
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benchmark (MPB) (Branke) for modeling the environmental changes
(diffuse events). MPB is a benchmark created to compare dynamic function
optimization algorithms, providing a fitness function changing over time.
The function is composed of different peaks (cones) that change in width,
height, and position. These peaks are used as diffuse events in our simula-
tion. Notice that, in the absence of noise, the plume follows a monotonous
increment of concentration to the source. In order to aggregate noise to
the sensor reads, we modified MPB such as the fitness function incorpo-
rates a noise factor c in the following way:

SensorValueðpÞ ¼ MPBValueðpÞ þ ð2 � h� 1Þ � c; ð1Þ

where h generates a uniform random number between [0,1] and c, the
noise factor, varies between 0 and 10, depending on the experiment.

A simulation is a run of TS¼ 2� 105 ticks, where an environmental
change occurs at each tc¼ 200 ticks. That is, a simulation holds 1000
environment changes. In each environmental change the diffuse events
change the position, intensity, and size. The results reported are the
averages of these 1000 changes. Simulations take place in a rectangular
space of 103� 103 square meters where 1000 sensors are distributed ran-
domly. The number of diffuse events varies from 1 to 3 with a radius of
the plume ranging from 30 to 5000 meters, and the frequency of an agent
creation event is Tw¼ 20 ticks. From results reported later, the probability
of creating an agent Pa¼ 0.5%, the number of nearby sensors receiving a
data request from an agent ns¼ 3, and the sensors’ communication range
is 80 meters (Table 1 summarizes the configuration of MPB).

Figure 3(a) shows an example of a simulated scenario, in which the
sensors are spread over the space and three diffuse events are active. Gray-
blurred regions represent the diffuse events perceived with noise (i.e.,
event plumes do not form a continuous space). Small filled points rep-
resent the sensors. Gray-filled points represent sensors not hosting mobile
agents. White-filled points represent sensors with a hosted mobile agent.
Circles represent communication ranges of sensors hosting an agent that
has detected an event; ns sensors within the circle will receive the data

TABLE 1 Standard Settings for MPB

Params Values Params Values

movrand random num. of peak 1–3
num. of dimensions 2 minheight 30
maxheight 100 stdheight 50
minwidth 0.1 maxwidth 5.0
stdwidth 0.0 mincoordinate 0
maxcoordinate 100 peak_function cone
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requests. Figure 3(b) shows an example of a scenario with two diffuse
events without noise where the optima have been found. Dark nodes are
those that have not been visited, and white nodes are those that have been
visited by agents. White nodes describe the trajectories followed by differ-
ent agents from the agent’s creation to the diffuse event sources. Notice
that in most of the cases, one source is found by more than one agent.

In the simulations, we use the number of data sensor reads and the num-
ber of messages sent as an estimation of the cost to reach the convergence
(i.e., when all diffuse event sources of a given scenario have been detected;
i.e., up to 3 at each environmental change). These values are measured for
each environment change. We consider a failure of the system if the system
cannot reach the convergence before a new change in the environment (i.e.,
200 ticks), in other words, at least one of the sources has not been detected.
Once the system has reached the convergence, the agents continue explor-
ing andmonitoring the events. At that moment, the agents are ready to send
the sensor data to the sink. The cost of sending the information to the sink
depends on the routing algorithm used, and it is not addressed in this work.
Thus, the monitoring reads and routing messages are not counted here,
because they depend on the routing algorithm and on external parameters
such as the desired monitoring frequency. Our counting of reads and mes-
sages stops when agents reach event sources. We performed an additional
experiment for measuring the number of sensor data reads and messages
when no diffuse events are present (i.e., for measuring the cost of the global
exploration). For all the following experiments, we consider the parameters
described above, unless otherwise specified.

Varying the Number of Sensors in WSN

These first experiments had two goals: (1) to demonstrate that the com-
plexity of our approach grows linearly with the WSN size (i.e., our approach

FIGURE 3 Scenario examples. (Figure is provided in color online.)
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is scalable) and (2) to demonstrate the adaptability or our approach to dif-
ferent WSN densities. The different densities used in this simulation have
been established following (Intanagonwiwat et al. 2002). In these experi-
ments, the number of sensors varies from 500 to 8000, and noise is not
applied to the sensor data reads.

The first observation is that, when the density of sensors increases, the
number of failures decreases, in other words, agents are able to find better
paths to navigate toward event sources (see Table 2). Notice that the num-
ber of failures reaches 35% only when the number of sensors is low (500).
This percentage of failures could be reduced by incrementing the Pa prob-
ability or by reducing the Tw interval, as we will present in the next experi-
ment. The number of consumed resources varies according to the size and
location of the diffuse events. Fast convergences are reached with only 15
sensor reads, whereas difficult scenarios require more than 1000 reads.
Notice that difficult scenarios are those in which the diffuse events have
overlapping areas in which at least one of the diffuse events is covered by
a low number of sensors (small diffuse event). Notice that we consider a
convergence only when all the event sources of a given scenario are located.
Moreover, detecting a local optimum, in addiction to detecting all event
sources (i.e., global optima), is not considered a failure. If a high concen-
tration is measured the sink should be notified even when it is not the real
source. Analogously to dynamic optimization problems, local optima are
likely to become global optima when environmental changes occur.

The results achieved in this first simulation show that our approach is
able to find all the diffuse event sources with a probability of 80% when
the number of reads is �40% of the number of sensors, and the number
of messages is �60% of the number of sensors (line 2 of Table 2). The
number of messages and reads grows linearly with the number of sensors,
wheareas the number of failures decreases (good scalability).

Varying the Communication Range

In these experiments, the goal is to analyze the algorithm’s behavior
with different sensor communication ranges. We use 4000 nodes and we

TABLE 2 Varying Sensor Number Without Noise

Sensor Number Reads Msgs Failures Adj. avg.

500 326.10 543.42 35.3% 9.2
1000 422.82 695.23 15.9% 18.76
2000 676.08 1106.77 4.9% 37.09
4000 1158.56 1887.11 2.9% 74.94
8000 2334.98 3805.85 1.9% 149.7175
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vary the communication range from 20 to 100 meters. Table 3 shows the
number of reads, number of messages, and the percentage of failures for
each communication range. Similarly to the experiment, ‘‘Varying the
Number of Sensors,’’ the algorithm presents better results for an average
number of adjacent neighbors between 18 and 75. The algorithm
achieved the worst result when the average of adjacent neighbors is lower
than 9 or higher than 120. This experiment shows that when the com-
munication range is higher than 60 meters, the percentage of failures
increases. Intuitively, we could think that long sensors’ communication
ranges induce better performances than short communication ranges,
because the agents reach the source in a fewer number of hops (i.e.,
longer communication ranges allow the agents to cross long distances in
a single hop). However, once the agents come close to the diffuse event
source, long communication ranges make it difficult to precisely locate
the sources. Agents tend to stay within the communication range of
the sensor emitting the highest value, but are not able to approach
further. Thus, when the source is in the communication range of one
agent, the probability to find the source is equal to ns (number of nearby
sensors receiving the data request) divided by the number of sensors in
the communication range.

Quality of Convergence

In these experiments we analyze the average of the number of reads
and the average of the number of messages the approach needs to reach
the convergence. Figure 4(a) shows how, for most of the scenarios, our
approach is able to reach the convergence in fewer than 200 reads. The
black line on the top of the bars shows the standard deviation over five
runs with each run having 3000 environmental changes. More precisely,
1300 convergences of a total of 3000 are assessed with fewer than 200
reads, while 450 scenarios require more than 800 reads or do not converge
at all. Figure 4(b) shows that similar results are obtained for the number
of messages: 30% of the convergences are reached with fewer than 200
messages.

TABLE 3 Varying Communication Range Without Noise

Comm. Rng Reads Msgs Failures Adj. avg.

20 4236.44 7081.07 32.8% 4.88
40 1078.08 1755.21 0.8% 19.42
60 1108.58 1804.63 0.7% 42.92
80 1158.56 1887.11 2.9% 75.38

100 1380.94 2263.52 6.3% 115.60
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Varying the Noise Factor

So far, all the experiments considered a noise-free environment. The
goal of these experiments was to evaluate the performance of our proposal
in the presence of different noise levels. Specifically, the noise factor c was
varied from 0 to 10. Notice that when the environment is subjected to
noise, the plume does not follow a monotonous decrease when moving
away from the source. Table 4 shows how, when the noise factor increases,
the performance of the system decreases (in terms of reads). However,
when the noise level is equal to or lower than 4, the percentage of failures
decreases. This result is achieved because noise introduces a stochastic
behavior that increases the exploration in the search. This higher explo-
ration increases the number of reads and messages, but produces a better
convergence (lower percentage of failures). We can also note that our
algorithm is robust to noise. Indeed, even when the noise factor is
�10%, the algorithm is able to reach the convergence, that is, to detect
the optimum sensor for all the diffuse events, in 75% of the scenarios.

Varying Local Exploration Without Noise

In these experiments we studied the performance of the algorithm
when varying the local exploration in a noise-free environment. Local

FIGURE 4 Performance results. (Figure is provided in color online.)

TABLE 4 Varying the Noise Factor c

c Reads Msgs Failures

0% 422.82 695.23 15.9%
�2% 547.70 907.64 13.4%
�4% 698.31 1160.37 15.1%
�6% 776.21 1291.31 18.6%
�10% 878.73 1461.43 25.1%
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exploration is controlled by the number of sensors that an agent uses to
decide its next location (ns). In Table 5, we observe that even when we
increase to 10 the number of requested sensors, the number of failures
does not significantly decrease. The reason behind this result is that
increasing local exploration is not enough to detect all of the diffuse event
sources. Specifically, global exploration is the main factor of failures. As
expected, the number of messages and sensor reads increases when local
exploration is higher. From the results of these experiments (see
Table 5), we set the parameter ns¼ 3.

Varying Local Exploration With Noise

In these experiments we analyzed the performance of the algorithm
changing the local exploration (i.e., the ns parameter) for a noise factor
of �4% (Table 4). Similarly to the experiment ‘‘Varying the Local Explo-
ration Without Noise,’’ increasing the number of nearby sensors receiving
a data request does not reduce dramatically the number of failures (i.e.,
even with ns equal to 20, the approach cannot reduce the percentage of
failures to less than 12%). Moreover, the increment of local exploration
produces an increment of the number of reads and number of messages,
but it does not produce any significant reduction of the number of failures.
The best results, for the number of reads, number of messages, and
percentage of failures, are assessed for ns values between 3 and 5.

Varying Global Exploration Without Noise

In the previous experiments we observed that, even increasing the local
exploration, the number of failures is not significantly reduced. Thus, the
goal of the current experiment is to reduce the system failures by increas-
ing the global exploration and to measure the cost associated to this strat-
egy. The global exploration is controlled by the frequency (Tw) of the
sensors to create agents and the probability (Pa) to actually do so. Both

TABLE 5 Varying the ns Parameter without Noise

ns Reads Msgs Failures

1 467.45 656.24 17.3%
2 425.96 663.72 16.7%
3 397.38 651.64 15.2%
4 435.79 740.80 12.6%
5 517.21 903.14 14.1%
6 525.74 934.45 14.4%

10 752.18 1391.42 13.1%
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parameters can increase or decrease the number of agents that are explor-
ing the space at the same time. We performed a study assessing the contri-
bution of these parameters to the global exploration ratio, the relation
between the global exploration ratio and system failures, and the cost of
the exploration when reducing system failures.

Table 7 shows how, when the exploration rate increases due to an
increased probability Pa of creating an agent, the number of failures
decreases. However, the price is an increment of the number of reads
and messages. Similar results are found when the frequency Tw is increased
(see Table 8). In both experiments, we are increasing the number of agents
that explore the WSN. As a conclusion of the results, Pa and Tw can be used
to customize our approach, depending on the search priority. This trade-off
between the quality of the results and the cost can be used to control the
priority of the search process. Emergency situations will tend to increase
the exploration cost. Notice that even when we reduce the percentage of
failure to 0.3%, the number of reads and messages present good results.
Indeed, the algorithm is able to find the sensor closest to the event with
654 reads in an environment with 1000 sensors.

Varying Global Exploration With Noise

The goal of these experiments is to demonstrate that the rise of failures
produced by the noise can be reduced by increasing the global exploration.

TABLE 6 Varying the ns Parameter with Noise c¼�4%

ns Reads Msgs Failures

1 624.27 879.90 23.9%
2 655.37 1029.82 18.9%
3 698.31 1160.37 15.1%
4 728.97 1254.22 13.8%
5 756.40 1331.84 13.9%
6 788.16 1411.77 13.3%

10 954.97 1778.99 12.3%
20 1417.07 2725.35 12.0%

TABLE 7 Varying Agent Creation, Pa

Pa Tw Reads Msgs Failures

0.2% 20 322.30 538.29 37.7%
0.5% 20 422.82 695.23 15.9%
1% 20 484.01 783.83 4.5%
5% 20 654.21 1024.92 0.3%
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In these experiments we fixed the noise level to c¼�4% and we varied the
Pa parameter (i.e., creation probability) from 0.2% to 5%. As it is reported
in Table 9, by increasing incrementally the global exploration (i.e., Pa para-
meter), the approach reduces the percentage of failures while keeping a
reasonable number of reads and messages.

Experimental results have demonstrated that, even in the presence of a
high noise level, the number of failures is reduced by incrementally increas-
ing the global exploration. For instance, increasing Pa to 2% and the noise
level to 10%, the number of reads is 1190 and the number of messages is
1947, whereas the number of failures is 162 (16.2%)(i.e., same number
of failures achieved without noise). Thus, the global exploration level
can reduce the number of failures produced by the lack of sensors in the
WSN or by the presence of noise.

The Exploration Cost

The goal of these experiments is to measure the exploration cost when
no diffuse events are present in the system (the most frequent case).
Specifically, we tested our approach when different noise levels are applied.
Notice that noise is acting as false plumes that temporarily drive agents
through the WSN. Table 10 shows that when the noise level increases from
0% to �2%, the exploration cost increases by 50%. Thus, we may conclude
that noise increases the exploration cost. However, this increment remains
constant, even when we increase the noise to �5%, or even to �10%.
Thereby, our approach does not depend on the noise level.

TABLE 9 Varying Global Exploration with Noise c¼�4%

Pa Tw Reads Msgs Failures

0.2% 20 525.94 881.25 39.8%
0.5% 20 622.29 1031.82 14.7%
1% 20 819.022 1351.79 5.0%
5% 20 1093.08 1787.67 1.0%

TABLE 8 Varying Frequency, Tw

Pa Tw Reads Msgs Failures

0.5% 5 576.26 920.21 1.8%
0.5% 10 488.36 790.16 4.4%
0.5% 20 422.82 695.23 15.9%
0.5% 50 307.75 513.11 38.5%
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Tolerance to WSN Failures

Finally, we analyzed the robustness of our approach when sensors fail.
We consider two kinds of failures: (1) when the sensors turn off unexpect-
edly, and (2) when sensors are providing a wrong measure (i.e., maximum
value).

Simulation Failures when Sensors are Turned Off
In these experiments, we consider sensor failures corresponding to the

case of some sensors turning off unexpectedly (i.e., the most usual failure).
To that purpose, a probability of failure was added to each sensor. Sensor
failures are simulated as follows: just before Tw a percentage of sensors
are declared broken down (i.e., their state is off). Then, those sensors can-
not be used until the next Tw interval, when the sensors may continue to be
turned off or have become fixed. Analyzing Table 11, we may observe that
the increase in the sensor failures involves a decrease of system conver-
gences that is significant only when the probability of failures reaches
40%. This result is achieved because the algorithm is tolerant to sensors’
failures. Indeed, each agent chooses at random three neighboring sensors
that are turned on; if one of the neighboring sensors is broken or turned
off, it simply doesn’t appear among the available neighbors. The worst case
would be that no node in the neighborhood is turned on. So, this type of
failure corresponds to having fewer nodes in the system. When the prob-
ability of failure is high (i.e., 40%), the algorithm decreases the perfor-
mance. This behavior is not caused by the WSN failures but by the lack
of sensors in the system. Thus, when the global exploration increases

TABLE 11 Failure Tolerance

Failure Prob. Reads Msgs Failures

0% 422.82 695.23 15.9%
5% 430.56 708.39 16.2%

10% 409.97 675.38 16.9%
20% 422.26 697.46 19.6%
40% 463.55 772.60 30.7%

TABLE 10 The Exploration Cost

Noise Reads Msgs

0% 49.28 0�0
�2% 100.22 108.74
�5% 99.46 107.87
�10% 101.78 111.05
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(e.g., by increasing the probability of an agent’s creation from 0.5 to 2.0),
the system is able to decrease the failures to 4.7% (with an average of 705
reads and 1145 messages), in the same way that the algorithm can reduce
the number of failures when the number of sensors in the WSN decreases.
Thus, we may conclude that our approach recovers from the failures and
reaches the convergence even with a high probability of sensor failures.

Failure Simulation when Sensors are Providing Wrong Measures
In these experiments, the sensors that fail provide a maximum value

(instead of the actual value). We analyze the performance of our proposal
in terms of number of reads, number of messages, and percentage of con-
vergence failures. When a sensor provides a maximum value, it is true that
it can act as a false positive and attract agents that are exploring the sensor
network in its neighborhood. However, it will not attract all agents, because
our approach is based only on local interactions. A single agent would be
actually attracted only if both: (1) the failing sensor is in the communi-
cation range of that agent; and (2) the failing sensor is among the three
randomly chosen nodes. Furthermore, the failing node scope is limited
to its communication range and it does not prevent the system at the global
level from finding other real sources.

Table 12 shows the different performances achieved when we vary
the sensor failures probability. We may observe that when the probability
of failure is lower than 5%, the number of reads, messages, and the con-
vergence failures increases but not significantly. When the probability of
failures increases to 10%, the performance decreases dramatically. We
can compensate for this behavior by increasing global exploration from
Pa¼ 0.5 to Pa¼ 2.0. The algorithm then reaches the convergence with an
average of reads¼ 1747.07, msgs¼ 2969.01, and a percentage of failures
equals 13.6%. Thus, we demonstrate that our proposal is tolerant also to
this kind of failure. The overall result of getting such a false positive affects
performances only in number of reads or number of messages, but does
not affect at all the detection of the real sources.

TABLE 12 Wrong Measure Tolerance

Failure Prob. Reads Msgs Failures

0% 422.82 695.23 15.9%
1% 551.01 919.66 17.8%
2% 589.79 990.09 18.0%
5% 870.43 1480.42 22.3%

10% 1292.06 2218.34 34.8%
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CONCLUSIONS

In this paper we have proposed a new approach, based on a mobile
multiagent technology, to detect diffuse event sources in dynamic and noisy
environments using a wireless sensor network infrastructure. To the best of
our knowledge, this problem has not been addressed previously. Our
approach proposes a distributed and decentralized algorithm based on
local interactions and local knowledge of the environment. Different stra-
tegies have been designed to keep a low number of agents while maintain-
ing the performance of the system.

We studied the performance of our proposal on different scenarios:
changing the density of the sensors, varying local and global exploration
ratios, applying noise to the data that sensors gather, and subjecting sensors
to failures. Experimental results have shown that the presence of noise,
sensor failures, and the lack of sensors diminishes the performance of our
approach. We also showed that this degradation can be alleviated by increas-
ing the exploration level, with a reasonable rise in the cost to reach the con-
vergence. Importantly, in our approach the cost of global exploration does
not depend on the noise level. Because our approach is not introducing any
assumption on the sensor positions, we plan to explore its capabilities in
scenarios such as underwater applications or 3-dimensional spaces.

NOTE

1. http://www.algosystems.gr/spread/index.html (accessed February 16, 2012).
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