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Abstract—Socio-technical collective adaptive systems (CAS)
are composed of different heterogeneous parts or entities
(e.g., individuals, groups, computers, robots, agents, devices,
software, services, sensors) that interact collectively in a com-
plex and largely unpredictable manner. Their ability to be
adaptive requires incorporating mechanisms that allow entities
to interact and perform actions favoring the emergence of
a global desired behavior or service. Therefore, analyzing
and discovering new emerging behaviors and/or unexpected
abnormal behaviors, as well as new opportunities of services
emergence, require methods and tools for formally specifying,
verifying, and validating foundational properties at design
time and while running (runtime verification). In this paper,
three emerging formal methods—situation calculus, ambient
calculus, and bigraphical reactive systems—are first studied
to shed more light on their appropriateness for specifying
and verifying socio-technical CAS. A case study is used and
its formal model using these methods is presented to show
their fundamental features and limitations for modeling these
systems.

Keywords-Socio-technical systems; social organizations; col-
lective adaptive systems; Formal modeling.

I. INTRODUCTION

Socio-technical collective adaptive systems are composed

of different heterogeneous parts or entities that interact and

perform actions favoring the emergence of global desired

behavior. In this type of systems entities might join or leave

without disturbing the collective, and the system should self-

organize so as to continue performing its tasks.

In socio-technical CAS, analyzing and discovering new

emerging behaviors and/or unexpected abnormal behaviors,

as well as new opportunities of services emergence, require

methods and tools for formally specifying, verifying, and

validating foundational properties at design time and while

running (runtime verification). Run-time verification allows

verifying that the system continues to meet its design objec-

tives as it evolves. This paper presents a preliminary study of

formal modeling of socio-technical CAS focusing on three

recent and emerging formal methods: situation calculus,

ambient calculus, and bigraphical reactive systems. In order

to show their practical use, their fundamental features, and

their limitations for modeling these systems, a small scale

case study, represented by a triggering alarm scenario in a

hospital, is used and its formal model using these methods

is presented. The triggering alarm system can be seen as

a socio-technical CAS of modest size, essentially made of

tens of artificial entities, characterized by limited scope, a

time frame of minutes to some hours, space scale ranges

from a room to a building, and social scope (e.g., patient

monitoring.)

The remainder of this paper is structured as follows.

In Sect. II a brief description of existing work of formal

specification methods proposed in the literature is presented.

Due to page limitation reader might refer to [1], [2] for

more details about research issues in designing and oper-

ating principles of socio-technical CAS. Section III briefly

introduces the formal model of the triggering alarm scenario

in a hospital based on ambient calculus, situation calculus,

and bigraphical reactive systems. Section IV finally sum-

marizes the features provided by these methods and briefly

sketches future research direction for formal modeling and

verification of socio-technical CAS.

II. RELATED WORK

Socio-technical CAS are composed of humans (individu-

als or groups) and machines (sensors, service, computers)

that form networks of entities collectively collaborating

to provide one or more services according to the current

context. Principles for engineering socio-technical CAS are

mainly classified into two categories [1], [3], [4]: design

principles and operating principles. Design principles are

necessary to build and manage the system by enabling

the emergence of behaviour and facilitating prediction and

control of those behaviours. Operating principles should

define techniques that allow the system to operate taking into

consideration the diversity of objectives within the system,
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conflicts resolution, long term stability, and the need to

reason in the presence of uncertainty (e.g., partial, noisy,

out-of-date and inaccurate information).

Analyzing and discovering new emerging behaviors

and/or unexpected abnormal behaviors in socio-technical

CAS is one of issues that should be addressed. Recently,

formal modeling and verification methods and tools have

been developed to increase dependability and eliminate

errors at early design stages of the development of adap-

tive systems. The focus is mainly on developing formal

methods for modeling pervasive and ubiquitous applications

that are characterized by many desired properties such as

the mobility of users and devices. These methods can be

categorized into two main families [5]: context-based mod-

eling methods and behaviour-based methods. Context-based

modeling methods have used techniques like ontologies and

situation models. An example is CML (Context Modeling

Language) [6]. Based on Object-Role Modeling (ORM),

CML was developed for conceptual modeling of databases.

CML provides a graphical notation designed to support

software developers in analyzing and formally specifying

the context requirements of context-aware applications. Its

graphical notation for analyzing and designing context-

aware applications as well as its support for capturing and

evaluating historical information constitute the main strength

of this method. Situation calculus (SC) is a logical language

that was proposed for representing changes in dynamic

environments [7]. This method provides basic concepts that

are situations, actions and fluents. Actions performed by

agents allow dynamic world change from one situation to

another one. Fluents are used to describe the effects of

actions.

Behaviour-based methods have focused on modeling and

verifying the behavior of system entities. Examples of

emerging formal methods include ambient calculus and

bigraphical reactive systems. Ambient calculus (AC) has

mainly derived from π-calculus [8] for modeling and an-

alyzing ubiquitous and pervasive systems [9]. Bigraphical

reactive systems (BRS) was proposed in [8], in addition

to ambient calculus, to deal with the interactions between

mobile entities. This method allows designers to specify

both the location of entities and their interactions. According

to [8], BRS is still in its infancy and it has the potential to

become a foundational model—if supported with appropriate

software tools for analysis like model checking. In the rest of

this paper, the major features of SC, AC, and BRS methods

are presented and a small scale socio-technical CAS is then

specified by each of these methods.

III. CASE STUDY AND FORMAL MODEL

The case study considered describes a triggering alarm

scenario in a hospital according to the following scenario:

Communities ={Hospital};

Roles = {Nurse, GeneralPractitioner, Doctor};

Actants/entities = {Mary, Jane, Bob, House, Alice, Mike,

Hanna};

Rooms within the hospital ={1, 2, Consulting Room};

Systems = {MonitoringSystem};

Messages = {Alarm};

Activities = {doInjection, doMedication, Talk, Listen};

Initial World = {Mary and Jane are in room 1; Bob is

in room 2; House, Alice, Mike, and Hanna are in the

Consulting Room; House is talking to Alice and Hanna}.

A. Ambient calculus

In ambient calculus, all entities are described as processes.

An important kind of process is an “ambient”, which is a

bounded place where computation happens. Each ambient

has a name and can be moved as a whole, into and out of

other ambients, by performing in and out operations. Am-

bient calculus allows a description of complex phenomena

in terms of creation and destruction of nested ambients, and

movement of processes into and out of these ambients.

In ambient calculus, n[P] represents an ambient, n is the

name of the ambient, and P is the process running inside it.

The process “0” is the one that does nothing. Parallel execu-

tion is denoted by a binary operator “�” that is commutative

and associative. “!P” denotes the unbounded replication of

the process P within its ambient. The following expression:

n[P1 � . . . � Pj � m1[...] � . . . � mk[...]]

describes an ambient called n, which contains j processes

named P1, ..., Pj and k ambients named m1, ...mk. Figure 1

reports the equivalent graphic representation for n.

Figure 1. Ambient calculus: graphical representation for ambients.

Some processes can execute an action that changes the

state of the world around them. This behavior of processes is

specified using capabilities. Process M.P executes an action

described by the capability M and then continues as the

process P . There are three kinds of capabilities: for entering

(in), for exiting (out) and for opening up (open) an ambient,

respectively. Figure 2 shows these three capabilities. The

process “in m.P” instructs the ambient surrounding “in

m.P” to enter a sibling ambient named m. The reduction

rule, which specifies the change in state of the world, is:

n[in m.P] � m[Q] � m[n[P] � Q]. (a)

The action “out m.P” instructs the ambient surrounding “out

m.P” to exit its sibling ambient named m. The reduction rule

is:

m[n[out m.P] � Q] � n[P] � m[Q]. (b)

The action “open m.P” provides a way of dissolving the

boundary of an ambient named m located at the same level
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Figure 2. Ambient calculus: capabilities.

as open. The rule is:

open m.P � m[Q] � P � Q. (c)

Output and input actions are respectively denoted by

“�M�.P” and “(x).P”, to release and capture capabilities.

Finally, the restriction operator (Vn)P creates a new (unique)

name n within a scope P . The new name can be used to

name ambients and to operate on ambients by name.
To show how this tool can be used for formal specification

we consider the alarm triggering scenario. Figure 3 describes

the initial world. Figure 4, instead, represents the initial

status when an alarm is generated at time T0. After that,

several transitions (here not reported for the sake of brevity)

trigger until the final status shown in Fig. 5 is reached. Each

transition describes an elementary movement, of a person

or another kind of ambient, which is performed within

the environment. AC mainly allows the specification of

movements. Unfortunately, it doesn’t allow the specification

of interactions (e.g. speaking, listening to, etc.). Moreover,

it doesn’t come with automatic tools for checking the

specification.

Figure 3. Ambient Calculus: a model of the initial world.

Figure 4. Ambient Calculus: movements after a heart attack alarm.

B. Bigraphical Reactive Systems

BRS is a graphical model of mobile computing-based

applications that incorporates both locality and interactions.

A bigraph is a structure that enables the description of both

the location of entities and their interactions. A bigraph

includes two graphs, the topograph (or place graph) that

describes locations of nodes and the monograph (or link

graph) that describes their links. An example of bigraph is

reported in Fig. 6. In the picture, locations are represented

by nodes of type ri, vj , and sk. Nodes of type ri are called

roots and are part of the outer face of the bigraph, as well

as names of type yl. Nodes of type sk, which are called

sites, represent a sort of hole that can be replaced by other

bigraph. Sites and inner names (xm) form the inner face
of the bigraph. The bigraph B has, then, an interface like

B: �3, �x0,x1�� � �2, �y0,y1,y2��, indicating that B has

three sites and inner names x0, x1, and two roots and outer

names y0, y1, and y2.

It is possible to compose the bigraph B with another bi-

graph A by nesting A into B (written BoA) if, and only if, the

inner face of B matches the outer face of A. Other possible

operations are parallel product and merge product, as shown

in Fig. 7. Such a model deals with static structures. For

dynamics, there will be reaction rules that change the state

of the system. A reaction rule is a pair of bigraphs called

redex (or pre-condition) and reactum (or post-condition). An

example of reaction rule is described in Fig. 8, which depicts

the effect of the movement of the node v2 into the node v3.

Figure 9 shows a generic model for a social organization.

In particular, we model a Society as a root of a bigraph;

Organizations and Communities as clouds within the society;

we use a variety of symbols for Roles; and links for

communication channels. In addition to this, not shown in

the figure, we also take into account physical locations.

Figure 10, instead, specifies a rule for partitioning the

society. Indeed, once three different roles of type A, B and C
are inactive within the organization, such roles will arrange

themselves into a new community and interact each another

as described by the reaction rule R.

For the case study described above, the initial world

is modeled as in Fig. 11. The society has initially one

organization of inactive people and a community formed by

Dr. House, nurse Alice and the general practitioner Hanna

Figure 5. Ambient Calculus: the final status
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Figure 6. BRS: Example of bigraph.

Figure 7. BRS: Bigraph operations.

Figure 8. BRS: Example of reaction.

Figure 9. A generic model for a social organization.

Figure 10. An example of partitioning.

who are talking for planning some medical treatment.

Figure 11. BRS: A model of the initial world.

Figure 12 describes the consequences of an alarm gener-

ation, which is an exogenous perturbation for the society. It

is possible to specify the movements of both nurse Jane and

the general practitioner Mike. All such people will form a

new community for handling the alarm and having care of

the patient.

Figure 12. BRS: Movements of the nurse and general practitioner.

Moreover, it is possible to specify a generic rule for

the case of an alarm, as shown in Fig. 12. Here we are

specifying that one nurse and one general practitioner must

approach the patient. As for AC, BRS has no automatic

tool for checking the specification neither for reasoning on

properties.

C. Situation Calculus
The basic situation calculus (SC) is due to John Mc-

Carthy [7] and has been adopted to model dynamically

changing worlds. Three basic sorts in SC are: Actions,

which can be performed in the world and can be quantified;

Fluents, that describe the state of the world (these are

predicates and functions whose value may change depending

on situation); and Situations, which represent a history of

action occurrences.
A dynamic world is modeled through a series of situations

as a result of various actions being performed within the

world. It is important to note that a situation is not a state

of the world, but just a history of a finite sequence of actions.
The constant S0 denotes the initial situation; whereas,

do(a,S) indicates the situation resulting from the execution

of the action a in situation S.
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The dynamic world is axiomatized by adding initial
world axioms, unique names axioms, preconditions, ef-
fect axioms, and successor state axioms. The initial world
axioms describe the initial status of the environment, its

objects, their position into the environment, their properties,

etc. A unique name axiom for situations states that if the

execution of actions a1 and a2, respectively from S1 and S2,

lead the environment to the same situation, then, necessarily,

a1 = a2 and S1 = S2. Unique name axioms also define

the set of basic actions that can be performed within the

environment. A precondition is formalized using the binary

predicate symbol Poss(a,S), which describes a condition that

must hold in order to execute the action a in situation S. An

effect axiom, instead, describes the effect on a fluent (e.g.

F(�x,S)) caused by the execution of an action in a specific

situation (F ��x, do�a,S�). Unfortunately, effect axioms are

not sufficient to describe the changing world. Indeed, it

must be specified for each fluent not only the effect of each

affecting action, but also the non-effect of the other actions.

This is a well known problem—the frame problem—that

entails the specification of 2 � A � F axioms being A the

number of actions and F the number of fluents. To reduce

such a problem, we refer to success state axioms of the form:

F ��x, do�a,S�� � γ�F ��x, a,S� � �F ��x,S� � �γ�F ��x, a,S��
(1)

where γ�F (�x,a,S) is a first-order formula—with free

variables among �x, a, and S—that makes the F ’s truth value

changing to true. Analogously, γ�F (�x,a,S) is a first-order

formula that makes the F ’s truth value changing to false.

Intuitively, it is possible to state that a fluent’s truth value

is true after executing an action a if, and only if, the action

has the effect to make the fluent true (as stated by one of

the effect axioms) or, the fluent was already true before

executing a and the action has not the effect to make it

false. In such a case, only F successor state axioms must

be formalized.

A basic action theory is a set of axioms including the

initial world axioms, unique names axioms, precoditions,

and successor state axioms, that describe a dynamically

changing world. A basic action theory is defined in the next

section to represent and identify dangerous or anomalous

situations of our case study.

Another remarkable characteristic of SC is the possibility

of indicating goals and planning. Such a characteristic is

exploited to search and identify strategies that would enable

to recover from a dangerous situation. The planning prob-

lem, under such hypotheses, can be reformulated as follows:

starting from an axiomatized initial situation S0 and having

a goal G, find a sequence of actions S in which the goal

G(S) is true:

Axioms � ��S�.executable�S� �G�S� (2)

where executable(S) concerns the possibility of executing

actions of S based on precondition axioms. Planning, thus,

can be viewed as a side-effect of theorem-proving. A ba-

sic mechanism that can be adopted to solve the planning

problem is regression. Suppose that the goal G(S) includes

a relational fluent F(�x,do((α,σ)), where F ’s successor state

axiom is F(�x,do((a,S)) � φF (�x,a,S). As a consequence,

by substituting F(�x,do((a,S)) with φF (�x,a,S) we obtain an

expression G’(S’) that is closer to S0. In our scenario,

a goal is specified in response to a dangerous situation.

In particular, once a dangerous situation is detected, an

intelligent agent is queried to plan a strategy that will bring

the patient and the environment in a safe situation G(S).
The agent uses regression to find a sequence of executable

actions from current unsafe situation.

It is finally remarkable to note that under certain con-

ditions (Clark’s theorem), an executable Prolog program is

directly obtained by appling Lloyd-Topor transformations to

the basic action theory. This can be interpreted by a Golog

interpreter and represent an intelligent agent for the detection

of anomalous and dangerous situations. As well, another

intelligent agent may be triggered to plan a sequence of

actions for the goal G�S�.

Concerning the case study, the initial world is described

by means of the following facts (written directly in Golog):

/* **** Initial world *** */
isNurse(Jane). isNurse(Alice).
isDoctor(House).
isPatient(Mary). isPatient(Bob).
isGeneralPractitioner(Mike). isGeneralPractitioner(Hanna).

isRoom(1). isRoom(2). isRoom(ConsultingRoom).

isCommunity(Hospital).

isIn(1,Hospital). isIn(2,Hospital). isIn(ConsultingRoom,Hospital).
isIn(Mary,1). isIn(Jane,1). isIn(Bob,2).
isIn(House,ConsultingRoom). isIn(Alice,ConsultingRoom).
isIn(Mike,ConsultingRoom). isIn(Hanna,ConsultingRoom).

isMonitoring(ECGMonitor,Bob).

isTalkingTo(House,Hanna). isTalkingTo(House,Alice).
isListeningTo(Hanna,House). isListeningTo(Alice,House).

In addition to AC and BRS, we can describe activities as

in what follows (written directly in Golog):

/* **** Primitive control actions*** */
primitive_action(riseAlarm(Patient)).
primitive_action(switchOff(Alarm)).
primitive_action(startTalking(Person,toPerson)).
primitive_action(stopTalkink(Person,toPerson)).
primitive_action(startListening(Person,toPerson)).
primitive_action(stopListening(Person,toPerson)).
primitive_action(startHavingCare(Person,Patient)).
primitive_action(stopHavingCare(Person,Patient)).
primitive_action(startInjection(Person,Patient)).
primitive_action(stopInjection(Person,Patient)).
primitive_action(startMedication(Person,Patient)).
primitive_action(stopMedication(Person,Patient)).
primitive_action(goInto(Person,Room)).

We can also write down preconditions for the execution of

such actions (omitted here for the sake of brevity). Fluents

describe the current situation and successor state axioms

specify how they change after the execution of actions. For

example, the following fluents can be specified for the case

study:

isHavingCare(Patient); It is true when there exists a nurse

who is taking care of patient Patient.
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isInDanger(Patient); It is true when the monitoring system

detects a heart attack and rises an alarm for the patient

Patient.
The following successor state axiom concerns the fluent

isHavingCare:

isHavingCare�Patient,do�a,S�� �

�a � startHavingCare�Nurse,Patient� �

isHavingCare�Patient, S� �

�a � stopHavingCare�Nurse,Patient�� (3)

Axiom 3 specifies that the fluent becomes true whenever

there is a nurse who executes the action startHavingCare
or, it remains true if it was already true in the previous

situation and the nurse doesn’t execute the action stopHav-
ingCare(Patient).

IV. SUMMARY AND DISCUSSION

Table I describes some characteristics of the formal meth-

ods presented in this paper and of interest for socio-technical

CAS. Although all methods provide mechanisms for the

modeling of concepts, AC and BRS support only limited

kinds of static relationships. Indeed, BRS focuses on two

kinds of relations (i.e. “contains” and “interacts with”). AC
doesn’t support any mechanism for interaction, whereas in

SC any kind of relationship can be defined as a fact. As

a consequence, dynamic modeling concerns movements for

AC; movements and interactions for BRS and any kind

of action for SC. Real-time constraints are substantially

uncovered by such methods though extensions of AC and

SC exist aiming at taking someway into account temporal

aspects.

As of verification, none of such methods are equipped

with model checking tools (for AC, however, algorithms have

been defined); whereas, some runtime verification is possible

with SC as long as the method is interpreted by Prolog

dialects such as Golog; thus, verification can be performed

by ad-hoc devised intelligent agents.

Finally, it is possible to state that SC is generally the

most appropriate logic for the situation awareness. However,

it must also be underlined that AC and BRS may be more

proficiently adopted with the aim of focusing on phenomena

concerning movements or interactions and without the aim

of having verification. This is mainly due to the existence of

specific mechanism supported by a graphic representation,

which ease both the writing and reading of specifications.

In summary, despite the simple formulation of our case

study, none of reviewed methods allows a complete cover-

age of requirements and properties for this type of socio-

technical CAS and a research direction in this area is

required. Scalability of these methods should be also studied

to access their suitability for modeling large scale socio-

technical CAS with increasing level of complexity. For

example, a system with active human participation, with

Table I
SUMMARY OF THE CHARACTERISTICS OF THE REVIEWED FORMAL

METHODS.

Socio-technical CAS characteristics Method
AC BRS SC

Social concepts � � �

Relationships � � �

Interactions � �

Dynamics � � �

Real-time constraints � �

Design-time verification �

Run-time verification �

Situation awareness � � �

a larger scope, time, space scale and social scope e.g.

space scale ranges from several buildings to a city with

a time frame of hours or days, with thousands of inter-

acting entities. A case study within a large hospital with

a complex organizational structure that refers to different

levels of management is a typical example, e.g., networked

cooperation of the different actors of the ambulatory health

care: doctors, hospitals, nursing homes, care services at

home and associations. Our current work on service-oriented

communities and fractal social organizations focuses on this

type of socio-technical systems.
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