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Abstract—In large scale networks, agents must use par-
tial knowledge obtained from local interactions to reason
about their environment. They require efficient mechanisms
to allow them to retrieve and aggregate information beyond
their communication range. Even though proposals have been
presented for gathering information in large scale wireless
sensor networks, it is still a challenge to find an efficient
and robust technique for gathering information in large scale
mobile wireless networks. In this paper we propose gradients as
a multi-path structure for routing and aggregating information
across a network of computational mobile nodes.

We use simulation to demonstrate that progressive aggre-
gation done on top of a gradient improves the bandwidth
usage and memory consumption. We also demonstrate self-
* properties of our proposed algorithms including scalability,
robustness and adaptability.
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I. INTRODUCTION

The proliferation of wireless, often mobile devices, such

as sensors, smart phones, tablet computers, and public dis-

plays offers untapped potential as an ad-hoc communication

and computation infrastructure. Such a network enables a

new class of application—one focused on highly dynamic,

localised, frequent update, real-time interactions that are

difficult to implement via a traditional centralised approach.

Such applications are designed specifically with local inter-

actions and awareness of partial knowledge at the fore.

Consider an application to optimising the travel arrange-

ments for tens of thousands of people, distributed across a

city, in real-time. Such an application would rely on up to the

minute information about bus, train and metro location, the

origin and intended destinations of citizens, traffic accidents

and areas of congestion, much of this information lying

beyond the host device’s communication range.

In this paper we propose the gradient [1] as a structure

for routing and progressively aggregating the information.

Progressive aggregation of information in a network is not

a new idea, it has been applied for large scale sensor

networks on top of hierarchical structures, such as trees

and clusters. However, these hierarchical structures present

failure tolerance problems, and are difficult to maintain in

mobile networks. Multi-path structures have been proposed

to overcome this. In multi-path approaches, the information

is sent over multiple paths at once, producing duplicates

of the information while increasing robustness. Indeed, in a

multi-path structure even if a connection between two nodes

breaks, information is simultaneously sent along auxiliary

paths. This is potentially useful in Mobile Ad-Hoc Networks,

where the topology of the network is changing continuously

due to their dynamic nature. However, simultaneous use of

multiple paths increases the complexity of these algorithms

and the creation of duplicates makes it potentially difficult

to aggregate information with 100% of accuracy.

Gradients provide a complete multi-path structure, i.e., all

possible paths from any node to the sink. However, unlike

multi-path approaches, the gradient contains a notion of dis-

tance and direction to the node that originated the gradient.

Consequently, the information is naturally routed along the

shortest path created by the gradient and the information

is not duplicated when it comes back to the sink. Thus,

gradients produce a multi-path structure exploited using

unicast communication, and using the alternative paths only

in case of node failures or topological network changes. That

makes gradient a good candidate for gathering information

in mobile networks.

Even though gradients have been used for creating spatial

structure in sensor networks, their use in mobile networks as

basis for progressive aggregation is still an open issue. As

far as we know, there is not any work proposing gradients as

a structure for gathering and progressively aggregating data

in large scale mobile networks.

This paper analyses gradients as a structure for routing

and aggregating information in large mobile wireless net-

works. Mainly, we analyse the feasibility, performance and

robustness of progressive aggregation on top of gradients.

The paper is structured as follows: the next section sum-

marises related works. The proposed technique is introduced

in Section III. Section IV describes the different aggregation

algorithms. In Section V we evaluate the contribution of
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progressive aggregation on top of gradient. Finally, we

conclude and present future works in Section VI.

II. RELATED WORK

Since the introduction of sensor networks (SN) different

techniques have been proposed in order to gather and aggre-

gate information from sensors. Nowadays, these techniques

are not only required for SN but by other domains, includ-

ing pervasive computing, amorphous computing, ubiquitous

computing, and the Internet of Things, in order to obtain

meaningful information from distributed systems, increasing

agents’ knowledge, and allowing them to reason and take

decisions.

The state of the art of progressive data aggregation (in-

network aggregation) algorithms for distributed systems has

been recently settled in [2]. This survey classifies the existing

networking protocols and hierarchies for progressive aggre-

gation in three different groups: Tree-based, cluster based,

and multi-path approaches.

In a tree-based approach a tree is first constructed at the

sink. The requested information is sent through the tree and

aggregated at intermediary nodes, that act as aggregators

and routers. This approach is suitable for performing optimal

and very efficient aggregation functions, however, it presents

a potentially high cost for maintaining the hierarchical

structure (i.e. the trees) and scarce robustness in case of

link/device failures. Some existing proposals are: TAG [3],

Directed Diffusion [4], and PEGASIS [5].

Analogously to tree-based approaches, cluster-based ap-

proaches build hierarchical structures, where nodes are sub-

divided into clusters. For each cluster, a node is responsible

of aggregating and routing the information to upper lev-

els of the structure. In dynamic environment the structure

should be maintained, involving a potentially high cost.

Main proposals in the literature that implement cluster-based

approaches are: LEACH [6] and COUGAR [7].

In order to increase the robustness of previous approaches,

multi-path approaches (e.g. Synopsis Diffusion [8]) extend

the tree-based approaches sending the information to more

than one single parent. This information is duplicated, and

reaches the source from many different paths. Obviously,

the increment of robustness is paid with an increment of the

resource usage.

In this paper we propose an in-network aggregation on top

of gradients. Gradients are multi-path structures that convey

the notion of direction and distance to the originator of the

gradient as defined in [1]. Even though gradients have been

used for creating hierarchical structures, such as, trees, as far

as we know, there is not any approach that exploits the multi-

path capabilities of gradients for implementing progressive

aggregation. A difference with tree and cluster based ap-

proaches, gradients provide all the possible paths from the

data sources to the sink, being potentially more tolerant to

node/link failures. Moreover, even though gradients provide

a multi-path structure we exploited them using unicast. Thus,

we do not duplicate information as multi-path approaches

do. In our case, the redundant paths are used in case of

node/link failures, producing a fast repair of the gradient

structure.

III. REQUESTING INFORMATION VIA GRADIENTS

Analogously to other algorithms, such as, TAG [3], we

consider two phases, the distribution phase and the collection

phase. To allow information to be requested and routed to

the source node (i.e., the node from where the information

query is sent), we propose the use of gradients as a multi-

path structure created during the distribution phase.

The gradient is a multi-path structure that provides an ad-

ditional information about the senders distance and direction,

usually the number of hops.

Gradients were initially proposed as one of the amorphous

computing paradigms [9] to estimate distances from each

node to the source node. Different approaches have been

presented for mobile networks [10], [11]. In this paper we

assume a basic implementation of gradients [1] and we focus

on how the gradient can be exploited for gathering and

aggregating information in an efficient way.

The aggregation algorithms proposed in this paper are

then built on top of the gradients and independent from the

gradient implementation itself.

Initially we consider a network where each node is locally

connected, have a local knowledge of the system, and stores

a value. The different steps of the proposed algorithm are:

1) A gradient is originally created by an agent (situated

in a given source node) that requests an information

(i.e., MIN, MAX, AVG of the values stored in nodes).

The gradient contains the distance to the source, the

information requested and how it must be aggregated

(e.g., a pair (humiditySensorV alue,MIN) is a

request that should provide the minimum humidity

sensor value).

2) Once the gradient is spread among the nodes, if an

agent at one of the nodes can answer the request, it

sends the reply value following the gradient back to

the node from where the gradient was initially created.

3) When two or more reply values arrive to the same

node, they are aggregated using the function specified

at the gradient creation time, and the aggregated result

is then sent back following the gradient.

4) Finally the agent that initially requested the informa-

tion receives the desired aggregated value.

IV. AGGREGATION ALGORITHMS

In this section, we present the design of several different

distributed aggregation functions that can be used to calcu-

late the sum, average, mode and max/min of a set of data.

Each differs in two respects: (1) the actual reply values

communicated between the nodes, (2) the function that is
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applied when two or more values (i.e., inputs) are co-located

within the same node. Moreover, we present a couple of

application scenario for each aggregation function.

A. Sum

Following the algorithm steps proposed above, when two

reply values arrive at the same node they are summed, and

the result is sent back following the gradient.

The function is executed when two or more pieces of

information arrive at the same node are:

fsum(a1, a2, . . . , an) = (a1 + a2 + . . .+ an)

where an is the numeric value and n is the number of

aggregated values. The aggregation result is sent following

the gradient.

In the SUM algorithm the information sent among the

node is a simple value. Example application where the SUM

algorithm is needed are: (1) An agent wants to know the

number of nodes in the system (e.g., a number of active

sensors in a sensor network, or mobile phones in a given

city), and (2) Given a sensor network, an agent wants to

know the total battery power available in the system.

B. Average

To calculate the average, each reply value contains: i) the

numeric value, and ii) a counter that indicates the number

of times that this numeric value has been aggregated (i.e.,

summed in this case). Thus, each node initially has a pair

(a, b), where a is the value and b is a counter initialised to

1. When two or more reply values arrive to the same host,

they are aggregated according to the following rule:

favg((a1, b1), (a2, b2), . . . (an, bn)) = (
∑n

i=1 ai,
∑n

i=1 bi)

Finally the host from where the average was requested

receives a pair (a, b), and the agent then calculates the

average as: avg = a/b.
Examples of applications where the AVG algorithm is

needed are: (1) Given a sensor network, an agent wants to

know the average battery available at each sensor, or the

average of a number of sensor measurements, and (2) Given

a mobile network composed of cars, an agent wants to know

the average car speed.

C. Mode

In the mode case, reply values consist of a list of pairs,

with each pair representing: a unique number value in the

list and the number of times that specific value has been

already encountered while it is being propagated along the

gradient. Thus, the aggregation rules that produce the mode

are defined as follows:

fm((a1, b1), (a2, b2)) =

{
(a1, b1), (a2, b2) if a1 �= a2

(a1, b1 + b2) if a1 = a2

The agent that initially requested the information will

eventually receive a list of pairs, each containing different

values encountered in the system and the number of times

each of them has been encountered.

Examples of applications of the MODE algorithm are:

(1) given a network composed of mobile phones or PDAs,

an agent wants to know what is the best date to celebrate

an event (i.e., most voted day is the best date), and (2)

given a phone application, an agent wants to know the most

frequently chosen setting among users.

D. Max/Min

When two or more reply values arrive at the same host,

the MAX/MIN aggregation is processed according to the

following function:

fmax(a1, a2, . . . , an) =ai s.t. ai ∈ {a1, a2, . . . , an} and

ai ≥ aj , ∀j ∈ {1, . . . , n}

Examples of applications where the MAX/MIN algorithm

is needed are: (1) Given a mobile network composed of cars,

an agent wants to know the maximum speed achieved in one

city, and (2) Given a sensor network, an agent wants to know

the maximum measured value (e.g., maximum temperature

in one city).

A major aspect of these algorithms is that each node sends

each value only one time. The algorithms are not replicating

data among the nodes, thus, when a node sends a value it is

removed from the sending node. This is important in order to

get an accuracy of the result, even when network topological

changes occur, or the gradient is not properly updated. As

we show in the next section the algorithms reach 100% of

accuracy for all cases.

V. EVALUATION

In this section we evaluate the performance of the

proposed algorithms, and analyse the contribution of the

progressive aggregation on top of gradients. To measure

this contribution, we compare our approach using progres-

sive aggregation against aggregating the information on the

source node (called “flat”). Progressive aggregation has been

successfully applied on top of trees and clusters. However,

it is not clear its contribution on top of gradients, because

gradients provide many paths for routing the information,

thus, reducing the probability of information converging

on the same path. Through this section it is shown that

progressive aggregation on top of gradient reduces the band-

width usage and memory consumption, making gradients

a potential multi-path structure for routing and aggregating

information in mobile wireless networks. Moreover, we pro-

vide a detailed evaluation of the properties of our approach,

such as scalability, robustness and adaptability.

The simulations are implemented using REPAST 3 [12].
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Params values
Space 1200m x 700m

hosts’ distribution Randomly uniform
Num. of dimensions 2

Comm. range 40
Hosts number 2000
Mobile hosts false

Table I: Parameters Settings

A. Assumptions and Parameters settings

For the simulations we assume the following:

• A number of nodes large enough to prevent network

fragmentation.

• A node can only communicate with node to which

it is directly connected (i.e., nodes that are inside its

communication range), and has only access to local

information.

• The cost of messages and memory for the gradient

creation is independent of the proposed algorithms. It

is analysed separately in section V-C.

Across this evaluation we vary the different simulation

parameters in order to analyse the different range of be-

haviour exhibited. Table I summarises the default parameter

settings used in the simulations. Unless otherwise indicated,

all the simulations use these settings, namely, 2000 nodes,

uniformly spread over a bi-dimensional space (1200 x 700

meters), each with a communication range of 40 meters,

and initially the nodes are static. The minimum number of

nodes used in this simulation is 2000, which corresponds

to an average adjacency of 11.47 nodes. Lowering this

value increases the probability of segmentation, i.e., that

some nodes are not connected to the network. Each node is

initialised with a random value between [1..1000], and each

simulation result is provided as the average of the result

among 50 runs.

B. Metrics

In these simulations we use two metrics: bandwidth usage,

and the memory consumption. A formal definition of these

metrics are as follows:
1) Bandwidth Usage: A message is sent each time a reply

value is moved from one node to another. The size of one

message is expressed in information units. For example, in

the sum algorithm, which only sends a single numeric value

among the nodes, the message size is 1 information unit. The

bandwidth usage is expressed as the amount of information

units sent during a given period of time.

Definition 1 (The bandwidth usage at time t): Let

msg(n, t) be the set of messages sent by a node n between

0 and t, and s(m) the size of a given message m in

information units, thus, the bandwidth used at time t over

all nodes, Nt, is given by:

BW (t) =
∑

n∈Nt
m∈msg(n,t)

s(m)

2) Memory: For each simulation we measure the maxi-

mum memory used by any host in the system.

Definition 2 (Number of messages stored at time t): Let

mem(n, t) be the maximum number of messages stored at

a node n between time 0 and t, the maximum number of

messages stored at time t in the network is given by:

MEM(t) = max
n∈Nt

{mem(n, t)}

Notice that for all simulations these metrics are reported

when the algorithm have reached 100% of accuracy. Thus,

the criterium for finishing each run is reached when the

desired result is achieved.

C. Gradient cost

In this section we analyse the bandwidth usage and

memory required to create the gradients. Namely, we vary

the number of nodes and show the bandwidth usage and

memory consumption. We observe how the bandwidth con-

sumption increases as the number of nodes increases. This

increment is a linear proportion of the number of nodes, so

for 2000 nodes the system needs a bandwidth usage of 2000

information units and for a network size of 10000 nodes,

the system needs a bandwidth usage of 10000 information

units. Simulation results demonstrate that in order to create

the gradient each node sends an average of one message.
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Figure 1: Gradient Cost Memory

Figure 1 shows the different memory consumption, when

we vary the number of nodes. As the information is progres-

sively aggregated (following the gradient algorithm reported

in [1]), keeping only the minimum hop counter, the memory

consumption is not high. Memory consumption is directly

related to the number of adjacent nodes.

Notice that if the nodes are moving we need to update the

gradients. The cost of update the gradient is directly related

to the updating frequency. In sectionV-F we show how even

when the gradient are not properly updated the increment of

bandwidth usage and memory consumption is insignificant,

while keeping 100% of accuracy.

D. Scalability

In this simulation we vary the number of nodes, in order

to evaluate the scalability of our approach, and we compare

our approach versus the flat approach (i.e. without using
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progressive aggregation). All the proposed aggregation func-

tions have been compared with the flat approach. Because

of space, we present only most relevant results.

By comparing Figure 2 and Figure 3, we observe that the

progressive aggregation dramatically reduces the bandwidth

usage among all the different number of nodes (e.g., the

SUM algorithm sends around 14000 units of information

per run, while SUM Flat sends an average of 140000 units

of information per run).
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Figure 2: Scalability - SUM - Bandwidth
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Figure 3: Scalability - SUM flat - Bandwidth

Regarding the memory consumption, Figure 4 shows the

maximum memory used by our approach for the different

number of nodes. Figure 5 shows the memory used by the

flat approach. By comparing both Figures, we observe that

the progressive aggregation (SUM in this case), reduces

dramatically the maximum memory consumption. In our

approach the maximum memory consumption is directly

related to the number of adjacent hosts (i.e., number of

neighbouring hosts), thus, the node with the highest con-

nectivity is the one that uses more memory, since in the

worst case it will receive as many information unit as its

number of neighbours. For the memory consumption in the

flat approach the maximum memory is directly related with

the number of hosts in the system. Since, each host sends

the information to the host that requires the information, and

it is aggregated there.

Similar results are achieved for the other aggregation func-

tions (i.e., AVG and MAX/MIN). The worst performance

is achieved in the MODE aggregation function. Here, our

approach presents similar bandwidth consumption as the flat

approach. The reason is that we are calculating the MODE of

values between [1..1000], and the aggregation only happens

when two similar values are in the same host. However,

if we implement the MODE for a voting system where
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Figure 4: Scalability - SUM - Memory

the number of possibles values is a range between [1..10],

the aggregation would happen more frequently, reducing

dramatically the bandwidth usage and memory consumption.

This simulations show that progressive aggregation can

be done on top of gradients, reducing the bandwidth usage

and memory consumption, in spite of the existence of many

different paths for reaching the source.
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Figure 5: Scalability - SUM flat - Memory

E. Robustness

In this section we evaluate the robustness of our proposed

aggregation algorithms, when the nodes values are subject

to noise. To evaluate the noise tolerance of our approach,

the value of each node is subject to noise. In this simulation

we set the number of nodes to 3000 and we vary the noise

factor. The noise is applied as follows:

noise(value) = value+ ((2 ∗ θ ∗ γ)− γ) (1)

where θ generates a uniform random number between [0..1]

and γ is the noise factor.

Simulations show how the error produced by the noise in

the SUM aggregation function remains constant for all the

different noise factors. In general, the proposed algorithms

behave similarly to a centralised approach in front of noise.

Thus, the tolerance of the proposed aggregation algorithms

depends on the mathematical properties of the aggregation

function and not on the algorithm itself. Moreover, we

observe that the bandwidth and memory consumption remain

the same even in presence of noise.

Simulation results show that our approach is tolerance

to intermittent communication failures, without a significant

increment of the bandwidth usage nor memory consumption.

F. Adaptability

In this section we evaluate the performance of our pro-

posal when the network is composed of mobile nodes. To
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deal with mobile nodes we implement the SUM algorithm

on top of active gradients. Active gradients [1], [10], [11]

are periodically updated in order to adapt the gradients’

values to network topological changes. The main goal of

this simulation is to evaluate how sensitive our approach is to

gradients that are not properly updated. Thus, this simulation

varies the frequency of updating the gradient and evaluates

the bandwidth usage and memory costs.
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Figure 6: SUM - Active Gradients - BW

The nodes follow a Random Way Point mobility pattern.

We assume that nodes are moving at a constant speed (1

meter/sec), the gradients are updated every 10s to 50s.

Figure 6 shows the bandwidth usage for different updating

frequencies. Notice that the SUM algorithm is able get

100% of accuracy even though the gradient is not prop-

erly updated. Moreover, the increment of bandwidth usage

is not significant. This small increment in the bandwidth

usage occurs because the information follows wrong paths

due to no updated gradient values. Regarding the memory

consumption, simulations results show that the memory

consumption does not change when nodes are moving, even

if the gradients are not properly updated.

VI. CONCLUSIONS

This paper proposes a gradient based aggregation al-

gorithm for distributed systems. This approach allows to

increment the agents’ knowledge by gathering and collabo-

ratively and progressively aggregating information from the

system. Agents can request information that come beyond

their communication range, reply values are routed following

the gradients and progressively aggregated at each node. As

far as we know, the progressive aggregation has only been

applied on top of tree, cluster, or multi-path structures, which

are not or only in a limited form fault tolerant (i.e.,multi-

path approaches have been applied to sensor networks, but it

is not clear their feasibility in mobile networks), and never

on top of gradients.

Even though, gradients have been used for the construc-

tion of tree structures. The combination of this progressive

aggregation with gradient provides an alternative for dealing

with mobile wireless networks, such as, pervasive comput-

ing, or ubiquitous computing.

Simulation results show that the progressive aggregation

can be done on top a gradient reducing dramatically the

bandwidth usage and memory consumption. Additionally,

we analysed the behaviour of the proposed algorithm dealing

with noise and host failures, demonstrating high levels of

robustness against noise and failure tolerance.
In future work we plan to compare our gradient based ap-

proach against other existing approaches, namely, Directed

Diffusion [4] in order to demonstrate its contribution in both,

mobile (e.g. pervasive computing) and static networks (e.g.

sensor networks).
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