
Description and Composition of Bio-Inspired Design
Patterns: The Gradient Case

Jose Luis
Fernandez-Marquez,

Josep Lluis Arcos
IIIA - CSIC, Campus UAB

Catalonia, Spain
fernandez@iiia.csic.es,

arcos@iiia.csic.es

Giovanna Di Marzo
Serugendo

CUI, University of Geneva
7, Rte de Drize

CH-1227 Carouge
giovanna.dimarzo@unige.ch

Mirko Viroli,
Sara Montagna

Alma Mater Studiorum –
Università di Bologna

via Venezia 52
47521 Cesena, Italy

sara.montagna@unibo.it,
mirko.viroli@unibo.it

ABSTRACT
Bio-inspired mechanisms have been extensively used in the
last decade for solving optimisation problems and for decen-
tralised control of sensors, robots or nodes in P2P systems.
Different attempts at describing some of these mechanisms
have been proposed, some of them under the form of design
patterns. However, there is not so far a clear catalogue of
these mechanisms, described as patterns, showing the re-
lations between the different patterns and identifying the
precise boundaries of each mechanism. To ease engineer-
ing of artificial bio-inspired systems, this paper describes
a group of bio-inspired mechanisms in terms of design pat-
terns organised into different layers and exemplified through
the description of 7 mechanisms: 3 basic ones (Spreading,
Aggregation, and Evaporation), a mid-level one (Gradient)
composed from basic ones, and 3 top-level ones (Chemotaxis,
Morphogenesis, and Quorum sensing) exploiting Gradient.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence:[Coherence and coordination][Multi-Agent Systems]

General Terms
Algorithms,Theory

Keywords
Self-Organising Systems, Bio-Inspired Mechanisms

1. INTRODUCTION
During the last decade, the engineering of self-organising

systems has attracted many researchers. Bio-inspired algo-
rithms have been transposed in ad hoc ways into specific en-
gineering systems. In an attempt to classify and describe the
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corresponding self-organising or bio-inspired mechanisms, dif-
ferent researchers have proposed descriptions such as the de-
scription of bio-inspired primitives [19], taxonomies for clas-
sifying self-organising mechanisms [15], or described some
mechanisms under the form of design patterns [24, 7, 1].

However, these efforts are still fragmented: no clear cat-
alogue of these patterns is provided, interpretations vary
among authors, the relations among patterns and their pre-
cise boundaries are not described.

This paper is part of a larger work aiming at providing
a complete catalogue of bio-inspired patterns organised into
different layers. At the bottom layer, we propose basic de-
sign patterns that define fundamental biological behaviours,
i.e. basic patterns that describe mechanisms at the level of
the environment’s locality. At the middle layer we propose
patterns describing more complex behaviours and interac-
tions obtained by composing or extending bottom level pat-
terns, describing the establishment of global structures in
the environment. Finally, top layer patterns describe pro-
cesses exploiting middle layer patterns and how agents reach
global coordination. To describe the behaviour of each pat-
tern and their interactions between the entities, we propose
a computational model inspired by the biological model that
covers a wide set of applications found in the literature.

This way of cataloguing the mechanisms supports the cre-
ation of new mechanisms and the adaptation of existing ones
to solve new problems. Moreover, this structure dissoci-
ates and identifies clearly the different biological behaviours
underlying each pattern. Each pattern describes how and
when they should be applied. Thus, depending on the ex-
isting problems the mechanisms can be easily chosen and
combined to engineering self-organising systems.

Recently, in [13] we presented the Gossip Pattern as a
composition of the Aggregation and Spreading Patterns. As
a complement to this work, this paper presents the pat-
terns related to the Gradient mechanism. We present first
the computational model on which the patterns are based.
We then express the three basic patterns (Spreading, Ag-
gregation, and Evaporation), followed by the mid-level pat-
tern resulting from the composition of the basic patterns
(Gradient), and the top-level patterns exploiting Gradient
(Chemotaxis, Morphogenesis, and Quorum Sensing). The
paper ends with some concluding remarks. Figure 1 shows
the different relations among the patterns linked to the Gra-
dient Pattern.
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Figure 2: Relevant entities of the biological and
computational models.

2. COMPUTATIONAL MODEL
The biological model is composed of Organisms and En-

vironment. The computational model mirrors the biologi-
cal one and its entities are as follows. The Agents are au-
tonomous and pro-active software entities running in a Host.
The Infrastructure is composed by a set of connected Hosts
and Infrastructural Agents. A Host is an entity with compu-
tational power, communication capabilities, and may have
sensors and actuators. Hosts provide services to the agents.
An Infrastructural Agent is an autonomous and pro-active
entity, acting over the system at the infrastructure level. In-
frastructural agents may be in charge of implementing those
environmental behaviours present in nature. Finally, the
Environment is the space where the infrastructure is located.

A system is then composed of Agents, Infrastructure, In-
frastructural Agents, Hosts, and Environment. Behaviour
of Agents and Infrastructural Agents is defined by a set of
rules (hereafter referred to as transition rules), while Hosts
are defined by the interface they provide.

3. BOTTOM LAYER PATTERNS
Patterns are described following Table 1. Since Spreading

and Aggregation patterns have been fully defined in [13], we
shorten their description here and keep only the description
fields relevant to this paper.

3.1 Spreading Pattern
The Spreading Pattern is a bottom level pattern for in-

formation diffusion/dissemination. The Spreading Pattern
progressively sends information over the system using direct
communication among agents, allowing the agents to incre-

Name The pattern’s name.

Aliases Alternative names used for the same pattern.

Problem Which problem is solved by this pattern and

situations where the pattern may be applied.

Solution The way the pattern can solve the problems.

Inspiration Biological process inspiring the pattern.

Forces Prerequisites for using the pattern and as-

pects of the problem that lead the implemen-

tation, including parameters (trade-offs).

Entities Entities that participate in the pattern and

their responsibilities. Entities are agents, in-

frastructural agents, and hosts.

Dynamics How the entities of the pattern collaborate to

achieve the goal. Typical scenario describing

the run-time behaviour of the pattern.

Environment Infrastructural requirements of the pattern.

Implem./
Simulation

Hints of how the pattern could be imple-

mented, including parameters to be tuned.

Known Uses Examples of applications where the pattern

has been applied successfully.

Consequences Effect on the overall system design.

Related

Patterns

Reference to other patterns that solve simi-

lar problems, can be beneficially combined or

present conflicts with this pattern.

Table 1: Description fields.

ment the global knowledge of the system by using only local
interactions.

Aliases: also known as diffusion, dissemination, flooding,
broadcast, epidemic spreading, or propagation.

Problem: Agents’ reasoning suffers from the lack of knowl-
edge about the global system.

Solution: A copy of the information, received or held
by an agent, is sent to neighbours and propagated over the
network. Information spreads progressively over the system
and reduces the lack of knowledge of the agents while keep-
ing the constraint of the local interaction.

Forces: If spreading occurs with high frequency, the in-
formation spreads over the network quickly but the number
of messages increases.

Entities-Dynamics-Environment: Entities involved in
the spreading process are Hosts, Agents, and Infrastructural
Agents. The spreading process is initiated by an agent that
first spreads the information. When information arrives to
the neighbouring hosts, agents or infrastructural agents in
those hosts re-send the information. The process continues
even when all the hosts in the system have the information.

The behaviour of each pattern is informally defined
by a set of abstract transition rules of the kind

“name :: data
rate−−−→ action if condition”, which trigger if

data occurs locally (and the optional condition is satisfied),
and accordingly execute action. When the reaction could be
continuously executed, the (optional) rate is used to express
the frequency at which it fires in each location.

The transition rule for the Spreading Pattern (1) specifies
that information in input inf is sent to a set of neighbours.

spreading :: inf → send(inf, neighbours) (1)

Related Patterns: It is used in the Morphogenesis Pat-
tern (Section 5.2), the Quorun Sensing Pattern (Section 5.3),
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the Chemotaxis Pattern (Section 5.1), the Gossip Pattern
([13]), and the Gradient Pattern (Section 4.1).

3.2 Aggregation Pattern
The Aggregation Pattern [14], is a bottom level pattern

for information fusion. The dissemination of information in
large scale systems deposited by the agents or taken from the
environment may produce network and memory overload,
thus, the necessity of synthesizing the information. The Ag-
gregation Pattern reduces the amount of information in the
system and assesses meaningful information.

Alias: Information fusion.
Problem: In large systems, excess of information pro-

duced by the agents may produce network and memory over-
loads. Information must be distributively processed to re-
duce information and to assess meaningful information.

Solution: Aggregation consists in locally applying an ag-
gregation operator to process the information and to synthe-
size macro information. This operator can take many forms,
such as filtering, merging, aggregating, or transforming.

Forces: Aggregation applies on all the information avail-
able locally or only on part of that information. The parame-
ter involved is the amount of information that is aggregated;
it relates to the memory usage in the system.

Entities-Dynamics-Environment: Aggregation is ex-
ecuted either by Agents or by Infrastructural Agents. In
both cases, agents aggregate the information they access lo-
cally, comming from the environment or from other agents.
Information that comes from the environment is typically
read by sensors (e.g. temperature, humidity, etc.). The ag-
gregation process terminates when aggregation leads (in one
or more application of the law) to an atomic information.

The transition rule for aggregation (2) is as follows: infor-
mation in input (possibly a set) I is transformed into a new
set of information through an aggregation operator op()—I ′

stands for what I becomes after application of the rule.

aggregation :: I → I ′ =op(I) (2)

Implementation: Available information takes the form
of a stream of events. Aggregation operators are classified
into four different groups [6]: Filter, selects a subset of the
received events; Transformer, changes the type of the infor-
mation received in input; Merger, unifies all information re-
ceived and outputs the information received as a single piece
of information; Aggregator, applies a specific operation (e.g.
max, min or avg) to one or more incoming inputs.

Related Patterns: The Aggregation Pattern can be im-
plemented together with Evaporation and Gradient Patterns
to form digital pheromones [20]. Evaporation can be used
with aggregation to aggregate information recently collected
from the environment. The Gossip Pattern [13] is composed
by the Aggregation Pattern (Section 3.1).

3.3 Evaporation Pattern
Evaporation is a pattern that helps to deal with dynamic

environments where the information used by agents can be-
come outdated. In real world scenarios, the information
changes with time and its detection, prediction, or removal
is usually costly or even impossible. Thus, when agents have
to modify their behaviour taking into account information
from the environment, information gathered recently must
be more relevant than information gathered a long time
ago. Evaporation is a mechanism that progressively reduces

the relevance of information. Thus, recent information be-
comes more relevant than information processed some time
ago. Evaporation was proposed as a design pattern for self-
organising multi-agent systems in [14] and is usually related
with Ant Colony Optimisation (ACO) [9].

Aliases: Penalisation, degradation, decay, depletion.
Problem: Outdated information can not be detected and

it needs to be removed, or its detection involves a cost that
needs to be avoided.

Solution: Evaporation is a mechanism that periodically
reduces the relevance of information. Thus, recent informa-
tion becomes more relevant than older information.

Inspiration: Evaporation is present in nature. For in-
stance, in ant colonies [8], when ants deposit pheromones
in the environment, these pheromones attract other ants
and drive their movements from the nest to the food and
vice-versa. Evaporation acts over the pheromones reduc-
ing their concentration along the time until they disappear.
This mechanism allows the ants to find the shortest path to
the food, even when environment changes occur (such as,
new food locations or obstacles in the path). Ants are able
to find the new shortest paths by forgetting the old paths.

Forces: Evaporation is controlled by the parameters
evaporation factor (i.e. how much the information is evap-
orated) and the evaporation frequency (i.e. frequency of
evaporation execution), used to decrement the relevance of
the information. The evaporation factor and evaporation
frequency must deal with the dynamics of the environment:
if evaporation is too fast, we may lose information; if evap-
oration is too slow, the information may become outdated
and misguide the agents’ behaviour. A higher evaporation
factor releases memory, but also reduces the information
available in the system for the agents. When the evapora-
tion is applied to collaborative search or optimisation algo-
rithms, the evaporation factor controls the balance between
exploration and exploitation: high evaporation rates reduce
agents’ knowledge about the environment, increasing the
exploration, and producing fast adaptation to environment
changes. However, a higher evaporation factor decreases the
performance when no environment changes occur (due to an
excess of exploration).

Entities-Dynamics-Environment: Evaporation can
be applied to any information present in the system. Pe-
riodically, its relevance decays over time. Evaporation is
performed by the agent or infrastructural agent periodically
executing transition rule (3) or (4), with rate rev. Evapo-
ration may be applied by subtraction or by multiplication
[11].

evap :: inf
rev−−→ relevance(inf)′ = relevance(inf) ∗ Evfactor

(3)

evap :: inf
rev−−→ relevance(inf)′ = relevance(inf)− Evterm

(4)

where inf is the information on which the evaporation is
applied, relevance(inf) is the relevance of the information inf
before the transition fires, Evfactor is the evaporation factor
[0..1], Evterm is the evaporation term, and relevance(inf)′

is the relevance of inf once the transition has fired.
Implementation: The Evaporation Pattern is executed

by an agent that needs to update the relevance of its internal
information, or by infrastructural agents that change the rel-
evance of the information deposited in an environment. We
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Figure 3: Evaporation: agent behaviour (a), evap-
oration by the agent itself (b), evaporation by the
host (c).

distinguish two cases. First, only one agent encapsulating
the information and decaying its own relevance. In this case,
the agent follows the flow chart 3 (a) and the corresponding
interaction diagram 3 (b). Second, the information is de-
posited by one agent in a host and an infrastructural agent
interacts with the host to decay the information’s relevance.
The host provides an interface for reading and changing the
relevance value. In that case the interaction between the
infrastructural agent and the host is shown in figure 3 (c).

Known uses: Evaporation has been used mainly in Dy-
namic Optimisation. Examples of algorithms using evapora-
tion are ACO [10] and Quantum Swarm Optimisation Evap-
oration (QSOE) [11]. In [26] evaporation is performed using
a parameter called freshness associated to the information.

Consequences: Evaporation enables adaptation to envi-
ronmental changes. However, the use of evaporation in static
scenarios may decrease performance, due to the loss of in-
formation associated to this mechanism. The Evaporation
Pattern provides the ability to self-adapt to environmental
changes increasing the tolerance to noise, as shown in [12]

Related Patterns: The Evaporation Pattern is used by
higher level patterns, such as, Digital Pheromone Pattern
(not described here) or Gradient Pattern (Section 4.1).

4. MIDDLE LAYER PATTERNS

4.1 Gradient Pattern
The Gradient Pattern is an extension of the Spreading

Pattern where the information is propagated in such a way
that it provides an additional information about the sender’s
distance: either a distance attribute is added to the infor-
mation; or the value of the information is modified such
that it reflects its concentration - higher values meaning the
sender is closer, such as in ants’ pheromones. Addition-

ally, the Gradient Pattern uses the Aggregation Pattern to
merge different gradients created by different agents or to
merge gradients coming from the same agent but through
different paths. Different cases may apply: either only the
information with the shortest distance to the sender is kept,
or the concentration of the information increases.

Aliases: The Gradient Pattern is a particular kind of
computational fields [2].

Problem: Large systems suffer from lack of global knowl-
edge to estimate the consequences of the actions performed
by other agents beyond their communication range.

Solution: Information spreads from the location it is ini-
tially deposited and aggregates when it meets other infor-
mation. During spreading, additional information about the
sender’s distance and direction is provided: either through
a distance value (incremented or decremented); or by mod-
ifying the information to represent its concentration (lower
concentration when information is further away). When one
agent receives the gradient information, it also knows the di-
rection and the distance where the information comes from.
During the aggregation process, a filter operator keeps only
the information with the highest (or lowest) distance, or it
modifies the concentration.

Inspiration: Gradients appear in many biological pro-
cesses. The most known are ant foraging, quorum sens-
ing, morphogenesis, and chemotaxis processes. In these pro-
cesses, gradients support long-range communication among
entities (cells, bacteries, etc..) through local interaction.

Forces: Adaptation to environmental changes is faster
with high updating frequencies, increasing network overload.
Lower updating frequencies reduce network overload, but
can produce wrong values when environment changes occur.
There is also a trade-off between the diffusion radius (num-
ber of hops) and the load in the network. Higher diffusion
radii bring information further away from its source, provid-
ing a guidance also to distant agents. However, it incements
the load and may overwhelm the network [2].

Entities-Dynamic-Environment: Entities acting in
the Gradient Pattern are Agents, Hosts, and Infrastructural
Agents. Analogously to the Spreading Pattern, when a gra-
dient is created, it is spread to its neighbours. We distin-
guish two sets of transition rules. Rule (5) models the neigh-
bours forwarding the received information “inf” modifying
the distance “d” attribute by incrementing or decrementing
its value. Rule (6) models the the aggregation when multiple
gradients are locally present. This rule models the case of
an aggregation where only the information with the shortest
distance is kept.

gradient :: (inf, d)
rgr−−→ send((inf, d + 1), neighbours) (5)

gradient :: {(inf1, d1), ..., (infn, dn)}
rgr−−→

send((infk, dk + 1), neighbours), if k = min{d1, ..., dn}
(6)

Rule (7) models the case where the information spread
to the neighbours changes during the spreading process to
represent the concentration. Rule (8) models the aggrega-
tion when multiple gradients are locally present. A new
information concentration is computed and provided to the
neighbours.

gradient :: inf
rgr−−→ send(inf ∗ concfactor, neighbours) (7)
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Figure 4: Gradients: agent behaviour (a), initialisa-
tion (b), agent and infrastructural agent (c)

gradient :: {inf1, ..., infn}
rgr−−→

send(op(inf1, ..., infn), neighbours)
(8)

Implementation: Agents start the process by sending
information to all their neighbours, as shown in Figure 4
(b) for the case with distance value (Counter). When one
agent receives the information it increments the distance at-
tribute, or it reduces accordingly the concentration value of
the information, and forwards the gradient again to all its
neighbours (Spreading Pattern) as shown on diagram flow
4 (a) and sequence diagram 4 (b) for the case with distance
value. When a host receives the gradient, infrastructural
agents spread it further. Notice that this pattern can be
applied just with agents. When an agent receives more than
one gradient, it applies aggregation (Aggregation Pattern)
as shown on sequence diagram 4 (c). For instance, it may fil-
ter only the gradient with the lowest distance attribute. To
create self-healing gradients (i.e. gradients adaptable them-
selves to network changes) two interesting implementations
are proposed in [25][3].

Known uses: Gradient Pattern has been used in prob-
lems such as coordination of swarms of robots, coordination
of agents in video games, or routing in sensor networks.

Consequences: The Gradient Pattern adds an extra in-
formation (distance). Distance can be used to limit the num-
ber of hops during the spreading process.

Related Patterns: The Gradient Pattern is a composi-
tion of the Spreading and Aggregation Patterns, extended

with the distance value or concentration information. It
is used by the Morphogenesis Pattern (Section 5.2), the
Chemotaxis Pattern (Section 5.1), and the Quorum Sens-
ing Pattern (Section 5.3). The Gradient Pattern may be
combined with the Evaporation Pattern to create active gra-
dients to support adaptation when agents change theirs po-
sitions or network topology changes.

5. TOP LAYER PATTERNS
This section describes the three high level patterns used

in the literature that their contribution in different fields
have been demonstrated. Many interesting applications us-
ing the Gradient exist in the literature. However, we only
these three are presented because they have been accepted
as mechanisms, in spite of other rich applications where their
contributions are focused in only one field, and their gener-
alisations have not been proposed.

5.1 Chemotaxis Pattern
The Chemotaxis Pattern provides a mechanism to per-

form motion coordination in large scale systems. Chemo-
taxis was proposed by [19]. The Chemotaxis Pattern extends
the Gradient Pattern: agents identify the gradient direction
to decide the direction of their next movements.

Problem: Decentralised motion coordination aiming at
detecting sources or boundaries of events.

Solution: Agents locally sense gradient information and
follow the gradient in a specified direction (either follow
higher gradient values, lower gradient values, or equipoten-
tial lines of gradients).

Inspiration: In biology, chemotaxis is the phenomenon
in which single or multi-cellular organisms direct their move-
ments according to certain chemicals present in their envi-
ronment. Examples in nature are: leukocyte cells moving
towards a region of a bacterial inflammation or bacteria mi-
grating towards higher concentrations of nutrients [27]. No-
tice that in biology, chemotaxis is also a basic mechanism of
morphogenesis. It guides cells during development so that
they will be placed in the final right position. In this paper,
following [19], chemotaxis is used as motion coordination fol-
lowing gradients, and morphogenesis for triggering specific
behaviours based on relative positions determined through
a gradient.

Forces: The Chemotaxis Pattern presents the same forces
as the ones for the Gradient Pattern (Section 4.1).

Entities-Dynamic-Environment: The concentration
of gradient guides the agents’ movements in three different
ways, as shown in Figure 6: (1) Attractive Movement, when
agents change their positions following higher gradient val-
ues, (2) Repulsive movement, when agents follow lower gra-
dient values, incrementing the distance between the agent
and the gradient source, and (3) Equipotential movement,
when agents follow gradients between thresholds.

Transition rule (9) models an agent that senses local gra-
dient values from“n”neighbours. Then, it follows a specified
direction towards a neighbouring:

chemotaxis :: {(neigh1 : grad1), .., (neighn : gradn)} →
follow(neighi) if gradi = op(grad1, .., gradn)

(9)

Implementation: Chemotaxis can be implemented in
two different ways. Using gradients existing in the environ-
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Figure 6: Chemotaxis Pattern - adapted from [7]

ment to coordinate the agent’s positions or directions. For
instance, [22] uses attractive and equipotential movements
to detect the contour of diffuse events using a multi-agent
approach over a sensor network infrastructure. On the other
hand, gradient fields can be generated by agents. For in-
stance, [17] uses a gradient-based approach to coordinate
the position of bots in the Quake 3 Arena video game. Dia-
grams 5 (a) and (b) show a particular case of implementation
where agents get information about neighbouring gradients
before taking a decision about where to go next.

Known uses: Mamei et al. [16] use Chemotaxis to co-
ordinate the positions in swarms of simple mobile robots.
Chemotaxis is alsoused in [25], where chemotaxis is applied
to route messages in pervasive computing scenarios.

Related Patterns: The Chemotaxis Pattern extends the
Gradient Pattern (see section 4.1).

5.2 Morphogenesis Pattern
The goal of the Morphogenesis Pattern is to achieve differ-

ent behaviours by the agents depending on their position in
the system. The Morphogenesis Pattern exploits gradients:
positional information is assessed through one or multiple
gradient sources generated by other users. Morphogenesis
was proposed as a self-organising mechanism in [15, 24]. The
morphogenesis process in biology has been considered as one
inspiration source for gradient fields.

Problem: In large-scale decentralised systems, agents de-
cide on their roles or plan their activities based on their
spatial position.

Start
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relative position

(a) Agent behaviour

HostAgent Neighbour
Hosts

GradInf()

GradInf()

Estimate 
relative position

Change
Agent's role

(b) Agent Interactions

Figure 7: Morphogenesis: agent behaviour (a),
agent interaction (b)

Solution: Specific agents spread morphogenetic gradi-
ents. Agents then assess their positions in the system by
computing their relative distance to the morphogenetic gra-
dients sources.

Inspiration: In the biological morphogenetic process
some cells create and modify molecules (through aggrega-
tion) which diffuse (through spreading), creating gradients
of molecules. The spatial organisation of such gradients is
the morphogenesis gradient, which is used by the cells to
differentiate the role that they play inside of the body, e.g.
in order to produce cell differentiations.

Forces: The forces presented in this pattern are the same
as the ones of the Gradient Pattern (Section 4.1).

Entities-Dynamic-Environment: The entities in-
volved in the morphogenesis process are Agents, Hosts, and
Infrastructural Agents. At the beginning, some of the agents
spread one or more morphogenesis gradients, implemented
using the Gradient Pattern. Other agents sense the mor-
phogenetic gradient in order to calculate their relative po-
sitions. Depending on their relative positions, the agents
adopt different roles and coordinate their activities in order
to achieve collaborative goals. Transition rule (10) models
an agent sensing its local gradient values to adapt its be-
haviour depending on its relative position to the gradient
sources. modality′ represents a modality state variable de-
scribing how the agent should behave in the following.

morphogenesis :: {grad1, ..., gradn} →
modality′ = compute(grad1, .., gradn)

(10)

Implementation: An interesting implementation of the
morphogenesis gradient to estimate the position is found in
[2]. In that paper a self-healing gradient algorithm with a
tunable trade-off between precision and communication cost
is proposed. In [16] the motion coordination of a swarm
of robots is implemented by using both Morphogenesis and
Chemotaxis Patterns (Section 5.1). Diagrams 7 (a) and (b)
show agents estimating their position in response to gradient
information propagated by neighbouring hosts.

Known uses: The Morphogenesis Pattern was used
in [4] to implement control techniques for modular self-
reconfigurable robots (meta-morphic robots). In [21] mor-
phogenesis is used to create a robust process for shape for-

30



mation on a sheet of identically programmed agents.
Consequences: The Morphogenesis Pattern provides to

the agents a mechanism to coordinate their activities based
on their relative positions. Like the other mechanisms pre-
viously presented, robustness and scalability are properties
provided by this pattern.

Related Patterns: The Morphogenesis Pattern extends
the Gradient Pattern (Section 4.1). The Morphogenesis Pat-
tern can be combined with the Digital Pheromone Pattern
where the role and behaviour of the agents depend on the
distances to the pheromone sources.

5.3 Quorum Sensing Pattern
Quorum sensing is a decision-making process for coordi-

nating behaviour and for taking collective decisions in a de-
centralised way. The goal of the Quorum Sensing Pattern
is to provide an estimation of the number of agents (or of
the density of the agents) in the system using only local in-
teractions. The number of agents in the system is crucial in
those applications, where a minimum number of agents are
needed to collaborate on determined tasks.

Problem: Collective decisions in large-scale decentralised
systems requiring a threshold number of agents or estima-
tion of the density of agents in a system using only local
interactions.

Solution: The Quorum Sensing Pattern allows to take
collective decisions through an estimation by individual
agents of the agents’ density (assessing the number of other
agents they interact with) and by determination of a thresh-
old number of agents necessary to take the decision.

Inspiration: The Quorum Sensing Pattern is inspired by
the Quorum Sensing process (QS), which is a type of inter-
cellular signal used by bacteria to monitor cell density for
a variety of purposes. An example is the bioluminescent
bacteria (Vibrio Fischeri) found in some species of squids.
These bacteria self-organise their behaviour to produce light
only when the density of bacteria is sufficiently high [18].
The bacteria constantly produce and secrete certain signal-
ing molecules called auto-inducers. In presence of a high
number of bacteria, the level of auto-inducers increases ex-
ponentially (the higher the auto-inducer level a bacteria de-
tects, the more auto-inducer it produces). Another interest-
ing example is given by the colonies of ants (Leptothorax
albipennis) [23], when the colony must find a new nest site.
A small portion of the ants search for new potential nest
sites and assess their quality. When they return to the old
nest, they wait for a certain period of time before recruiting
other ants (higher assessments produce lower waiting peri-
ods). Recruited ants visit the potential nest site and make
their own assessment about its quality returning to the old
nest and repeating the recruitment process. Because of the
waiting periods, the number of ants present in the best nest
will tend to increase. When the ants in this nest sense that
the rate at which they encounter other ants exceed a partic-
ular threshold, the quorum number is reached.

Forces: The Quorum Sensing Pattern uses gradients pre-
senting the same parameters as the Gradient Pattern (Sec-
tion 4.1). The threshold, indicating that the quorum number
has been reached, triggers the collaborative behaviour. Quo-
rum Sensing provides an estimation of the density of agents
in the system. However, this pattern does not provide a so-
lution to calculate the number of agents necessary to carry
out a collaborative task (i.e. to identify the threshold value).

Start

No

Gradients 
Receved?

 yes

Trigger collaborative
task

Gradient's 
concentration higher 

than threshold?

No

 yes

(a) Agent behaviour

HostAgent Neighbour
Hosts

GradInf()

GradInf()

if Grad > thres
trigger task

(b) Agent Interactions

Figure 8: Quorum Sensing: agent behaviour (a),
agent interaction (b)

Entities-Dynamic-Environment: The entities in-
volved in the Quorum Sensing Pattern are the same as in
the Gradient Pattern. That is, Agents, Hosts, and Infras-
tructural Agents. The concentration is estimated by the
aggregation of the gradients. Transition rule (11) models
that agents sense their local gradient, whose value indicates
whether or not the threshold is reached.

quorum :: GradInf → quorumReached,

if GradInf > threshold
(11)

Implementation: There is no specific implementation
for the Quorum Sensing Pattern. However, biological sys-
tems presented above give us some ideas about how to imple-
ment the pattern. Here we propose two different approaches
to implement the Quorum Sensing Pattern: (1) To use the
Gradient Pattern to simulate the auto-inducers like in the
bioluminescent bacteria. In this case the gradient concentra-
tion provides the agents with an estimation of the agents’
density; (2) As in ants’ systems, the agents’ density can
be estimated through the frequency to which agents are in
communication range. The use of gradients provides bet-
ter estimations than the use of frequencies. However, it is
more expensive computationally and it requires more net-
work communications. Diagrams 8 (a) and (b) show agents
identifying whether the concentration gradient has reached
the threshold, in response to gradient information propa-
gated by neighbouring hosts.

Known uses: In [5] quorum sensing is used to increase
the power saving in Wireless Sensor Networks. Quorum
sensing permits to create clusters based on the structure
of the observed parameters of interest, and then only one
node for each cluster sends the information on behalf of the
quorum. Another known example is the coordination of Au-
tonomous Swarm Robots [23].

Consequences: Each agent can estimate the density of
nodes or other agents in the system using only local infor-
mation received from neighbours, even when the system is
really large and there are agents are anonymous.

Related Patterns: The Quorum Sensing Pattern de-
pending on its implementation uses the Gradient Pattern.
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6. CONCLUSIONS
This paper is part of a larger work aiming at describing

under the form of design patterns, and organised into dif-
ferent layers, a series of bio-inspired mechanisms, such as:
digital pheromone, flocking, gossip, or gradient field. In a
previous paper we described the three patterns involved in
the Gossip case [13]. This paper reports on the six mech-
anisms related to the Gradient Pattern. Furthermore, as
a part of the EU Project SAPERE, we investigate the role
of these bio-inspired patterns to enact spatial and temporal
behaviour in pervasive services.
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