
BIO-CORE: Bio-inspired Self-Organising
Mechanisms Core

Jose Luis Fernandez-Marquez1, Giovanna Di Marzo Serugendo1, and
Sara Montagna2

1 University of Geneva, Switzerland,
joseluis.fernandez@unige.ch, giovanna.dimarzo@unige.ch

2 Università di Bologna, sara.montagna@unibo.it

Abstract. This paper discusses the notion of “core bio-inspired ser-
vices” - low-level services providing basic bio-inspired mechanisms, such
as evaporation, aggregation or spreading - shared by higher-level services
or applications. Design patterns descriptions of self-organising mecha-
nisms, such as gossip, morphogenesis, or foraging, show that these higher-
level mechanisms are composed of basic bio-inspired mechanisms (e.g.
digital pheromone is composed of spreading, aggregation and evapo-
ration). In order to ease design and implementation of self-organising
applications (or high-level services), by supporting reuse of code and
algorithms, this paper proposes BIO-CORE, an execution model that
provides these low-level services at the heart of any middleware or in-
frastructure supporting such applications, and provides them as “core”
built-in services around which all other services are built.

Key words: Bio-inspired design patterns, self-organising systems’ en-
gineering

1 Introduction

The current situation in design and development of bio-inspired or decentralised
systems can be compared to the situation some 40 years ago when programs
were written in the assembly language. To compute an addition, using the as-
sembly language, we need to move both operands into appropriate registers and
then apply the addition operator. Today, to implement a system exploiting ant
foraging using pheromones, in addition to programming the foraging behaviour,
it is also necessary to implement the behaviour of the pheromone itself. An ad-
ditional inconvenience today with bio-inspired systems resides in the fact that if
two applications use pheromones, they both need to implement their own ver-
sion of the pheromone even though the two applications run in the same node.
What we need is the possibility to program bio-inspired systems using high-
level operators manipulating core mechanisms as “first-class entities” in a way
similar to how high-level programming languages helped abstracting away the
implementation of the addition for the programmer and thus favoured the re-use
of code. Additionally, as the same addition operator can be used for many dif-

2 Fernandez-Marquez et al.

ferent applications, the same pheromone mechanism can be shared by different
applications.

Bio-inpired design patterns provide solutions for existing recurrent problems.
A design pattern clearly identifies the problem that a mechanism solves, where it
has been applied and what are the consequences or emergent behaviour we can
observe after applying the pattern. Identifying the bio-inspired mechanisms and
their boundaries is a first step towards systematic design and development of
self-organising systems. However, we are still far from high-level programming,
where designers and programmers concentrate on which mechanisms they want
to use, how they want them to be combined, relying on a middleware for the
actual distributed implementation of these mechanisms.

In our previous work [Fernandez-Marquez et al., 2011b,
Fernandez-Marquez et al., 2011a], we focused on relations between mecha-
nisms and presented several self-organising mechanisms under the form of
design patterns, clearly identifying the boundaries of each mechanism, showing
how the different patterns relate with each other and how some patterns
are composed by others. We classified a set of bio-inspired mechanisms into
three different layers: (1) Basic Mechanisms are those mechanisms that cannot
be further decomposed and are used to compose other mechanisms or used
alone; (2) Composed mechanisms are those mechanisms composed by basic
mechanisms; and (3) Top-level mechanisms are those mechanisms exploiting
basic and composed ones. From this classification we concluded that most of the
bio-inspired patterns are actually using basic bio-inspired mechanisms. Addi-
tionally, these basic mechanisms are usually executed by the environment when
we consider biological processes (e.g. spreading, aggregation and evaporation of
pheromones).

This paper presents BIO-CORE, an execution model for “core bio-inspired
services”, providing basic bio-inspired mechanisms as built-in services. Such a
core set of services, typically running in a middleware, allows the system to
execute several composed or top-level bio-inspired mechanism at the same time,
all sharing the basic mechanisms implemented inside the core. Executing more
than one bio-inspired mechanism at the same time is also a step forward the
self-composition and self-adaptation of mechanisms, thus allowing the system to
dynamically build new mechanisms as a composition of existing ones or to adapt
the existing mechanisms to solve new problems.

Our long-term goal is to provide a programming framework for bio-inspired
applications that abstracts away the underlying bio-inspired mechanisms driv-
ing the behaviour of the many entities composing the application. To this aim,
this paper presents an execution model for such a set of core services, called
BIO-CORE, which includes a core set of bio-inspired services, a core’s shared
data space and core interfaces, as well as a model of interaction between the
applications and the core services.

This paper is structured as follows: Section 2 presents previous works exist-
ing in the literature. We then propose a Computational Model specifying the
interactions between the agents participating in self-organising applications and

BIO-CORE 3

the core itself. Section 4 presents the design of BIO-CORE. Section 5 discusses
simulation results of two bio-inspired applications using BIO-CORE. Finally, we
identify future work.

2 Related Works

Besides development methods focusing on iterative design and extensive simula-
tions [Puviani et al., 2009], three main approaches for engineering self-organising
applications are emphasised so far: (1) Self-organising design patterns presenting
bio-inspired mechanisms according to software design patterns schemes, identi-
fying how, when and where the patterns can be used, and providing a reusable
solution for common recurrent problems; (2) Middleware that provide a support
for storing, propagating and maintaining distributed tuple-based structures, fa-
cilitating design and development of bio-inspired self-organising systems by pro-
viding specific built-in features, and (3) Bio-inspired execution models for com-
munications protocols, which provide new paradigms where self-organisation is
reached by reactions among pieces of information occurring in a spontaneous
way.

2.1 Self-Organising Design Patterns

Self-organising mechanisms expressed as design patterns help identifying the
problems that each mechanism can solve, the specific solution that it brings,
the dynamics among the entities involved in the pattern and details of their
implementation.

Several authors have proposed self-organising mechanisms following the
software design pattern scheme [Babaoglu et al., 2006, Gardelli et al., 2007,
De Wolf & Holvoet, 2007]. However, relations among the patterns are not iden-
tified, i.e. the authors do not describe how patterns can be combined to create
new patterns or adapted to tackle different problems.

Focusing on the relation between the mechanisms,
[Fernandez-Marquez et al., 2011b, Fernandez-Marquez et al., 2011a] show
how the different patterns relate with each other and how some patterns
are composed by others. [Fernandez-Marquez et al., 2011a] first proposed a
decomposition of the Gossip mechanism into two basic mechanisms, Aggregation
and Spreading, and then [Fernandez-Marquez et al., 2011b] proposed a decom-
position of the Gradient Case into Spreading, Aggregation and Evaporation
mechanisms, and showing how at the same time the Gradient mechanism itself
is exploited by higher-level mechanisms as Morphogenesis, Quorum Sensing
and Chemotaxis. The complex catalogue of self-organising design patterns is
presented in [Fernandez-Marquez et al., 2012].

2.2 Middleware for Self-Organising Systems

In order to facilitate the design and development of bio-inspired self-organising
systems, a series of middleware proposals have been presented recently in the

4 Fernandez-Marquez et al.

literature. TOTA (tuple On The Air) [Mamei & Zambonelli, 2005] provides a
support for storage, propagation and maintenance of distributed tuple-based
data structures. Similar approaches include MeshMDL [Herrmann, 2003] and
Lime [Dept & Murphy, 2001]. Those proposals are all based on tuple space tech-
nology (i.e. shared spaces where agents indirectly exchange information), thus
providing a way to implement indirect communication between agents.

While these middleware ease the task of the programmer of a self-organising
system by taking care of the execution of some low-level mechanism, they still
require that the programmer carefully describes and programs the mechanisms’
behaviour (e.g. propagation of a gradient in a distributed system), preventing
the reuse of code.

2.3 Bio-inspired execution models for communications protocols

Recent bio-inspired execution models for communications protocols provide
a new paradigm, inspired by molecular processes, where self-organisation is
reached by spontaneous reactions among pieces of information. The chemical
metaphor was originally proposed by Gamma in 1986 as a formalism for the
definition of programs without artificial sequentiality [Banâtre et al., 2001]. The
basic idea underlying the formalism was to describe computation as a form of
chemical reactions on a collections of individual pieces of data. Based on this
chemical metaphore, we highlight two different execution models for communi-
cations protocols: (1) Fraglets [Tschudin, 2003] unify code and data into a single
unit, the so called “fraglet”. This single unit is a string composed of symbols
values. The first symbol value is a tag that represents the instruction that is
going to be executed over the fraglet. Fraglets are stored in a fraglet store in the
same way as tuples are stored in a shared tuple-space; (2) Rule-based Systems
[Dressler et al., 2009], where self-organisation is reached by a given set of rules
acting on passive data packets. Rule-based systems follow an approach similar
to the fraglets, however, a piece of data does not contain code, and a rule can
operate over several pieces of data in the same execution.

The execution model proposed in this paper follows both fraglets and rule-
based systems. BIO-CORE provides basic bio-inspired mechanisms under the
form of “core bio-inspired services” implemented by rules. This enables to process
several tuples at the same time and, thus allows complex ways of aggregation
besides other operations. Moreover, pieces of data upon which services apply
contain properties, similar to tags, indicating to the engine how that piece of
data must be processed.

These services are intended to equip the designers and programmers of
higher-level self-organising services or applications with a set of ready-to-use
low-level mechanisms, whose implementation and execution is taken in charge
by a specific middleware.

BIO-CORE 5

Organisms

Environment

Environment

Software Agents

Infrastructure

Host Agents, memory, sensors, actuators...

CORE
(Basic Bio-Inspired Services,

Core's Data Space, Core Interfaces)

(a) Biological Model (b) Computational Model

Fig. 1. Relevant entities of the biological and computational models.

3 The Computational Model

A bio-inspired computational model, for describing the interactions be-
tween the entities participating in self-organising systems, was presented
by [Fernandez-Marquez et al., 2011a]. The computational model is as follows:
Agents are autonomous and pro-active software entities running in a Host.
The Infrastructure is composed of a set of connected Hosts and Infrastructural
Agents. A Host is an entity with computational power, communication capabil-
ities, and may have sensors and actuators. Hosts provide services to the agents.
An Infrastructural Agent is an autonomous and pro-active entity, acting over
the system at the infrastructure level. Infrastructural agents may be in charge of
implementing those environmental behaviours present in nature (e.g. spreading,
aggregation and evaporation of pheromones). Finally, the Environment is the
physical space where the infrastructure is located.

In this paper we extend the computational model presented
in [Fernandez-Marquez et al., 2011a]. The new model, showed in Figure 1,
adds the notion of BIO-CORE, which provides basic bio-inspired mechanisms,
ready-to-use as “first-class” entities by higher-level services or applications
(simply called CORE in Figure 1. BIO-CORE aims at decoupling the agents
from the environment’s behaviour by providing a virtual environment (as
opposed to the actual real-world environment) where more than one bio-
inspired algorithm can be executed at the same time, reusing implementation
and enabling the creation of new bio-inspired mechanisms for solving new
problems or dynamically adapting existing ones. BIO-CORE is composed of: 1.
a Core’s Data Space, where agents deposit and retrieve data; 2. a set of Basic
Bio-Inspired Services implementing basic bio-inspired mechanisms through rules
applying on data deposited in the data space; and 3. Core Interfaces providing
primitives for the agents to interact with BIO-CORE, for accessing other cores
in neighbouring nodes, and for accessing sensors and actuators of the local
node. BIO-CORE is embedded into each device participating in the system.

6 Fernandez-Marquez et al.

4 BIO-CORE Design

BIO-CORE encapsulates a set of low-level services providing bio-inspired mech-
anisms that applications or higher-level bio-inspired services can exploit and rely
on. BIO-CORE provides a set of primitives for these applications and high-level
services to interact with the low-level services, clearly separating the responsi-
bilities of the agents from those of the environment. BIO-CORE also provides
a shared data space for services and applications to exchange data and interact
with each other.

BIO-CORE advantages are: (1) Several applications or higher-level bio-
inspired services can be running in the same virtual environment re-using the
services provided by BIO-CORE (i.e. reusing code); (2) It makes it easier to
model and implement bio-inspired applications, since agents’ behaviour is decou-
pled from the environment, and the low-level services provided by BIO-CORE
are still running in the middleware, ready to be executed on demand; (3) Since
several bio-inspired mechanisms can be running at the same time, BIO-CORE
is a first step towards self-composition of mechanisms.

The basic bio-inspired services provided by BIO-CORE are those identi-
fied during our work on defining design patterns for bio-inspired mechanisms,
where we expressed high-level bio-inspired mechanisms as a composition of lower-
level ones [Fernandez-Marquez et al., 2011b, Fernandez-Marquez et al., 2011a].
Namely, the mechanisms provided by BIO-CORE are: Spreading, Evaporation,
Aggregation and Gradients. These mechanisms present common characteristics:
(1) in biological processes they are mainly executed by the environment; (2) they
occur both in macro- and micro-level systems (e.g. spreading mechanism can be
found in ants colonies coordination or in signaling pathways between cells); and
(3) they are at the basis of more complex self-organising mechanisms (e.g. gossip
is a combination of aggregation and spreading).

Figure 2(a) shows the interactions between agents belonging to applications
or to high-level bio-inspired services and BIO-CORE, which contains low-level
services providing basic bio-inspired mechanisms. Figure 2(b) describes the re-
lations between BIO-CORE and agents belonging to applications inside a given
host. Agents have access to the Communication Device, Sensors and Actuators
provided by the Host. Agents communicate with BIO-CORE using the Agent
Interface. This interface is directly connected to the Core’s Data Space, a shared
data space allowing agents to deposit and retrieve data through specific primi-
tives. The data deposited into the Core’s Data Space is processed by the Core
Engine. Namely, the Core Engine is composed of an Infrastructural Agent (IA),
and a set of rules implementing the core services. The IA has access to the
Communication Device and Sensors/Actuators provided by the Host through
the Communication Interface and Sensors/Actuators Interface respectively. It
allows data from the Core’s Data Space to be sent to neighbouring Core’s Data
Spaces, to provide access to Sensor’s data by inserting Sensor reads into the
Core’s Data Space, and to instruct specific Host’s actuators to perform some
action (e.g. move the wheels of a robot in a certain direction).

BIO-CORE 7

Agents

CORE

Mechanisms

Services

(a)

Agents

CORE

Core's Data Space

Spreading

Aggregation
Evaporation

Gradient

S/A. IntComm. Int.

Ag. Int.

HOST

Sensors /
Actuators

Communication
Device

IA Engine

(b)

Fig. 2. System’s Architecture

4.1 BIO-CORE Engine

The BIO-CORE engine is composed of the Infrastructural Agent (IA) and a set of
rules that implement the low-level services offered by BIO-CORE. Basically, the
IA is responsible for applying the rules to the set of data stored in the Core’s
Data Space according to the data’s properties. The IA is also responsible for
managing the internal interfaces (e.g. sending or receiving data to other Core’s
Data Spaces or acting over the sensor or actuators).

The rules are transitions that provide BIO-CORE with chemical reactions
similar to chemical machine models [Banâtre et al., 2001, Dressler et al., 2009]
and make the IAs act over the Core’s Data Space in a completely distributed
and decentralised way. Rules provide a simple way to define the environment’s
behaviour, emulating the laws of nature, and providing the environment with
an autonomous and proactive behaviour (i.e. Applications do not actually call
those rules, rules are applied dynamically when necessary). Indeed, the behaviour
of BIO-CORE over the data stored in the Core’s Data Space depends on the
data’s properties, in the same way as in the real word, the environment acts over
the entities depending on their properties and the nature’s laws (e.g. gravity,
diffusion, aggregation, etc.).

Figure 3 shows these basic mechanisms provided by BIO-CORE, and how
high-level bio-inspired mechanisms are composed from these core mechanisms.

A full description, under the form of design patterns, can be found in
[Fernandez-Marquez et al., 2011b, Fernandez-Marquez et al., 2011a].

Spreading Pattern The Spreading Pattern [Fernandez-Marquez et al., 2011a]
is a basic pattern for information diffusion/dissemination. The Spreading Pat-
tern progressively sends information over the system using direct communication
among agents, allowing the agents to increment the global knowledge of the sys-
tem by using only local interactions.

8 Fernandez-Marquez et al.

Aggregation Spreading Evaporation

Gradients

Quorum
Sensing Chemotaxis MorphogenesisGossip

CORE

Foraging

Fig. 3. Core’s Patterns

Rule: A copy of the information, received or held by an agent, is sent to
neighbours and propagated over the network. Information spreads progressively
over the system and reduces the lack of knowledge of the agents while keeping
the constraint of the local interaction.

The Spreading Pattern is one of the most used in the literature, and it appears
in important higher-level bio-inspired patterns, such as, Morphogenesis Pattern,
Quorum Sensing Pattern, Chemotaxis Pattern, Gossip Pattern, and Gradient
Pattern [Fernandez-Marquez et al., 2012].

Aggregation Pattern The Aggregation Pattern [Gardelli et al., 2007], is a ba-
sic pattern for information fusion. The dissemination of information in large-scale
systems deposited by the agents or taken from the environment may produce
network and memory overload, thus, the necessity of synthesising the informa-
tion. The Aggregation Pattern reduces the amount of information in the system
and assesses meaningful information.

Rule: Aggregation consists in locally applying a fusion operator to process the
information and to synthesise macro information. This operator can take many
forms, such as filtering, merging, aggregating, or transforming. In BIO-CORE,
the aggregation service fuses the information present in the Core’s Data Space.
Information comes from the real-world environment (through sensors reads like
temperature, humidity, etc.), from other agents (i.e. through communication
with other core’s space) or from agents running in the Host interacting directly
with the Core’s Data Space. The aggregation process terminates when aggre-
gation leads (through one or more applications of the aggregation law) to an
atomic information.

The Aggregation Pattern used in conjunction with the Evaporation and
Spreading Patterns is at the basis of the digital pheromone and thus the Foraging
Pattern.

In BIO-CORE enabling simultaneously Aggregation, Evaporation and
Spreading services on a piece of data allows: to create digital pheromones; to
perform Gossip; and to run applications that exploit gradients.

Evaporation Pattern Evaporation is a pattern that helps to deal with dy-
namic environments where information used by agents can become outdated.
In real world scenarios, the information changes with time and its detection,

BIO-CORE 9

prediction, or removal is usually costly or even impossible. Thus, when agents
have to adapt their behaviour according to information from the environment,
information gathered recently must be more relevant than information gathered
a long time ago.

Rule: Evaporation is a mechanism that progressively reduces the relevance
of information.

In BIO-CORE, enabling the Evaporation and Gradient services allows to
build dynamic gradients, making them adaptable to topology changes. The Evap-
oration service used in conjunction with the Spreading and Aggregation services
allows to create digital pheromones. Used on its own, the Evaporation service
allows the data deposited in the Core’s Data Space, and to which it applies, to
become outdated and to be removed by the IA.

Gradient Pattern The Gradient Pattern focuses on large scale system, where
agents suffer from lack of global knowledge to estimate the consequences of their
actions or the actions performed by other agents beyond their communication
range. Using the Gradient Pattern, information is spread from the location where
it was initially deposited and it is aggregated when it meets other information.
Thus, agents that receive gradients have information that come from beyond
their communication range, increasing the knowledge of the global system not
only with gradient’s information but also with the direction and distance of the
information source.

Rule: The Gradient Pattern is an extension of the Spreading Pattern where
the information is propagated in such a way that it provides an additional in-
formation about the sender’s distance and direction. Additionally, the Gradient
Pattern uses the Aggregation Pattern to merge different gradients created by
different agents or to merge gradients coming from the same agent but through
different paths.

4.2 BIO-CORE Data

We could envisage different ways of dynamically applying services on data. Here,
we consider the use of properties attached to data. Indeed, data are passive
entities that, once deposited into the Core’s Data Space, are subject to the
actions of BIO-CORE services (e.g. modified, cloned or removed) depending on
their properties. Services provided by BIO-CORE are then activated on demand
by the applications or higher-level services by modifying the data’s properties.
The actual activation occurs through the Infrastructural Agent that takes care of
identifying the appropriate service. The interactions between the Infrastructural
Agent and the data are defined by the set of low level services performed in the
BIO-CORE Engine.

Data properties are defined in table 1. Basically the idea is that if a piece of
data has the Evaporate property set to true, then the Evaporation service will
be executed over the data. A piece of data can have several properties equals
to true at the same time, thus enabling multiple services to act over it (e.g.
data that is spread, aggregated, evaporated and subject to gradient could be a

10 Fernandez-Marquez et al.

Property Description

ID Unique identifier

Evaporate Activate the Evaporation service

Aggregate Activate the Aggregation service

Spread Activate the Spreading service

Gradient Activate the Gradient service. Automatically this property also
enables the spread and aggregation properties.

Information Actual information stored in the data

Table 1. BIO-CORE Data’s Properties

digital pheromone; data that is spread and aggregated may be the subject of
gossip mechanism; data that is subject to gradient and evaporated can be used
to create dynamic gradients, etc. . .). Moreover, data contains also parameters
for defining the probability of evaporation, the kind of evaporation, the kind and
frequency of aggregation, etc.

4.3 BIO-CORE Interfaces

BIO-CORE defines three different interfaces: (1) an external interface for the
Agents to communicate with the Core’s Data Space. Agents adapt their be-
haviour according to the data retrieved from the Core’s Data Space and con-
versely, by inserting appropriate data into the Core’s Data Space delegate en-
vironmental responsibilities, such as, spreading, aggregation or evaporation to
BIO-CORE; (2) an internal interface for exchanging data among Core’s Data
Space of different Hosts; and (3) an internal interface for the Core’s Data Space
to communicate with Sensors and Actuators of the Host.

Data is exchanged between the Core’s Data Space and the agents, and vice-
versa, through external interface primitives for creating, depositing and retriev-
ing data.

5 Simulation Results

This section shows the design and development of two bio-inspired applications
using BIO-CORE. The first application, “Reaching an agreement” is based on
the Gossip mechanism. The real-world environment consists of a set of Hosts
(or nodes) each equipped with an initial random colour. The goal is to reach an
agreement on the colour of the nodes, where all nodes share the same colour.

The second application is “Regional Leaders Election”, where Spreading and
Evaporation services are used to assign the leader and member roles to the nodes
participating in the systems. The goal of this section is to analyse the design
and feasibility of these applications using BIO-CORE.

BIO-CORE 11

createNewData(
Spread,

Aggregate,
Color)

selectRandomColor();

depositData
(data)

getData()

updateColor()

createNewData
(Evaporate,
value=100)

getData()

LEADER

createNewData
(Spread,leaderID)

depositData
(data)MEMBER

depositData
(data)

If noRole,
value=0

(a) (b)

If noRole,
 data(Spread,

leaderID)

Fig. 4. (a) Reaching an agreement (b) Regional Leaders Election

5.1 Reaching an agreement

As it was presented in [Fernandez-Marquez et al., 2011a], Gossip is a composed
mechanism, where the Spreading and the Aggregation mechanisms are used si-
multaneously. In the gossip process the information is sent over the network
using the Spreading mechanism and it is aggregated at each node with the local
information by using the Aggregation mechanism.

In this simulation the system has to reach an agreement on the nodes’ colour.
Initially, each node has a random colour and during the simulation the colour of
the nodes must converge to the same colour. Moreover, if new nodes appear the
system must be able to deal with it and reach the agreement again taking into
account new colours: if the new nodes are blue, the whole system will change the
colour towards a blue shade. The aggregation operator used in the simulation
is the average between the three components of colour (i.e. red, green and blue,
where each component is in [0-255]). This simulation executed with 500 nodes
randomly placed in a 1200x700 meters bi-dimensional space, the mobility pattern
used is random walk and the communication range for each node is 60 meters.

Figure 4(a) shows the flow diagram for each agent in the “Reaching an agree-
ment” application. The different steps are presented as follows: (1) each agent
in each node initially chooses a colour at random; (2) it creates a Core data,
with properties Spread, Aggregate set to true and the colour as Information; (3)
the data is deposited into the Core’s Data Space; (4) Spreading and Aggregation
services of BIO-CORE then act on these data: all nodes spread the data, on each
node aggregation then acts on all data whose Aggregate property is set to true,
averaging the colour Information (only one piece of data per node will remain,
containing the average colour of the node and that of its neighbours); (5) peri-

12 Fernandez-Marquez et al.

0	

10	

20	

30	

40	

50	

60	

70	

80	

1	 6	 11
	

16
	

21
	

26
	

31
	

36
	

41
	

46
	

51
	

56
	

61
	

66
	

71
	

76
	

81
	

86
	

91
	

96
	

10
1	

10
6	

11
1	

11
6	

12
1	

12
6	

Red	 Green	 Blue	

(a) Reaching an agreement: STD (b) Regional Leaders Election

Fig. 5. Simulation results

odically agents check their local Core’s Data Space, and retrieve new aggregated
core data, (6) each agent then updates its colour to the one contained in the
Information field provided by the retrieved Core data and returns to step 5.

Figure 5(a) shows the Standard Deviation (STD) of the three colour’s com-
ponents (i.e. red, green and blue) over the nodes. At the beginning the STD
is maximum because of the set of colours is randomly chosen. The simulation
shows how in the first steps the STD decreases. At step 30, new nodes with
random colours are added into the system. These new nodes increment the STD
but the system easily overcomes this environmental change and reaches the final
agreement after few steps, reaching an STD equals to 0 (i.e. all the nodes share
the same colour). It is out of the scope of this work to improve the performance
of the gossip algorithm. We are interested here in showing how basic bio-inspired
services apply on data provided by applications or higher-level services.

5.2 Regional Leaders Election

The regional leaders election was presented as an application example exploiting
amorphous computing primitives in [Abelson et al., 2000]. The goal is to split
the network into disjoint groups each led by one node, following a decentralised
and distributed process. Initially nodes have no identified role. Once the system
converges, the network is broken up into contiguous domains each composed of
one leader and members.

Figure 4(b) shows the flow diagram of the agents behaviour in the Regional
Leaders Election process using BIO-CORE. The steps are as follows: (1) each
agent creates a Core data with properties Evaporate set to true and Information
equals to 100 representing the relevance value; (2) each agent deposits this data
into the Core’s Data Space; (3) BIO-CORE periodically decreases the relevance
value; (4) if an agent has no assigned role yet, it checks the local Core’s Data
Space periodically. If the Information (relevance value) of the Core data has
reached 0 the agent decides to become a leader, it then creates and deposits
a new Core data in the Core’s Data Space with properties Spread set to true,
including its agentId in the ID properties. BIO-CORE will then spread this

BIO-CORE 13

new Core data. If the Information Core data is not yet 0, but another Core
Data with information (Spread, agentId) is found in the local Core’s space,
the agent decides to become a member of the leader whose id is equal to agentId.

Both applications implemented using BIO-CORE have reached the desired
emergent behaviour. The flow diagrams show that both design have been re-
duced from the original ones, in the sense that most of the responsibilities are
performed by BIO-CORE. Moreover, the BIO-CORE services have been reused
by two applications making easier not only the design phase, but also the imple-
mentation. It exists a wide number of applications based on the basic mechanisms
implemented inside the BIO-CORE. Thus, BIO-CORE is a first step to create
systems where bio-inspired applications can be executed, reusing code, sharing
the same virtual environment as biological process share different mechanisms
in a real environment.

6 Conclusions

This paper presents BIO-CORE, an execution model for a set of low-level ser-
vices providing basic bio-inspired mechanisms that applications or high-level
bio-inspired services can exploit and rely on. BIO-CORE provides primitives for
those applications interacting with the low-level services, clearly separating the
responsibilities of the agents from those of the environment. BIO-CORE design
is presented based on shared data space technology and rules. This is one way
of considering the implementation of BIO-CORE, other techniques or existing
middleware could be used. This paper focuses on engineering bio-inspired self-
organising systems, providing a core for designing and implementing bio-inspired
applications. BIO-CORE feasibility is analysed using two different applications,
“Reaching an Agreement” and “Regional Leaders Election”, where both simu-
lations have reached the desired emergent behaviour.

Future works will focus on three different directions: (1) extending the cat-
alogue of mechanisms and the relations between them, in order to extend BIO-
CORE giving support for the maximum number of bio-inspired applications;
(2) implementing BIO-CORE for Android OS, analysing different implemen-
tations, and (3) even when the services’ parameters can be set up by passing
arguments down from application to the BIO-CORE, we plan to work on self-
composition of services and self-adaptation of parameters in order to avoid a
complex parameterisation of the services and to provide a better performance
against environmental changes.

7 Acknowledgments

This work has been supported by the EU-FP7-FET Proactive project SAPERE
Self-aware Pervasive Service Ecosystems, under contract no.256873.

14 Fernandez-Marquez et al.

References

[Abelson et al., 2000] Abelson, Harold, Don Allen, Daniel Coore, Chris Hanson,
George Homsy, Jr. Thomas F. Knight, Radhika Nagpal, Erik Rauch, Gerald Jay
Sussman, & Ron Weiss 2000. Amorphous computing. Commun. ACM, 43(5):74–82.

[Babaoglu et al., 2006] Babaoglu, O., G. Canright, A. Deutsch, G. A. D. Caro,
F. Ducatelle, L. M. Gambardella, N. Ganguly, M. Jelasity, R. Montemanni, A. Mon-
tresor, & T. Urnes 2006. Design patterns from biology for distributed computing.
ACM Trans. on Autonomous and Adaptive Sys, 1:26–66.

[Banâtre et al., 2001] Banâtre, Jean-Pierre, Pascal Fradet, & Daniel Le Métayer 2001.
Gamma and the Chemical Reaction Model: Fifteen Years After. In proc. of the Work-
shop on Multiset Processing: Multiset Processing, Mathematical, Computer Science,
and Molecular Computing Points of View, WMP ’00, pages 17–44. Springer-Verlag.

[De Wolf & Holvoet, 2007] De Wolf, Tom, & Tom Holvoet 2007. Design patterns for
decentralised coordination in self-organising emergent systems. In proc. of the 4th int.
conf. on Engineering self-organising systems, ESOA’06, pages 28–49. Springer-Verlag.

[Dept & Murphy, 2001] Dept, Amy Murphy, & Amy L. Murphy 2001. LIME: A Mid-
dleware for Physical and Logical Mobility. In proc. of the The 21st Int. Conf. on
Distributed Computing Systems, ICDCS ’01, pages 524–. IEEE Computer Society.

[Dressler et al., 2009] Dressler, Falko, Isabel Dietrich, Reinhard German, & Bettina
Krüger 2009. A rule-based system for programming self-organized sensor and actor
networks. Comput. Netw., 53:1737–1750.

[Fernandez-Marquez et al., 2011a] Fernandez-Marquez, Jose L., Josep L. Arcos, Gio-
vanna Di Marzo Serugendo, & Matteo Casadei 2011a. Description and Composition
of Bio-Insp. Design Patterns: the Gossip Case. In Int. Conf. on Engineering of Au-
tonomic and Autonomous Syst. (EASE), pages 87–96. IEEE Computer Society.

[Fernandez-Marquez et al., 2011b] Fernandez-Marquez, Jose L., Josep L. Arcos, Gio-
vanna Di Marzo Serugendo, Mirko Viroli, & Sara Montagna 2011b. Description and
Composition of Bio-Inspired Design Patterns: The Gradient Case. In Workshop on
Bio-Insp. and Self-* Algorithms for Distributed Systems (BADS), pages 25–32. ACM.

[Fernandez-Marquez et al., 2012] Fernandez-Marquez, Jose L., Giovanna
Di Marzo Serugendo, Sara Montagna, Mirko Viroli, & Josep L. Arcos 2012.
Description and Composition of Bio-Inspired Design Patterns: a complete overview.
Natural Computing Journal (invited paper, submitted).

[Gardelli et al., 2007] Gardelli, Luca, Mirko Viroli, & Andrea Omicini 2007. Design
Patterns for Self-Organizing Multiagent Systems. In Wolf, Tom De, Fabrice Saffre,
& Richard Anthony (eds), 2nd International Workshop on Engineering Emergence
in Decentralised Autonomic System (EEDAS) 2007, pages 62–71. CMS Press.

[Herrmann, 2003] Herrmann, Klaus 2003. MESH Mdl ” A Middleware for Self-
Organization in Ad Hoc Networks. In proc. of the 23rd Int. Conf. on Distributed
Computing Systems, ICDCSW ’03. IEEE Computer Society.

[Mamei & Zambonelli, 2005] Mamei, Marco, & Franco Zambonelli 2005. Programming
stigmergic coordination with the TOTA middleware. In proc. of the 4th int. joint
conf. on Autonomous agents and multiagent systems, AAMAS, pages 415–422. ACM.

[Puviani et al., 2009] Puviani, Mariachiara, Giovanna Di Marzo Serugendo, Regina
Frei, & Giacomo Cabri 2009. Methodologies for Self-Organising Systems: A SPEM
Approach. In proc. of the 2009 IEEE/WIC/ACM Int. Joint Conf. on Web Intelligence
and Intelligent Agent Technology, WI-IAT, pages 66–69. IEEE Computer Society.

[Tschudin, 2003] Tschudin, Christian F. 2003. Fraglets - a Metabolistic Execution
Model for Communication Protocols. In In Proceeding of 2nd Annual Symposium
on Autonomous Intelligent Networks and Systems (AINS), Menlo Park.

