
AUTONOMOUS SYSTEMS WITH EMERGENT BEHAVIOUR

Giovanna Di Marzo Serugendo

University of Geneva

ABSTRACT

This chapter presents the notion of autonomous engineered systems working without

central control, through self-organisation and emergent behaviour. It argues that future

large scale applications from domains as diverse as networking systems, manufacturing

control, or e-government services will benefit from being based on such systems. The

goal of this chapter is to highlight engineering issues related to such systems, and to

discuss some potential applications.

INTRODUCTION

Devices from personal computers, to handhelds, to printers, to embedded devices are

very widely available. Further, today's wireless network infrastructures make it possible

for devices to spontaneously interact. In addition, large-scale communication,

information and computation infrastructures, such as networks, or grids are increasingly

being built using numerous heterogeneous and distributed elements, which practically

cannot be placed under direct centralised control. These elements exhibit certain degrees

of autonomy and of self-organisation, such as taking individual decisions and initiatives,

interacting which each other locally and giving rise to an emergent global behaviour.

This chapter introduces first the notion of autonomous systems; second it reviews the

notions of decentralised control, self-organisation and emergent behaviour, and discusses

how they relate to each other. Third, this chapter discusses different issues pertaining to

the design and development of autonomous systems with emergent behaviour. Fourth, it

reviews techniques currently being established for building those systems. Finally, it

provides several examples of applications.

AUTONOMOUS SYSTEMS

We distinguish different classes of autonomous systems. First, autonomous systems as

distributed embedded devices consist of physical devices having some onboard

intelligence and standalone and communication capabilities. Such devices comprise

intelligent mobile robots, but also intelligent wearable computing, surveillance, or

production devices. Second, from a software point of view, autonomous agents and

multi-agent systems are a notion first established by the Distributed Artificial Intelligence

community. Such systems do not have to cope with the same problems faced with

devices situated in a physical environment, e.g. low-battery. However, agents provide a

metaphor for software design which incorporates most of the elements present in

embedded devices such as autonomous decision-taking processes, communication with

other agents, social interactions for collaboration, negotiation, transactions or competition

purposes (Wooldridge, 2003). Third, more recently an initial focus has been given from

the research community on autonomous software entities interacting with each other in a

decentralised self-organised way in order to realise a dedicated high-level functionality

(interactions for collaboration purposes), or giving rise to an emergent global behaviour

as a side-effect of their local interactions (interactions for competition purposes). This

category of applications or entities is referred to as self-organising systems or systems

with emergent behaviour (Di Marzo Serugendo, 2004). In some sense, this last category

combines the first two views where autonomous software populates autonomous devices.

Fundamental points of these different views of autonomous systems are: the social

interactions arising among the different elements; and the need for adaptation to

unforeseen (at design time) situations encountered into dynamic environments.

There is currently a growing interest in autonomous applications able to self-manage, not

only from academic research but also from the industry. Ambient intelligence envisions

seamless delivery of services and applications, based on ubiquitous computing and

communication. Invisible intelligent technology will be made available in clothes, walls,

or cars; and people can freely use it for virtual shopping, social learning, micro-payment

using e-purses, electronic visas, or traffic guidance system (Ducatel, 2001). Ambient

intelligence requires low-cost and low-power designs for computation running in

embedded devices or chips, as well as self-testing and self-organising software

components for robustness and dependability. Based on the human nervous system

metaphor, IBM’s Autonomic Computing initiative considers systems that manage

themselves transparently with respect to the applications. Such systems will be able to

self-configure, self-optimize, self-repair, and protect themselves against malicious attacks

(Kephart, 2003). Recent interest by Microsoft, as part of the Dynamic Systems Initiative,

indicates as well the importance of self-organisation for managing distributed resources.

Autonomous Computation Entities vs Autonomous Systems

As follows from the discussion above, autonomous systems are composed of one or,

more generally, of several autonomous computation entities interacting together. These

autonomous computation entities are either embedded into physical, possibly mobile,

devices (e.g., in ambient intelligence applications) or part of a given environment that

supports their execution and interactions (e.g., multi-agent systems).

DECENTRALISED CONTROL, SELF-ORGANISATION AND EMERGENT

BEHAVIOUR

Decentralised control is intimately linked with the notion of emergent phenomena, since

some result is expected from a system even if it works with decentralised control. Self-

organisation may occur with or without central control; it is related to whether or not the

system takes itself the measures to cope with the environmental changes. Even though

artificial systems will certainly have at the same time these three characteristics:

decentralised control, self-organisation and emergent phenomena, it is important to

distinguish each of them. The purpose of this section is to briefly clarify these concepts

and to establish the links and differences among these three notions.

Decentralised Control

It is important to distinguish between two kinds of artificial systems working with

decentralised control: a) systems, built as a large set of autonomous components,

pertaining to the same system and providing as a whole expected properties, or functions.

Otherwise stated, we want to build an application with a well specified functionality, but

for complexity reasons, this application is decentralised and made of a large number of

autonomous components; b) systems, composed of a large set of autonomous

components, spontaneously interacting with each other, for possibly independent or

competing reasons. In both cases, autonomous components may be heterogeneous and

dynamically joining and leaving the system.

Even though in both cases, most of the issues and discussions are similar, the

fundamental difference lies in the engineering process that is behind the building of the

system. In the first case, the whole system is designed with emergent functionality in

mind. Simply stated, a given collaborative team develops the application ensuring that the

expected functionality will emerge. In the second case, the different components are

produced by different teams, with different purposes in mind, each being concerned by

the fact that their component can interoperate with the others. There is no expected global

function or properties emerging, even though emergent phenomena will arise in any case

from the different local interactions, and have a causal effect on the whole system, i.e., on

the particular behaviour of the individual components.

In the first case, the core idea behind building large-scale systems is to have them

composed of autonomous individual components working without central control, but

still producing as a whole the desired function. Indeed, decentralised control allows: 1.

computation and decisions to be distributed among the different components, thus

preventing the need for a central powerful computer; 2. the system is more robust since it

does not rely on a single node that may fail and crash the whole system; 3. network and

CPU resources are better used in the sense that communication does not occur among a

dedicated central node and a large number of components, but locally among the whole

set of components; 4. in dynamic systems, where components join and leave the system

permanently, decentralised control allows a flexible schema for communication, e.g. with

a neighbour instead of with the central entity.

Self-Organisation
There are different definitions of self-organisation as observed in the natural world. We

will focus here on three of them, essentially to enhance the fact that there are different

kinds of self-organisations, and that designers of such systems must be aware of which

kind of self-organisation they are considering when building their system (Di Marzo

Serugendo, 2006).

Stigmergy

The theory of stigmergy, defined by Grassé (1959) in the field of swarms, or social

insects' behaviour states that: coordination and regulation are realised without central

control, by indirect communication of the insects through their environment.

Self-organisation results from the behaviour (of the insects) arising from inside the

system. Otherwise stated, swarms' autonomous components are themselves at the origin

of the re-organisation of the whole system.

Decrease of Entropy

In the field of thermodynamics, Prigogine and his colleagues have established that open

systems decrease their entropy (disorder) when an external pressure is applied

(Glansdorff, 1971).

Self-organisation, in this case, is the result of a pressure applied from the outside. It is

interesting to compare self-organisation in this case with the swarms’ behaviour, where

the "initiative" of self-organisation occurs from within the system.

Autopoiesis

Through biological studies, Varela (1979) established the notion of autopoiesis as the

self-maintenance of a system through self-generation of the system’s components, as for

instance cells reproduction.

Self-organisation here is still different from the two other examples above. Indeed,

autopoiesis applies to closed systems made of autonomous components whose

interactions self-maintain the system through generation of system's components.

Even though differently stated in the few definitions above, and with a different impact

on the way and the reasons why self-organisation is produced, we can consider that self-

organisation is essentially:

The capacity to spontaneously produce a new organisation in case of

environmental changes without external control.

Indeed, in the case of social insects, environmental changes will cause ants or termites to

find new paths of food, i.e. change their behaviour in order to still be able to feed the

colony. In the case of thermodynamics, external pressure changes will cause gas particles

to be more or less excited, change their temperature, etc; thus, reaching a new stable

state. Finally, cells or living organisms regenerate the whole system in order to overcome

cells' death, and to survive in their given environment.

It is interesting to note that new organisation of a system may occur with or without

central control provided it is not external.

Emergent Behaviour

Literature on “emergence” is abundant and varied ranging from

philosophical discussions to operational descriptions. One of the most

popular definitions of emergence which captures the essence of the

emergent phenomena comes from Holland (1998), who states that:

“The whole is more than the sum of the parts”.

In systems composed of individual autonomous computation entities, we will consider

that an emergent phenomenon is essentially (Di Marzo Serugendo, 2006):

A structure (pattern, property or function), not explicitly represented at the

level of the individual components (lower level), and which appears at the

level of the system (higher level).

An additional important point here is that emergent phenomena have a meaning for an

observer external to the system but not for the system itself. We distinguish two kinds of

emergent phenomena:

– Observed patterns or functions which have no causal effect on the system itself. If we

consider stones ordered by sea, with time a kind of classification of the stones occur.

Small, lighter stones are close to the border, while heavy stones are far from it. In this

case, this ordering of the stones has no effect at all on the whole system made of the

stones and the sea (Castelfranchi, 2001);

– Observed functions which have a causal effect on the system. Such functions can be

desired or not, but in both cases they have an effect on the system behaviour, and will

cause the individual parts to modify their own behaviour.

Artificial systems are composed of a large number of individual components, i.e., of

autonomous computation entities. During the course of time a large number of

interactions occur, among these components, whose ordering, content and purpose are not

necessarily imposed. It becomes then difficult to predict the exact behaviour of the

system taken as a whole because of the large number of possible non-deterministic ways

the system can behave. However, since we have built the system, the individual

behaviour’s components and the local rules governing the system are known, it becomes

then “in principle” possible to determine the (emergent) system’s behaviour. In practice,

current techniques or calculations (essentially simulations) are not sufficient and make it

almost impossible to determine the result. That is why the result, functions or properties,

is said to be “emergent”.

When Self-Organisation Meets Emergence

Due to the fact that in most systems, self-organisation and emergent phenomena are

observed simultaneously, there is a natural tendency to consider that self-organisation

leads to emergent phenomena, or that they are intimately linked. As also pointed out by

De Wolf (2005), even though not totally wrong, this assumption needs to be clarified.

Self-organisation without Emergent Phenomenon

Self-organisation happens without observed emergent phenomenon, essentially when the

system works under central control. Indeed, self-organisation is the capacity of the

system to find a new organisation in order to respond to environmental changes. The new

organisation can be identified under internal central control, and thus the possibly

observed new organisation is fully deducible from the central entity.

Emergent Phenomenon without Self-Organisation

Emergent patterns, such as zebra stripes, have no causal effect on the whole system.

There is no re-organisation of the stripes or of the cells producing the stripes. Stones

ordered by sea do not undertake a self-organisation when they are ordered by the sea.

Self-Organisation together with Emergent Phenomenon

We consider that in order to have self-organisation and emergent phenomenon at the

same time, the considered system should have the following characteristics:

• dynamic self-organising system: individual components are “active”; they may

have their own objective and carry out their respective tasks.

• the system works with decentralised control;

• local interactions occur among the individual components.

Natural or artificial “interesting” systems usually considered by scientists are those of the

last category, where we usually have: decentralised control realised under self-

organisation, and leading to emergent behaviour.

ISSUES

This section distinguishes five issues related to systems made of autonomous software

entities and exhibiting an emergent behaviour.

Interactions among Unknown Autonomous Computation Entities

Autonomous software entities interact with their environment and with other generally

unknown software entities. Interaction covers both semantic understanding of the

functional and non-functional aspects of a peer entity, and interoperability, which

encompasses transactions, service delivery, and exchange of information.

Management of Uncertainty

For autonomous entities situated in a dynamic and insecure environment, uncertainty

relates to reliability and trustworthiness of both the environment and interacting peer

entities. For instance, an autonomous software entity cannot expect to fully rely on the

permanent availability of network accesses, capacity and loads. In addition, a malicious

entity can exhibit desirable characteristics, while it has no willingness to realize them; or,

even in good faith, an entity can fail to deliver a service because the conditions required

for its correct functioning are no longer provided by the environment (software errors, or

physical failures).

Adaptability to Changing Environment and Changing User Requirements

Autonomous software considered in this chapter are situated in a physical environment

mostly composed of wireless devices, for which: availability of network access is not

fully granted; availability of interacting entities is not permanently granted: devices can

freely join or leave an interacting zone, or partners; and reduced consumption power

conditions may prevent autonomous software residing in wireless devices to perform

their computation at their maximum capacity. In addition to changing environment,

autonomous software has to adapt its behaviour to changing user requirement or under

the evolution of business practices. For instance, a personal assistant may change the

user's agenda, if the user signals some priority activity.

Design and Development

On the one hand, emergent behaviour, as observed in nature or among societies, has

fundamental properties such as robustness, behaviour adaptability, learning through

experiences, complex global behaviour arising from simple individual behaviour, which

software engineers would like to benefit when building complex and large scale systems.

On the other hand, because of these properties, such systems are difficult to design

correctly and their behaviour, once deployed in a physical environment, difficult or

impossible to predict. This is mostly due to the non-linear nature of the interactions

occurring among the different autonomous computation entities forming the autonomous

systems, i.e. the behaviour of the system as a whole is not a linear function of the

behaviour of the individual autonomous computation entities. At the research level; we

are currently witnessing the birth of a brand new software engineering field specifically

dedicated to emergent behaviour. One of the most delicate points is to ensure that “good”

(i.e. expected) properties will actually emerge, while bad (i.e., not expected or not

desired) properties will not.

Control of Emergent Behaviour

At run-time, control of emergent behaviour is an important issue related to artificial self-

organising systems with emergent behaviour. Indeed, those systems usually demonstrate

adaptability capabilities to changing environmental conditions (due to the ability of the

system to re-organise) coupled with emergent phenomena, which by definition is difficult

to predict. From an engineering point of view, it becomes crucial to have means, at run-

time once the system is deployed and executing in its environment, allowing the control

of such systems, such as changing the system’s global goal, stopping the system if

necessary, etc. Solutions for this issue most likely have to be considered at design time

already, by for instance incorporating specific features that will be useful for control.

ENGINEERING EMERGENT BEHAVIOUR

This section describes existing design and development techniques (bio-inspired or not),

and tools for building autonomous systems with emergent behaviour. Bio-inspired

techniques usually rely on stigmergy (Bernon, 2006), but we observe other approaches

based on capacity fields, or on trust-based human behaviour (Hassas, 2006). These

section reviews: interaction mechanisms among individual autonomous computation

entities, middleware computing infrastructure supporting their computations,

methodologies and CASE tools for design and development, and formal methods related

to self-organisation and emergent behaviour.

Interaction Mechanisms

When building a self-organising system, or a system with decentralised control, at the

lowest level, we need to define first the local interactions among the different individual

components of the system.

Swarm Intelligence

Swarms, or the stigmergy paradigm, provide a great source of inspiration, especially for

fixed and mobile networks systems management such as routing, load balancing or

network security. Ants’ behaviour has been extensively reproduced in artificial system

through artificial pheromones coordinating the work of mobile robots, or mobile agents.

More recently, other swarms behaviour is being considered as well, as for instance

spiders (Bourjot, 2003) and bees-like (Fabrega, 2005).

Biology – Cells

Besides swarm behaviour, another category of natural mechanisms reproduced in

artificial systems concerns mammalian immune systems which have mostly used for

network intrusion detection (Hofmeyr, 2000).

Human Behaviour/Trust

Trust-based systems or reputation systems take their inspiration from human behaviour.

Indeed, uncertainty and partial knowledge are a key characteristic of the natural world.

Despite this uncertainty human beings make choices, take decisions, learn by experience,

and adapt their behaviour. As mentioned above, uncertainty is an issue when building

decentralised open systems.

Most artificial trust-based management systems combine higher-order logic with a proof

brought by a requester that is checked at run-time. Those systems are essentially based on

delegation, and serve to authenticate and give access control to a requester (Weeks,

2001). Usually the requester brings the proof that a trusted third entity asserts that it is

trustable or it can be granted access. Those techniques have been designed for static

systems, where an untrusted client performs some access control request to some trusted

server. Similar systems for open distributed and decentralised environment have also

been realised: the PolicyMaker system is a decentralised trust management system

(Blaze, 1996) based on proof checking of credentials allowing entities to locally decide

whether or not to accept credentials (without relying to a centralised certifying authority).

Eigentrust (Kamvar, 2003) is a trust calculation algorithm that allows calculating a global

emergent reputation from locally maintained trust values. Recently, more dynamic and

adaptive schemas have been defined, which allow trust to evolve with time as a result of

observation, and allows to adapt the behaviour of entities consequently (Cahill, 2003).

Artificial Mechanisms

In addition to the digital pheromone, which is the artificial counterpart of the natural

pheromone used by the ants, new electronic mechanisms directly adapted to software

applications are being developed. The notion of tags, a mechanism from simulation

models, is one of them. Tags are markings attached to each entity composing the self-

organising application (Hales, 2003). These markings comprise certain information on

the entity, for example functionality and behaviour, and are observed by the other

entities. In this case the interaction occurs on the basis of the observed tag. This is useful

if applied to interacting electronic mobile devices that do not know each other in

advance. Whenever they enter the same space, for example a space where they can detect

each other and observe the tags, they can decide on whether they can or cannot interact.

Smart tagging systems are already being deployed for carrying or disseminating data in

the fields of healthcare, environment, and user's entertainment. For instance, in the

framework of data dissemination among fixed nodes (Beaufour, 2002) propose a delivery

mechanism, based on the local exchange of data through smart tags carried by mobile

users.

Mobile users or mobile devices do not directly exchange smart tags; they only

disseminate data to fixed nodes when they are physically close to each other. Data

information vehicled, by smart tags, is expressed as triples indicating the node being the

source of the information, the information value, and a time indication corresponding to

the information generation. Smart tags maintain, store, and update these information for

all visited nodes. A Bluetooth implementation of these Smart Tags has been realised in

the framework of a vending machine (Beaufour, 2002).

In smart tagging systems, data remain structurally simple, and understandable by human

beings, and does not actually serve as a basis for autonomous local decisions.

Middleware Computing Infrastructures

Besides local interaction mechanisms favouring communication and cooperation among

the individual components, for artificial system we may need computing infrastructures,

also called middleware, supporting the chosen mechanisms, and acting as the artificial

environment for the system’s component. For instance, such middleware supports the

evaporation of the artificial pheromone, or allows mobile agents to perform their

execution or to move from one host to another one.

These infrastructures are usually coordination spaces providing uncoupled interaction

mechanisms among autonomous entities, which asynchronously input data into a shared

tuple space, and may retrieve data provided by other entities.

The TOTA environment (Tuples On The Air) propagates tuples, according to a

propagation rule, expressing the scope of propagation, and possible content change

(Mamei, 2003). Such a model allows, among others, to electronically capture the notion

of digital pheromone, deposited in the tuple space and retrieved by other agents. The

propagation rule removes the pheromone from the data space, once the evaporation time

has elapsed.

Alternatively, the Co-Fields (coordination fields) model drives agents’ behaviour as

would do abstract force fields (Mamei, 2002). The environment is represented by fields,

which vehicle coordination information. Agents and their environment create and spread

such fields in the environment. A field is a data structure composed of a value (magnitude

of field), and a propagation rule. An agent then moves by following the coordination

field, which is the combination of all fields perceived by the agent. The environment

updates the field according to the moves of the agents. These moves modify the fields

which in turn modify the agent’s behaviour. This model allows representing not only

complex movements of ants, and birds, but also tasks division and succession.

Anthill is a framework for P2P systems development based on agents, evolutionary

programming, and derived from the ant colony metaphor. An Anthill distributed system

is composed of several interconnected nests (a peer entity). Communication among nests

is assured by ants, i.e., mobile agents travel among nests to satisfy requests. Ants observe

their environment, and are able to perform simple computations (Babaoglu, 2002).

Methodologies and CASE Tools

Finally, at the highest level, from the designer point of view, it is crucial to rely on a

development methodology and tools supporting the different phases of development of

systems with emergent behaviour. Research in this field is at its infancy, and very few

results are available.

The Adelfe (Bernon, 2002) methodology supports designers in taking decision when

developing a multi-agent system exhibiting emergent phenomena, and in helping

developers in the design of the multi-agent system. It is based on the AMAS (Adaptive

Multi-Agent Systems) theory where self-organisation is achieved through cooperation

among the agents, i.e. agents avoid non-cooperative situations.

Ongoing research in this field seem to favour solutions combining formal or traditional

models with simulations in order to be able: on the one hand, to formally define the

system, its expected properties, and the behaviour of the individual components; and on

the other hand (through simulation of these models) to be able to validate or invalidate

the design, and to predict some emergent phenomena.

Models and Formal Specifications

Mathematical equations, cellular automaton and neural networks have since long been

used to understand complex systems, emergent patterns and the human neuronal activity.

More recently, since autonomous software agents naturally play the role of individual

autonomous computation entities, multi-agent systems are also being used to model

complex systems, and to derive, through simulation, results about emergent phenomena,

adaptability characteristics, starting conditions, parameters, etc. The purposes of multi-

agent based models are of two different natures. From the one hand, the related

simulations serve as experiments to better understand a complex system, or to

(in)validate a given theory; a purpose similar to that pursued with cellular automaton and

neural networks models. From the other hand, for artificial systems essentially, agent-

based simulations help predict the run-time behaviour of a given system, tune the

different parameters, etc. Multi-agent systems are particularly interesting when

considering artificial systems with emergent behaviour, since those systems involve

mobility, social interactions (negotiation, competition, and collaboration), and a high-

number of entities interacting in a networked environment. The combination of all these

features can be hardly modelled through mathematical models, cellular automaton or

neural networks. For the same reasons, a third purpose of the use of multi-agent systems

is currently being investigated, and it consists in actually building artificial self-

organising applications with autonomous software agents.

In addition to models and simulations, formal reasoning about adaptability characteristics

and emergent properties is a research area under consideration in the field of engineering

of systems with emergent behaviour. As is the case for software engineering related to

“traditional” software, formal specifications allow deriving formal models, on which

reasoning of different kinds can be performed in order to provide design-time results

about the system seen as a whole. We can distinguish different works depending on the

use and purpose of the formal specifications. From a very abstract perspective, category

theory has proved useful for reasoning about emergent properties arising among

interacting components, those properties being expressed through an underlying logic

(Fiadeiro, 1996). From a more concrete point of view, recent work has shown interest in

emergent properties related to multi-agent systems (Zhu, 2005). In addition to the use of

formal specifications and reasoning at design-time, we can mention as well the use of

formal specifications at run-time and its expected benefits for both designing and

controlling (at run-time) emergent behaviour (Di Marzo Serugendo, 2005).

APPLICATIONS

This section presents several application domains, current and undergoing realisations, as

well as some visionary applications: networking, manufacturing or cultural applications

based on stigmergy and swarm like systems, and self-managing global computers.

Additional descriptions of self-organising applications can be found in (Mano, 2006).

Networking Systems

Seminal work by (Bonabeau, 1999) describes different types of swarm behaviour and

explains how to apply it to different applications: ant foraging is useful for routing in

communication networks, and consequently for optimisation of network-based problems;

ant division of labour is useful for task allocation; ants’ management of dead bodies is

useful for clustering.

T-Man is a generic protocol based on a gossip communication model and serves to solve

the topology management problem (Jelasity, 2005). Each node of the network maintains

its local (logical) view of neighbours. A ranking function (e.g. a distance function

between nodes) serves to reorganise the set of neighbours (e.g. increasing distance).

Through local gossip messages, neighbour nodes exchange or combine their respective

views. Gradually, in a bottom-up way, through gossiping and ranking, nodes adapt their

list of neighbours, and consequently change and re-organise the network topology. The

T-Man protocol is particularly suited for building robust overlay networks supporting

P2P systems, especially in the presence of a high proportion of nodes joining and leaving

the network.

The SLAC (Selfish Link and behaviour Adaptation to produce Cooperation) algorithm

(Hales, 2005) favours self-organisation of P2P network's nodes into tribes (i.e. into

specialised groups of nodes). The SLAC algorithm is a selfish re-wiring protocol, where

by updating its links with other nodes in order to increase its utility function, a specific

node leaves its current tribe, and joins a new one. In addition to P2P systems, the SLAC

algorithm has many potential applications, for instance to organise collaborative spam /

virus filtering in which tribes of trusted peers share meta-information such as virus and

spam signatures.

In the field of mobile ad-hoc networks, a self-organised public key management has been

defined. The idea is that each node simply carries a subset of the certificates issued by

other users. This alleviates the need of centralised certification authorities (Capkun,

2003).

For intrusion detection and response in computer networks (Foukia, 2005) the immune

system serves as a metaphor for detecting intruders, and the stigmergy paradigm is used

for responding to the attack. Mobile agents permanently roam the network in order to

locate abnormal patterns of recognition. Once an attack is detected, a digital pheromone

is released so that the source of attack can be located, and a response to the attack can be

given. Mobile agents specialised for tracking the source of the attacks are created by the

system and act as ants by following the pheromone trail up to the source of the attack.

Manufacturing Control

The stigmergy paradigm serves also for manufacturing control (Karuna, 2003). Agents

coordinate their behaviour through a digital pheromone. In order to fulfil manufacturing

orders, they use mobile agents that roam the environment, and lay down pheromonal

information.

Cultural Heritage

In the field of cultural heritage, a system inspired by bees’ behaviour has been designed

by (Fabrega, 2005). This system allows independent non-specialised people to enter

information on a given subject. The underlying system then creates new concepts as they

are entered into the system by users and correlates together existing concepts. The bees’

queen maintains the number and type of bees; it creates new bees whenever a new

concept appears. Different types of bees look for information (nectar), bring that

information into cells (honey comb), validate the information, or look for similarities in

honey combs.

Self-managing Systems

In order to help human administrators in managing large systems, such as self-managing

distributed operating systems or networks, self-managing systems are being investigated

and research efforts are dedicated to these systems.

Expected properties of self-managing systems are to self-configure, self-optimise their

parameters, self-repair in case of errors, and to ensure themselves their protection. These

characteristics place these systems under the category considered in this chapter. Indeed,

such systems work more efficiently without central control; they need to adapt to

changes, i.e. to re-organise; this system is dynamic since, for instance, components in

error have to leave the system and being replaced by new ones, updated components have

to seamlessly integrate the system (Kephart, 2003).

However, for self-managing systems, considered as autonomous systems with emergent

behaviour, the situation may be even more complex. Indeed, such systems have three

aspects. First, they need to manage themselves; this can be considered a “regular” case of

self-organisation. Second in addition to themselves they need to manage any additional

resource pertaining to the system. Third they need to interact with a human administrator,

this implies that such system need a mean to receive global orders from the

administrators, and these orders have to be split down into low-level goals or tasks, and

conversely, the results or information the self-managing system wants to provide to the

human administrator have be coherently ¨packed into a single meaningful information.

Individual components cannot send directly to the administrator their respective

individual results.

CONCLUSION

We already observe that technologically advanced societies heavily rely on autonomous

devices full of autonomous software (PDA, mobile phones, portable computers)

interacting with each other in a more or less autonomous way. Our vision is that future

applications will in fact be composed of autonomous systems organised in a society of

devices and software seamlessly interacting together for supporting end-users citizens in

their everyday life.

We currently observe that artificial system reproduce natural self-organisation principles.

They are borrowed from biology, social behaviour of insects or humans. Different

artificial techniques are used for realising these systems: from indirect interactions, to

reinforcement, to adaptive agents, to cooperation, to establishment of dedicated

middleware. The interest of self-organisation and emergence lies in the natural robustness

and adaptation of these systems, and in the relative simplicity of the different components

participating to the system. However, it is interesting to notice that, despite any benefit

emergence and self-organisation can bring to a system, they are not necessarily a good

thing. Indeed, in addition to the expected emergent behaviour, unexpected emergent

behaviour will necessarily arise from the different interactions of the system. This

behaviour will have a causal effect on the system, and especially in the case of self-

interested agents, the optimum order (the stable state reached by the re-organisation) can

actually be bad for individuals or even for everybody. Additionally, current engineering

techniques have their limits in terms of control of the emergent behaviour, design of the

system and prediction of the emergent expected or not behaviour. Research in this field is

still beginning, and much work is needed before any commercial application is widely

available for the public.

Acknowledgement

This work is supported by Swiss NSF grant 200020-105476/1.

References

Babaoglu, O. & Meling, H & Montresor, A. (2002). Anthill: A framework for the

development of agent-based peer-to-peer systems. Proceedings of the 22th International

Conference on Distributed Computing Systems (ICDCS '02). 15-22.

Beaufour, A. & Leopold, M. & Bonnet, P. (2002). Smart-tag based data dissemination.

ACM International Workshop on Wireless Sensor Networks and Applications

(WSNA'02). 68-77.

Bernon, C. & Chevrier, V. & Hilaire, V. & Marrow, P. (2006). Applications of self-

organising multi-agent systems: An initial framework for comparison. Informatica, In

press.

Bernon, C. & Gleizes, M.-P. & Peyruqueou, S. and Picard, G. (2002). ADELFE, a

Methodology for Adaptive Multi-Agent Systems Engineering. Proceedings of the

Engineering Societies in the Agent World (ESAW’02). 156-169.

Blaze, M. & Feigenbaum, J. & Lacy, J. (1996). Decentralized trust management. IEEE

Symposium on Security and Privacy. IEEE Computer Society, 164-173.

Bonabeau, E. and Dorigo, M. and Théraulaz, G. (1999). Swarm Intelligence: From

Natural to Artificial Systems. Santa Fe Institute Studies on the Sciences of Complexity.

Oxford University Press.

Bourjot, C. & Chevrier, V. & Thomas, V. (2003). A new swarm mechanism based on

social spider colonies: from Web weaving to region detection. Web Intelligence and

Agent Systems. 1(1), 47-64.

Cahill, V. & al. (2003). Using trust for secure collaboration in uncertain environments.

IEEE Pervasive Computing Magazine. Special issue dealing with uncertainty. 2(3), 52-

61.

Capkun, S. & Buttyan, L. & Hubaux, J.-P. (2003). Self-Organized Public-Key

Management for Mobile Ad-Hoc Networks. IEEE Transactions on Mobile Computing.

2(1):52-64.

Castelfranchi, C. (2001). The theory of social functions: challenges for computational

social science and multi-agent learning. Journal of Cognitive Systems Research. 2(1), 5-

38.

De Wolf, T. & Holvoet, T. (2005). Emergence Versus Self-Organisation: Different

Concepts but Promising When Combined. Engineering Self Organising Systems. Volume

3464 of LNAI. Springer-Verlag, 1-15.

Di Marzo Serugendo, G. & Gleizes, M.-P. & Karageorgos, A. (2006). Self-organisation

and emergence in MAS: An overview. Informatica, In press.

Di Marzo Serugendo, G. (2005). On the Use of Formal Specifications as Part of Running

Programs. Technical Report. Department of Information Systems. University of Geneva.

Di Marzo Serugendo, G. & al. (eds). (2004). Engineering Self-Organising Systems,

Volume 2977 of LNAI. Springer-Verlag.

Ducatel, K & al. (2001). Scenarios for Ambient Intelligence in 2010. Technical Report,

Institute for Prospective Studies.

Hofmeyr, S. & Forrest, S. (2000). Architecture for an Artificial Immune System.

Evolutionary Computation Journal. 8(4), 443-473.

Fabrega, M. & Lòpez, B. & Masana, J. (2005). How Bee-like Agents Support Cultural

Heritage. Proceedings of the Engineering Self-Organising Applications Workshop

(ESOA’05). 206-220.

Fiadeiro, J. L. (1996). On the Emergence of Properties in Component-Based Systems.

Proceedings of the International Conference on Algebraic Methodology and Software

Technology (AMAST’96). Volume 1101 of LNCS. Springer-Verlag. 421-443.

Foukia, N. (2005). IDReAM: Intrusion Detection and Response executed with Agent

Mobility. The International Conference on Autonomous Agents and Multi-Agent

Systems (AAMAS’05). Utrecht, The Netherlands. 264-270.

Glansdorff, P. & Prigogine, I. (1971). Thermodynamic study of structure, stability and

fluctuations. Wiley.

Grassé, P. P. (1959). La reconstruction du nid et les interactions inter-individuelles chez

les bellicositermes natalenis et cubitermes sp. la théorie de la stigmergie: essai

d'interprétation des termites constructeurs. Insectes Sociaux. 6, 41-83.

Hales, D. & Edmonds, B. (2003). Evolving Social Rationality for MAS using "Tags".

The International Conference on Autonomous Agents and Multi-Agent Systems

(AAMAS’03). ACM Press.495-503.

Hales, D. (2005). Choose Your Tribe! Evolution at the Next Level in a Peer-to-Peer

Network. Proceedings of the Engineering Self-Organising Applications Workshop

(ESOA’05). 61-76.

Hassas, S. & Di Marzo Serugendo, G. & Karageorgos, A. & Castelfranchi, C. (2006).

Self-organising mechanisms from social and business/economics approaches,

Informatica, In press.

Holland, J. H. (1998). Emergence – from Chaos to Order. Oxford University Press.

Jelasity, M. & Babaoglu, O. (2005). T-Man: Gossip-based Overlay Topology

Management. Proceedings of the Engineering Self-Organising Applications Workshop

(ESOA’05). 1-15.

Kamvar, S. D. & Schlosser, M. T. & Garcia-Molina, H. (2003). The Eigentrust algorithm

for reputation management in P2P networks. The Twelfth International World Wide Web

Conference (WWW 2003). 640-651.

Karuna, H. & al. (2003). Self-organising in multi-agent coordination and control using

stigmergy. Engineering Self Organising Systems. Volume 2977 of LNAI. Springer-

Verlag, 105-123.

Kephart, J. O. & Chess, D. M. (2003). The Vision of Autonomic Computing. Computer.

36(1), 41-50.

Mamei, M. & Zambonelli, F. (2003). Self-Organization in MultiAgent Systems: a

Middleware Approach. Engineering Self Organising Systems. Volume 2977 of LNAI.

Springer-Verlag, 233-248.

Mamei, M. & Zambonelli, F. & Leonardi, L. (2002). Co-fields: Towards a unifying

approach to the engineering of swarm intelligent systems. Third International Workshop

on Engineering Societies in the Agents World (ESAW’03), Volume 2577 of LNCS.

Springer-Verlag, 68-81.

Mano, J.-P. & Bourjot, C. & Lopardo, G. & Glize, P. (2006). Bio-inspired mechanisms

for artificial self-organised systems. Informatica, In press.

Varela, F. (1979). Principles of Biological Autonomy. Elsevier.

Weeks, S. (2001). Understanding trust management systems. IEEE Symposium on

Security and Privacy. 94-105.

Wooldridge, M. (2003). An Introduction to Multi-Agent Systems. Wiley.

Zhu, H. (2005). Formal reasoning about emergent behaviours of MAS. Proceedings of

the Seventeenth International Conference on Software Engineering and Knowledge

Engineering (SEKE’05).

