
 
 

 

  
Abstract—This paper describes a decentralised car traffic 

control simulation with re-routing and propagation of messages 
among traffic nodes (roads intersections and traffic lights). The 
values of the parameters governing the simulations are 
identified through the use of a genetic algorithm. This paper 
reports as well on results obtained regarding the convergence of 
the genetic algorithm towards fittest solutions. 

 

I. INTRODUCTION 

Control of road traffic flows is an important concern for any 
urban area. Traffic managements, already in place, assist 
traffic officers to monitor and control traffic on cities or 
motorways. They allow visualisation or analysis of real-time 
traffic information. Decisions are usually taken from control 
centres and propagated to users by the means of road signs 
(traffic lights, motorway screens). However, the density of 
traffic and the complexity of road networks call for more 
self-adaptive solutions where traffic control dynamically and 
seamlessly adapts to traffic conditions.  

This paper reports on an on-going work aiming at deriving 
different models, and their accompanying simulations, of 
decentralised car traffic control based on message 
propagation among road elements such as roads intersection, 
traffic lights, or cars. The main goal is to maximise traffic 
throughput and minimise travel time of vehicles. Simulations 
are controlled by diverse parameters whose values are 
separately established by the help of a genetic algorithm. Our 
previous model considered a fixed set of journeys involving 
different types of vehicle (regular and emergency cars). 
Speed-up and slow-down messages were propagated among 
road intersections in order to regulate traffic flow [5]. This 
paper presents our second model, where vehicles can be re-
routed in case of congestion, and stop and go messages are 
propagated among traffic lights nodes instead of vehicle 
speed in order to optimise traffic under congested conditions.  
The specificity of our models lies both in the decentralised 
approach for traffic control, and in the large number of cars 
used to simulate traffic and high congestion rates. 

 
 

Section II describes the city and the simulation model. 
Section III describes the genetic algorithm used for 
optimising the parameters involved in the model. Section IV 
discusses preliminary experiments and results, and Section V 
mentions some related works. 

II. CONTROL MODEL AND SIMULATION 

A. City and Model elements  

The city is modelled as a square grid of 20 nodes by 20, 
representing a 2km*2km city space.  The distance between 
nodes is set at 100 metres.  Nodes are road intersections and 
each node maintains a traffic light controller. A lane is a 
portion of road between two nodes and has a direction (8 
lanes are connected to each node). 

A whole simulation comprises 15'200 vehicles travelling 
permanently in the city streets, and 1'520 different 
interconnected lanes.  

Each simulation starts with 10 vehicles distributed at 
random across each lane.  Each vehicle then randomly 
targets a destination on the opposite side of the city and 
generates its optimum route. This provides some routes 
which are more congested than others from the beginning.  
Vehicles will undertake journeys to completion and begin 
again for the entire evaluation period.  The fixed number of 
vehicles roaming the city ensures a constant rate of 
congestion of 50%. While the number of vehicles is fixed, 
the number of journeys varies from simulation to simulation: 
after completing their journeys, vehicles start again a new 
journey. The fittest solution is then the one that allows the 
maximum throughput, i.e. the maximum number of journeys 
completed in a fixed amount of time.  

At any point during a journey a vehicle may decide to re-
evaluate the remainder of the journey.  The pathfinding 
algorithm, directed by parameters established through the 
genetic algorithm, determines the most efficient route from 
that point.  In addition to re-routing of vehicles, messages are 
sent among nodes to ask for modifications of traffic light 
signalling. 

The actual speed through the city has a maximum of 30 
miles per hour (50km/h).  Vehicles try to move at this speed 
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unless there is congestion. 
The simulation stops after 1’800 seconds of virtual time, 

i.e. one half-hour of virtual activity. 

B. Control and Message propagation  

Depending on traffic conditions, messages are sent 
forward or backward from lanes to nodes to request a change 
in traffic light signalling.  Lanes may send messages forward 
to request a change in the current signal, e.g. where its lead 
vehicle is stationary.  Messages are also promoted backward 
to switch the signal away from a lane that is highly 
congested. Nodes cycle the traffic light (pass a token) 
between their inbound lanes, in order to grant them access to 
all outbound lanes.   

 
1) Parameters 

The parameters used to control message propagations and 
re-routing of journeys have each 7 possible values (see Table 
1), and are as follows:  

 
EvaluationTrigger: tendency for vehicles to re-evaluate 

a route which is taking longer than initially planned to 
resolve.  The parameter value represents the % of chances of 
re-evaluating a journey which is perceived as running late. 
EvaluationTrigger is between 3% and 21% (3% increment). 
This evaluation is made as each step is completed. For 
instance, if the EvaluationTrigger parameter is set to 21%, a 
car blocked in a lane will re-evaluate its route in 21% of such 
cases.   

 
ResponseThreshold: propensity of nodes to respond 

positively to requests for changing the traffic signals. The 
parameter value represents a propensity between 20% and 
80% (10% increment) that the target node will actually 
satisfy the request issued from a lane. The node is evaluated 
every second cycle (every 2nd virtual second). 

 
RequestThreshold: propensity of lanes to raise a request 

to change traffic signals. It is a probability curve, with higher 
congestion leading to greater likelihood of request 
transmission. This parameter has the same values as the 
ResponseThreshold parameter. 

 
RequestLimit: sets the number of requests that a node 

may ignore before a change becomes mandatory. It is an 
absolute values ranging from 2 to 14 (increment of 2). It 
represents the maximum number of cycles during which a 
lane's message may be ignored.  It is a scalar limit (not a 
propensity) corresponding to the number of evaluations that 
may pass before a response to a request is given. 

 
Phase: influences the likelihood of a lane to cycle the 

token when no cars are within range of the intersection.  The 
Phase parameter determines the minimum distance from the 
intersection the foremost vehicle must be before the lane will 

ask to cycle the token.  It is an absolute value and represents 
a distance between 0 and 30 metres (increment of 5). If the 
next vehicle is beyond this distance from the target node 
(intersection) the lane will raise a request to change the 
signal. If the light is green, it will turn it to red, because the 
car will not make it in time to reach the intersection; if the 
light is red, the request to cycle is an attempt to make the 
light green by the time the car arrives at the intersection. 
 

 1 2 3 4 5 6 7 

EvaluationTrigger 3% 6% 9% 12% 15% 18% 21% 

ResponseThreshold 20% 30% 40% 50% 60% 70% 80% 

RequestThreshold 20% 30% 40% 50% 60% 70% 80% 

RequestLimit 2 4 6 8 10 12 14 

Phase 0m 5m 10m 15m 20m 25m 30m 

 
Table 1: Parameter's Values 

 
The message propagation has an indirect impact on 

routing and re-evaluations.  As traffic builds up, lanes tend to 
restrict access to themselves, and request access to others.  
This will have a detrimental affect on journey times, leading 
to individual vehicles getting closer to the environment's 
EvaluationTrigger threshold and therefore a good likelihood 
of route re-evaluation and redirection through less congested 
lanes.   

 
2) Message Propagation 

Messages propagate from lanes to forward and backward 
nodes.  Tokens are employed by nodes to permit an inbound 
lane access to its outbound lanes.  The token (i.e. the green 
light) is cycled through all inbound lanes one at a time. 
Lanes employ the use of messages in the simulation in an 
attempt to influence the node's control of the token. There 
are three types of message: 1. forward messages to cycle 
the token onwards (from green to red or from red to green); 
2. backward messages to cycle to token onwards; and 3. 
ignore messages. Messages are raised in the five following 
situations: 

A lane sends messages forward when it detects that 
vehicles are stationary waiting for the green light, asking the 
forward node to cycle its token onwards, i.e. to rotate the 
green light towards the lane in order to allow the cars to 
leave the lane. 

A lane may also send messages backward when it detects 
that it is congested, asking the backward node to cycle its 
token onwards, i.e. to rotate the green light towards another 
lane in order to stop the flow of cars coming in.  

When no vehicle are within range of the intersection, the 
lane may send a forward message to the forward node 
asking it to cycle the token, i.e. to change from green light 
to red because no vehicle is ready to cross the intersection, 
or to ask for the red light in anticipation of the arrival of a 
car further down the lane.  
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When the vehicle at the head of a lane has a green light 
but is blocked because the lanes in front are congested, the 
lane sends a forward message to the forward node asking it 
to cycle the token, so that the first car will be prevented to 
block the intersection. 

Finally, a lane may also over-write a previous message at 
any time according to the latest prevailing conditions: ignore 
messages.  This includes cancellation messages to null out 
any previous change requests. 

The ResponseThreshold and RequestLimit parameters 
influence the behaviour of nodes regarding lane’s requests.  
While each vehicle and lane is cycled once per virtual 
second, nodes are only visited once in every two cycles.  
This permits a high enough resolution to be effective and to 
permit nodes to deal only with the latest prevailing 
conditions as only a lane’s latest message request is of 
significance.  The ResponseThreshold parameter determines 
the likelihood that a node will respond to a message, the 
RequestLimit parameter sets the number of messages which 
may be ignored from a node before the message must be 
responded to.  For example a very busy thoroughfare may 
choose to reject requests for access from a side road with 
only two waiting vehicles.  The RequestLimit attempts to 
prevent the side-road from constantly ignoring requests for 
the token based merely on weight of numbers. 

Raising a request to either yield the current token, or to 
rotate the inbound lane’s token, will be determined along a 
curve. Requests are not immediately raised by lanes; this is 
governed by the RequestThreshold attribute.   

The messages propagated from lanes to forward and 
backward nodes help to ameliorate local conditions.  Despite 
the heavily congested nature of the city during rush-hour we 
facilitate local variations in congestion through this 
mechanism. 

� ���

�

 
Figure 1: Messages Flows 

 
Figure 1 shows an example of messages flows between 

lanes and nodes. If lane (i) is congested it will raise a 
backward message towards A, to rotate the signal in order to 
stop feeding vehicles towards it. When lane (ii) is blocked 
due to a vehicle at its head being waiting for a green light, it 
will raise a forward message to A, to rotate the signal. 

 

C. Routes determination  

Each of the 15'200 vehicles evaluates its entire route prior 
to commencing its journey using a variation of the A*-

pathfinding algorithm [1].  
Whenever the EvaluationTrigger threshold is reached, the 

journey is likely to be re-evaluated from its current point to 
the route's endpoint. The EvaluationTrigger threshold directs 
the propensity or tendency to re-evaluate, i.e. once this 
trigger value is reached the likelihood of re-evaluation 
increases along a curve. 

Each step in a route has an anticipated individual cost and 
an anticipated cumulative cost represented as the number of 
seconds it should take to get to that point in the journey.  If 
the cost is higher than anticipated each vehicle will check to 
see if the extra cost is large enough to warrant re-evaluation, 
if so, it then searches out a new optimum route and updates 
the anticipated costs from that point onwards.   

The A*-pathfinding algorithm works as follows (see 
Figure 2). Given the current position of the car, the A*-
pathfinding algorithm needs to find a new route from that 
position to the destination point. The best route is the one 
that minimises the cost of going from the current point to the 
destination. According to the A*-pathfinding algorithm a 
route is scored according to the equation F = G + H, where G 
is the cost to go from the current position of the car to a 
certain node along the considered route, and H is the 
evaluated cost to go from that node to the destination. 

More precisely, from the current point, we build an 
“open” list of lanes (the list of possible lanes to consider for 
re-routing). The lane the car came from (current lane) is not 
part of this list, so it is in the “closed” list (the list of lanes 
we do not check for the moment). For each lane to consider, 
the cost to reach the next node is computed (G), it is given 
by the time needed to reach the next node given the current 
speed of the cars on that lane (at the time of the re-evaluation 
of the route). Then, the cost to reach the destination point is 
calculated (H). Since at this point in the algorithm we do not 
know yet the exact route, the route is estimated using the 
Manhattan distance: moving horizontally and vertically 
directly towards the target destination, without taking into 
account any possible congestion in between. H is the 
cumulative cost to reach the target destination from the node 
being considered. The total cost F is given by F = G + H. 
The lane with the lowest F is chosen in a first instance.  The 
algorithm is then applied recursively to this lane until the 
target destination is reached, or no route is identified (e.g. 
cost is higher than current route). The final route is then 
found by going backwards from the target destination to the 
initial point. Different routes (with different costs) may pass 
at common points (nodes or lanes). If during the evaluation 
of the cost of the different possible routes, the algorithm 
comes across an already visited point for which the 
previously calculated cost is lower than the one calculated 
for the current route, the algorithm drops the current route, 
switches to the previous route and continues from there.  
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________________________________________________ 
A*- pathfinding algorithm 

________________________________________________ 
 
BEGIN 
 Add the starting lane to the open list. 
 Loop 
  
  Select the lowest cost lane on the open list. 
  Remove it from the open list and add it to the closed list.  
  
//Evaluate the cost of adjacent lanes 
    For each of the adjacent lanes:  
        If adjacent lanes are on the closed list or are  

                 invalid candidates ignore them 
        Else // if they are valid 

   If it is not on the open list 
     Add it to the open list 
     Set the lane's parent lane to the current lane 
     Evaluate the lane's F, G, and H costs  
   Else // it is already on the open list 

               If previous instance has a lower F cost  
     // (the previous route to that lane is a better    
        candidate) 

          Leave it there and discard this instance, 
                 Set the previous instance's parent lane to  
                     the current lane. 
      Recaculate F, G for that lane 
               End if 
            End ifelse 
          End ifelse 
     End For 
  Exit loop if target lane is current lane or if open list is empty 

 
End Loop 
  

   END 
________________________________________________ 

Figure 2: A*-Pathfinding Algorithm 
 
Cars take decisions regarding re-routing on the basis of 

global information having only a short time of validity. 
Indeed, the value F of the best route is indicative only: it is 
accurate at the moment of the evaluation, but the actual cost 
will be known only at the end of the journey.  The final result 
will depend on the individual decisions taken by the different 
cars. 

Simulations are not deterministic.  For example the 
EvaluationTrigger parameter controls a propensity to re-
evaluate a slower than expected journey.  Therefore two 
simulations of the 30 minute period would be unlikely to 
yield identical results, however they would be in the same 
category of results as each simulation would have the same 
propensities. 

This was chosen to better reflect people's behaviour on the 
roads – when they start to suspect they will run late different 
people have different thresholds for re-evaluation. 

III. GENETIC ALGORITHM AND FITNESS FUNCTION  

15'200 vehicles permanently populate the streets and 
constantly undertake journeys during the evaluation period.  
Fitter sets of genes values will permit more journeys to be 

undertaken during the 1800 seconds of simulation time. 
Therefore the solution with the most journeys completed is 
the fittest. To differentiate between competing solutions 
when evaluation is complete, we also look at the set of 
current but incomplete journeys.  All vehicles have the 
potential to be in mid-journey when the simulation 
terminates.  For these incomplete journeys we examine how 
far they had travelled and in what time, i.e. the average speed 
of the journeys.   

A. Fitness Function 

The fitness function is comprised of a primary element: the 
total number of complete journeys; and a secondary element: 
the average speed for incomplete journeys. 

The average speed of incomplete journeys is only relevant 
when distinguishing genomes that execute the same number 
of complete journeys. 

 
Fitness Function = journeys*100 + avgspeed*10 . 

 
Value “journeys” represents the number of completed 

journeys. The value “avgspeed” represents the average of the 
speed of all the incomplete journeys.  

B. Genetic Algorithm 

We evaluate an initial set of 49 individuals.  Once that set is 
evaluated we select candidate genes for reproduction, 
applying crossover and mutation to yield two child genes.  
These genes are then run through the simulation.  At the end 
of this evaluation the next generation is selected, again 
through roulette-wheel selection.  All genomes tested must 
be unique, i.e. we will not evaluate the same gene sequence 
more than once.  If genes prove fitter than the worst case 
currently maintained, it is added to the set of fittest 
candidates and the lowest performer is dropped from the 
gene-pool.  Our tests are concerned with two priorities: 1. to 
identify the fittest candidate from the simulations 
undertaken, and 2. to demonstrate convergence towards fitter 
solutions across the entire gene-pool.   

 
1) GA Genes. 

The five genes: EvaluationTrigger, RequestThreshold, 
ResponseThreshold, RequestLimit, and Phase have seven 
possible values, yielding a search space of 16’807 individual 
solutions.   
 

2) GA Initialisation 
The fittest 49 candidates are maintained in the genepool.  
Initially this is set by individuals chosen with middling gene 
values.  The 49 generation zero individuals’ gene values are 
set to between 3 and 5 inclusive at random, they are 
evaluated for fitness.  When evaluation is complete an 
attempt is made to add them to the genepool, because the 
genepool at this stage has fewer than 49 candidates, the 
addition is successful.  When no more candidates remain 
from the set awaiting evaluation we breed a new pair for 
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evaluation.  
A new genome may be added to the genepool only if their 

fitness is higher than the current worst-case.  If, after 
evaluating both individuals, no insertions are made to the 
genepool the mutation rate is increased (see below) and two 
new individuals are created from the same generation.  The 
generation count only increases when the genepool changes, 
i.e. when a successful addition is made.  Therefore our 
genepool is comprised of the 49 fittest individuals across all 
generations. 

 
3) Crossover and Mutation 

During reproduction we select two candidate genomes from 
the genepool using roulette-wheel selection weighted by 
relative fitness.  A random point from the second to fourth 
gene is selected and two sub-strands extracted from each 
parent creating two individual siblings.  We then subject the 
siblings to potential mutation. 

Mutation is set at 10% initially. That is, the likelihood that 
a single gene may be affected.  When an attempt to add an 
individual fails, we increase the mutation rate by one to help 
to promote wider selection.  For generations 0 to 99, the 
potential bump is set to a maximum limit of 20%.  After 100 
generations are evaluated, mutation may rise as high as 50%.  
After each successful addition to the genepool, mutation is 
reset to 10% - this is to ensure that unnecessarily high 
mutation rates do not apply to the first candidate offspring of 
a generation. 
 

4) Remark 
Since the pathfinding uses a variation of the A*-algorithm, 
and initial routing and subsequent rerouting for 15’200 
vehicles through a 2km*2km city was an extremely 
expensive operation in terms of time taken, cells were used 
to describe areas of common congestion. Penalty and reward 
had been introduced for moving to a cell of higher 
congestion or to a cell of lower congestion respectively. 
These two notions would tend to derive routes of consistent 
or improved congestion levels without the need to evaluate 
every lane in that area.  Two additional genes (TransitHigh, 
TransitLow) controlling the penalty and reward were then 
initially incorporated to facilitate routing and pathfinding 
throughout the city.  However improvements made to the 
pathfinding algorithm rendered this rather unnecessary.  The 
algorithm was improved through type-specific high-speed 
custom collections for the open and closed lists, and also by 
maintaining two in-memory indices which facilitated look-up 
by lane id, and lane cost.  Pathfinding using the new 
algorithm was approximately 100 times faster than the 
previous implementation.  The TransitHigh and TransitLow 
genes were therefore discarded as experiments showed that 
these genes had value and interest only to a less-efficient 
pathfinding mechanism.  With an efficient pathfinding 
algorithm, the fittest function was not affected by these two 
values. 

IV. EXPERIMENTS AND RESULTS 

The results presented here relate to 158 generations obtained 
through the genetic algorithm. We performed 3315 
simulations where mutation was increased automatically in 
order to find fitter solutions worthy of addition to the 
genepool.  The optimum has been found at generation 133. 
 

1) Global Result 
Presently there is about a 13% variation between worst and 
best case in terms of journeys made. Given that each of the 
1520 lanes in the 2km*2km block begins filled to 50% 
capacity, and there are 15’200 vehicles vying for scarce 
resources, 13% enhancement can be considered a good result 
(see Table 2). 

 

  Fitness Journeys
Minimum 2’454’721 24’546 
Maximum 2’774’920 27’748 

Average 2’595’877 25’958 
      

Absolute Difference 320’199 3’202 
Percentage 
Difference 13.04% 13.04% 

 
Table 2: Global Results 

 
The city starts off with each of its 1’520 lanes at 50% 

congestion, i.e. with 10 vehicles on it.  Choosing such a high 
rate of initial congestion is particularly important for our 
purposes, i.e. to demonstrate that local messaging and auto-
rerouting may contribute to improving throughput in a 
congested urban environment.  The difference between best 
case and worst case was over 13%, i.e. 3’202 extra journeys 
were catered for.   
 

2) Number of individuals per generation 
Significantly at higher generations, many more simulations 
had to be undertaken at increasing rates of mutation in order 
to find candidates fit enough to be added to the genepool.  
The results at central gene values were favourable to the 
simulations, and improvements, while incremental, 
demonstrate a tendency to increase fitness across 
generations.  Figure 3 shows the number of new individuals 
created at each generation. For instance, at generation 122, 
51 new individuals (and consequently 51 simulations) have 
been created. Such peaks correspond to high mutation rate, 
and correspond to periods where the system had difficulties 
in finding a solution to insert into the genepool. We can 
observe that the number required for finding a candidate 
fitter than the prevailing worst-case in the genepool generally 
increases steeply as generations increase. Mutation rates 
were permitted to rise to 50% (that a single element would 
vary) once generations rose above 100.  This was done in 
anticipation of the difficulty of finding solutions eligible to 
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enter into the genepool. The simulations appear stuck in 
local minima around generation 120-130.  The number of 
simulations required to advance peaking around this time. 
The data shows this effect ameliorated in subsequent 
generations, once an optimum has been found at generation 
133, and lower numbers of simulations are necessary with 
each advancing generation.  This probably shows the 
effectiveness of the genetic algorithm, and the variable 
mutation rate. 
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Figure 3: Number of simulations per generation 

 
On Figure 3, we can see in the data the effect that mutation 
has on the simulations, where new gene values emerge 
through increasing mutation rates as generations become 
stifled in local minima.  This yields an eligible candidate and 
the generation proceeds forwards. If we consider as before, 
the generation 122, with high mutation rate (and high 
number of individuals created), the system finds a local 
maximum (maximum value of the fitness function is 
2703321 for generation 122). At each peak in Figure 3 
corresponds a local maximum in Figure 4. This figure also 
clearly shows the convergence (a regular linear progression 
trend) of the genetic algorithm towards fittest generations. 
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Figure 4:  Max fitness function value per generation 
 
3) Convergence of genetic algorithm 

Figure 5 shows the progression of the average fitness 
function values at each generation (over the different 
individuals created at each generation). This figure shows 
that the average fitness value remains rather stable. This is 
due to the fact that there are large differences between 
minimum and maximum fitness values inside a given 
generation.  
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Figure 5: Average fitness function value per generation 

 
4) Genes and Corresponding Parameters values 
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Table 3: Parameters value (best/least fit genes) 

 
The first rows (Average) in Table 3 show the average 

genes values for the first and last generations (generation 0 
and generation 157).  The second set of row (Fittest) shows 
the exact genes values for the fittest individual in the first 
and last generations. Finally, the third set of rows (Overall) 
shows the exact genes values for the fittest (gen. 133) and 
least fit individuals (gen. 143) overall (across all 
generations).  Genes have 7 values representing different 
cases in the simulation model (see Table 1). 

Generally a lower tendency to re-evaluate journeys tends 
to improve fitness (low values for the EvalTrigger gene). 
This is likely due to the local cooperation which emerges 
between lanes and nodes to ameliorate congestion through 
message propagation.  It appears initially that local effort to 
reduce congestion for all journeys outperforms the 
individual's tendency to re-route.   

It is different for the average values because each 
generation must find a fitter than current worst-case 
individual in order to move to the next generation.   

The fittest genome in the final generation tends towards a 
lower propensity to re-evaluate journeys, and a generally mid 
to low set of remaining characteristics.   

As said before, the fittest individual was found in 
generation 133, and from that point to final the genepool has 
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been constantly refined with increasing average fitness 
despite not finding a new topmost candidate.   

V. RELATED WORKS 

Swarm-based traffic control usually employs ant metaphor 
for inducing a decentralised traffic control. We can cite 
Ando et al. [2] who apply the pheromone metaphor to 
provide a decentralised traffic congestion prediction system: 
cars deposit pheromone along their route which is later 
retrieved by forthcoming cars. The amount of pheromone 
deposited depends on the speed of the car, and represents the 
density of traffic: low speed produces high concentrations of 
pheromone, while high speed produces low concentrations of 
pheromone. The amount of pheromone later retrieved by 
other cars provides an indication about traffic congestion and 
thus serves for short-time traffic predictions. 

Similarly, Hoar et al. [4] use the ant metaphor to 
communicate among cars and to provide a simulation of 
traffic dynamics in different scenarios. In this case, an 
additional evolutionary algorithm, including a swarm voting 
system for preferred traffic light timing, is introduced in 
order to minimise the average waiting time of vehicles.  

An ant-based system for decentralised re-routing is 
provided by Tatomir et al. [7]. It follows the AntNet 
algorithm. Artificial ants roam the network of streets and 
update routing tables at each node (road intersection) which 
serve for guiding cars. Data provided by cars themselves is 
also used to enrich the routing.  

Other decentralised solution, without message 
propagation, can be worth mentioning as well. De Oliveira et 
al. [3] use a reinforcement learning algorithm for updating 
the parameters of traffic light controllers at run-time in non-
stationary environments, specifically studying individual 
drivers’ behaviours. Rochner et al. [6] use a specific three-
layer architecture, where the first layer acts as a "reflex" 
layer and sits at the level of the traffic light controllers: fixed 
durations, or variable phases based on traffic detectors 
information. The second layer is based on monitoring, 
experience and learning and acts on the parameters of the 
first layer: identified traffic situations are mapped to 
parameters of the first layer. The third layer is based on some 
planning concerns, and uses an internal simulation to help 
take decisions for unknown situations, by optimising the 
values of the parameters of the lower layers. The third layer 
works "off-line" contrarily to the first layer which is for 
decisions that have to be taken on the fly as congestion 
arises.   

VI. CONCLUSION 

The linear trend shown by Figure 4 lets presuppose that, by 
further running the genetic algorithm, we could potentially 
find a better optimum. Thus, in a first instance, we will 
continue pursuing experiments with the current model in 
order to identify additional optimums; then we will extend 
the current experiments by comparing with other techniques 

and evaluating the current model under different congestion 
situations. Second, another model is planned which will 
tackle re-routing of emergency vehicles only. We are also 
planning to combine these two models together where both 
regular and emergency vehicles are re-routed and traffic 
globally optimised. Third, as most simulations of car traffic 
control, we are using a square grid of routes for modelling 
the city. Once, the simulation proves to be worthy in this 
"simplistic" case, it will be necessary to translate it into an 
actual car traffic schema. Finally, the models proposed 
consider fixed parameter values that allow the system to 
adapt to changing conditions within a fixed period of time 
(e.g. from 8am to 10am). In order to enhance the adaptability 
to unexpected traffic conditions, it is necessary to integrate 
into the model the possibility to change these parameters on 
the fly (e.g. combining instance message propagation with 
reinforcement learning). 
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