

Abstract—This paper describes a decentralised car traffic

control simulation with re-routing and propagation of messages
among traffic nodes (roads intersections and traffic lights). The
values of the parameters governing the simulations are
identified through the use of a genetic algorithm. This paper
reports as well on results obtained regarding the convergence of
the genetic algorithm towards fittest solutions.

I. INTRODUCTION

Control of road traffic flows is an important concern for any
urban area. Traffic managements, already in place, assist
traffic officers to monitor and control traffic on cities or
motorways. They allow visualisation or analysis of real-time
traffic information. Decisions are usually taken from control
centres and propagated to users by the means of road signs
(traffic lights, motorway screens). However, the density of
traffic and the complexity of road networks call for more
self-adaptive solutions where traffic control dynamically and
seamlessly adapts to traffic conditions.

This paper reports on an on-going work aiming at deriving
different models, and their accompanying simulations, of
decentralised car traffic control based on message
propagation among road elements such as roads intersection,
traffic lights, or cars. The main goal is to maximise traffic
throughput and minimise travel time of vehicles. Simulations
are controlled by diverse parameters whose values are
separately established by the help of a genetic algorithm. Our
previous model considered a fixed set of journeys involving
different types of vehicle (regular and emergency cars).
Speed-up and slow-down messages were propagated among
road intersections in order to regulate traffic flow [5]. This
paper presents our second model, where vehicles can be re-
routed in case of congestion, and stop and go messages are
propagated among traffic lights nodes instead of vehicle
speed in order to optimise traffic under congested conditions.
The specificity of our models lies both in the decentralised
approach for traffic control, and in the large number of cars
used to simulate traffic and high congestion rates.

Section II describes the city and the simulation model.
Section III describes the genetic algorithm used for
optimising the parameters involved in the model. Section IV
discusses preliminary experiments and results, and Section V
mentions some related works.

II. CONTROL MODEL AND SIMULATION

A. City and Model elements

The city is modelled as a square grid of 20 nodes by 20,
representing a 2km*2km city space. The distance between
nodes is set at 100 metres. Nodes are road intersections and
each node maintains a traffic light controller. A lane is a
portion of road between two nodes and has a direction (8
lanes are connected to each node).

A whole simulation comprises 15'200 vehicles travelling
permanently in the city streets, and 1'520 different
interconnected lanes.

Each simulation starts with 10 vehicles distributed at
random across each lane. Each vehicle then randomly
targets a destination on the opposite side of the city and
generates its optimum route. This provides some routes
which are more congested than others from the beginning.
Vehicles will undertake journeys to completion and begin
again for the entire evaluation period. The fixed number of
vehicles roaming the city ensures a constant rate of
congestion of 50%. While the number of vehicles is fixed,
the number of journeys varies from simulation to simulation:
after completing their journeys, vehicles start again a new
journey. The fittest solution is then the one that allows the
maximum throughput, i.e. the maximum number of journeys
completed in a fixed amount of time.

At any point during a journey a vehicle may decide to re-
evaluate the remainder of the journey. The pathfinding
algorithm, directed by parameters established through the
genetic algorithm, determines the most efficient route from
that point. In addition to re-routing of vehicles, messages are
sent among nodes to ask for modifications of traffic light
signalling.

The actual speed through the city has a maximum of 30
miles per hour (50km/h). Vehicles try to move at this speed

Decentralised Car Traffic Control using Message Propagation
Optimized with a Genetic Algorithm

Martin Kelly, Giovanna Di Marzo Serugendo
School of Computer Science and Information Systems

Birkbeck College, London
jkell01@dcs.bbk.ac.uk, dimarzo@dcs.bbk.ac.uk

744

1-4244-1340-0/07/$25.00 c©2007 IEEE

unless there is congestion.
The simulation stops after 1’800 seconds of virtual time,

i.e. one half-hour of virtual activity.

B. Control and Message propagation

Depending on traffic conditions, messages are sent
forward or backward from lanes to nodes to request a change
in traffic light signalling. Lanes may send messages forward
to request a change in the current signal, e.g. where its lead
vehicle is stationary. Messages are also promoted backward
to switch the signal away from a lane that is highly
congested. Nodes cycle the traffic light (pass a token)
between their inbound lanes, in order to grant them access to
all outbound lanes.

1) Parameters

The parameters used to control message propagations and
re-routing of journeys have each 7 possible values (see Table
1), and are as follows:

EvaluationTrigger: tendency for vehicles to re-evaluate

a route which is taking longer than initially planned to
resolve. The parameter value represents the % of chances of
re-evaluating a journey which is perceived as running late.
EvaluationTrigger is between 3% and 21% (3% increment).
This evaluation is made as each step is completed. For
instance, if the EvaluationTrigger parameter is set to 21%, a
car blocked in a lane will re-evaluate its route in 21% of such
cases.

ResponseThreshold: propensity of nodes to respond

positively to requests for changing the traffic signals. The
parameter value represents a propensity between 20% and
80% (10% increment) that the target node will actually
satisfy the request issued from a lane. The node is evaluated
every second cycle (every 2nd virtual second).

RequestThreshold: propensity of lanes to raise a request

to change traffic signals. It is a probability curve, with higher
congestion leading to greater likelihood of request
transmission. This parameter has the same values as the
ResponseThreshold parameter.

RequestLimit: sets the number of requests that a node

may ignore before a change becomes mandatory. It is an
absolute values ranging from 2 to 14 (increment of 2). It
represents the maximum number of cycles during which a
lane's message may be ignored. It is a scalar limit (not a
propensity) corresponding to the number of evaluations that
may pass before a response to a request is given.

Phase: influences the likelihood of a lane to cycle the

token when no cars are within range of the intersection. The
Phase parameter determines the minimum distance from the
intersection the foremost vehicle must be before the lane will

ask to cycle the token. It is an absolute value and represents
a distance between 0 and 30 metres (increment of 5). If the
next vehicle is beyond this distance from the target node
(intersection) the lane will raise a request to change the
signal. If the light is green, it will turn it to red, because the
car will not make it in time to reach the intersection; if the
light is red, the request to cycle is an attempt to make the
light green by the time the car arrives at the intersection.

 1 2 3 4 5 6 7

EvaluationTrigger 3% 6% 9% 12% 15% 18% 21%

ResponseThreshold 20% 30% 40% 50% 60% 70% 80%

RequestThreshold 20% 30% 40% 50% 60% 70% 80%

RequestLimit 2 4 6 8 10 12 14

Phase 0m 5m 10m 15m 20m 25m 30m

Table 1: Parameter's Values

The message propagation has an indirect impact on

routing and re-evaluations. As traffic builds up, lanes tend to
restrict access to themselves, and request access to others.
This will have a detrimental affect on journey times, leading
to individual vehicles getting closer to the environment's
EvaluationTrigger threshold and therefore a good likelihood
of route re-evaluation and redirection through less congested
lanes.

2) Message Propagation

Messages propagate from lanes to forward and backward
nodes. Tokens are employed by nodes to permit an inbound
lane access to its outbound lanes. The token (i.e. the green
light) is cycled through all inbound lanes one at a time.
Lanes employ the use of messages in the simulation in an
attempt to influence the node's control of the token. There
are three types of message: 1. forward messages to cycle
the token onwards (from green to red or from red to green);
2. backward messages to cycle to token onwards; and 3.
ignore messages. Messages are raised in the five following
situations:

A lane sends messages forward when it detects that
vehicles are stationary waiting for the green light, asking the
forward node to cycle its token onwards, i.e. to rotate the
green light towards the lane in order to allow the cars to
leave the lane.

A lane may also send messages backward when it detects
that it is congested, asking the backward node to cycle its
token onwards, i.e. to rotate the green light towards another
lane in order to stop the flow of cars coming in.

When no vehicle are within range of the intersection, the
lane may send a forward message to the forward node
asking it to cycle the token, i.e. to change from green light
to red because no vehicle is ready to cross the intersection,
or to ask for the red light in anticipation of the arrival of a
car further down the lane.

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 745

When the vehicle at the head of a lane has a green light
but is blocked because the lanes in front are congested, the
lane sends a forward message to the forward node asking it
to cycle the token, so that the first car will be prevented to
block the intersection.

Finally, a lane may also over-write a previous message at
any time according to the latest prevailing conditions: ignore
messages. This includes cancellation messages to null out
any previous change requests.

The ResponseThreshold and RequestLimit parameters
influence the behaviour of nodes regarding lane’s requests.
While each vehicle and lane is cycled once per virtual
second, nodes are only visited once in every two cycles.
This permits a high enough resolution to be effective and to
permit nodes to deal only with the latest prevailing
conditions as only a lane’s latest message request is of
significance. The ResponseThreshold parameter determines
the likelihood that a node will respond to a message, the
RequestLimit parameter sets the number of messages which
may be ignored from a node before the message must be
responded to. For example a very busy thoroughfare may
choose to reject requests for access from a side road with
only two waiting vehicles. The RequestLimit attempts to
prevent the side-road from constantly ignoring requests for
the token based merely on weight of numbers.

Raising a request to either yield the current token, or to
rotate the inbound lane’s token, will be determined along a
curve. Requests are not immediately raised by lanes; this is
governed by the RequestThreshold attribute.

The messages propagated from lanes to forward and
backward nodes help to ameliorate local conditions. Despite
the heavily congested nature of the city during rush-hour we
facilitate local variations in congestion through this
mechanism.

� ���

�

Figure 1: Messages Flows

Figure 1 shows an example of messages flows between

lanes and nodes. If lane (i) is congested it will raise a
backward message towards A, to rotate the signal in order to
stop feeding vehicles towards it. When lane (ii) is blocked
due to a vehicle at its head being waiting for a green light, it
will raise a forward message to A, to rotate the signal.

C. Routes determination

Each of the 15'200 vehicles evaluates its entire route prior
to commencing its journey using a variation of the A*-

pathfinding algorithm [1].
Whenever the EvaluationTrigger threshold is reached, the

journey is likely to be re-evaluated from its current point to
the route's endpoint. The EvaluationTrigger threshold directs
the propensity or tendency to re-evaluate, i.e. once this
trigger value is reached the likelihood of re-evaluation
increases along a curve.

Each step in a route has an anticipated individual cost and
an anticipated cumulative cost represented as the number of
seconds it should take to get to that point in the journey. If
the cost is higher than anticipated each vehicle will check to
see if the extra cost is large enough to warrant re-evaluation,
if so, it then searches out a new optimum route and updates
the anticipated costs from that point onwards.

The A*-pathfinding algorithm works as follows (see
Figure 2). Given the current position of the car, the A*-
pathfinding algorithm needs to find a new route from that
position to the destination point. The best route is the one
that minimises the cost of going from the current point to the
destination. According to the A*-pathfinding algorithm a
route is scored according to the equation F = G + H, where G
is the cost to go from the current position of the car to a
certain node along the considered route, and H is the
evaluated cost to go from that node to the destination.

More precisely, from the current point, we build an
“open” list of lanes (the list of possible lanes to consider for
re-routing). The lane the car came from (current lane) is not
part of this list, so it is in the “closed” list (the list of lanes
we do not check for the moment). For each lane to consider,
the cost to reach the next node is computed (G), it is given
by the time needed to reach the next node given the current
speed of the cars on that lane (at the time of the re-evaluation
of the route). Then, the cost to reach the destination point is
calculated (H). Since at this point in the algorithm we do not
know yet the exact route, the route is estimated using the
Manhattan distance: moving horizontally and vertically
directly towards the target destination, without taking into
account any possible congestion in between. H is the
cumulative cost to reach the target destination from the node
being considered. The total cost F is given by F = G + H.
The lane with the lowest F is chosen in a first instance. The
algorithm is then applied recursively to this lane until the
target destination is reached, or no route is identified (e.g.
cost is higher than current route). The final route is then
found by going backwards from the target destination to the
initial point. Different routes (with different costs) may pass
at common points (nodes or lanes). If during the evaluation
of the cost of the different possible routes, the algorithm
comes across an already visited point for which the
previously calculated cost is lower than the one calculated
for the current route, the algorithm drops the current route,
switches to the previous route and continues from there.

746 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

__
A*- pathfinding algorithm

__

BEGIN
 Add the starting lane to the open list.
 Loop

 Select the lowest cost lane on the open list.
 Remove it from the open list and add it to the closed list.

//Evaluate the cost of adjacent lanes
 For each of the adjacent lanes:
 If adjacent lanes are on the closed list or are

 invalid candidates ignore them
 Else // if they are valid

 If it is not on the open list
 Add it to the open list
 Set the lane's parent lane to the current lane
 Evaluate the lane's F, G, and H costs
 Else // it is already on the open list

 If previous instance has a lower F cost
 // (the previous route to that lane is a better
 candidate)

 Leave it there and discard this instance,
 Set the previous instance's parent lane to
 the current lane.
 Recaculate F, G for that lane
 End if
 End ifelse
 End ifelse
 End For
 Exit loop if target lane is current lane or if open list is empty

End Loop

 END
__

Figure 2: A*-Pathfinding Algorithm

Cars take decisions regarding re-routing on the basis of

global information having only a short time of validity.
Indeed, the value F of the best route is indicative only: it is
accurate at the moment of the evaluation, but the actual cost
will be known only at the end of the journey. The final result
will depend on the individual decisions taken by the different
cars.

Simulations are not deterministic. For example the
EvaluationTrigger parameter controls a propensity to re-
evaluate a slower than expected journey. Therefore two
simulations of the 30 minute period would be unlikely to
yield identical results, however they would be in the same
category of results as each simulation would have the same
propensities.

This was chosen to better reflect people's behaviour on the
roads – when they start to suspect they will run late different
people have different thresholds for re-evaluation.

III. GENETIC ALGORITHM AND FITNESS FUNCTION

15'200 vehicles permanently populate the streets and
constantly undertake journeys during the evaluation period.
Fitter sets of genes values will permit more journeys to be

undertaken during the 1800 seconds of simulation time.
Therefore the solution with the most journeys completed is
the fittest. To differentiate between competing solutions
when evaluation is complete, we also look at the set of
current but incomplete journeys. All vehicles have the
potential to be in mid-journey when the simulation
terminates. For these incomplete journeys we examine how
far they had travelled and in what time, i.e. the average speed
of the journeys.

A. Fitness Function

The fitness function is comprised of a primary element: the
total number of complete journeys; and a secondary element:
the average speed for incomplete journeys.

The average speed of incomplete journeys is only relevant
when distinguishing genomes that execute the same number
of complete journeys.

Fitness Function = journeys*100 + avgspeed*10 .

Value “journeys” represents the number of completed

journeys. The value “avgspeed” represents the average of the
speed of all the incomplete journeys.

B. Genetic Algorithm

We evaluate an initial set of 49 individuals. Once that set is
evaluated we select candidate genes for reproduction,
applying crossover and mutation to yield two child genes.
These genes are then run through the simulation. At the end
of this evaluation the next generation is selected, again
through roulette-wheel selection. All genomes tested must
be unique, i.e. we will not evaluate the same gene sequence
more than once. If genes prove fitter than the worst case
currently maintained, it is added to the set of fittest
candidates and the lowest performer is dropped from the
gene-pool. Our tests are concerned with two priorities: 1. to
identify the fittest candidate from the simulations
undertaken, and 2. to demonstrate convergence towards fitter
solutions across the entire gene-pool.

1) GA Genes.

The five genes: EvaluationTrigger, RequestThreshold,
ResponseThreshold, RequestLimit, and Phase have seven
possible values, yielding a search space of 16’807 individual
solutions.

2) GA Initialisation
The fittest 49 candidates are maintained in the genepool.
Initially this is set by individuals chosen with middling gene
values. The 49 generation zero individuals’ gene values are
set to between 3 and 5 inclusive at random, they are
evaluated for fitness. When evaluation is complete an
attempt is made to add them to the genepool, because the
genepool at this stage has fewer than 49 candidates, the
addition is successful. When no more candidates remain
from the set awaiting evaluation we breed a new pair for

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 747

evaluation.
A new genome may be added to the genepool only if their

fitness is higher than the current worst-case. If, after
evaluating both individuals, no insertions are made to the
genepool the mutation rate is increased (see below) and two
new individuals are created from the same generation. The
generation count only increases when the genepool changes,
i.e. when a successful addition is made. Therefore our
genepool is comprised of the 49 fittest individuals across all
generations.

3) Crossover and Mutation

During reproduction we select two candidate genomes from
the genepool using roulette-wheel selection weighted by
relative fitness. A random point from the second to fourth
gene is selected and two sub-strands extracted from each
parent creating two individual siblings. We then subject the
siblings to potential mutation.

Mutation is set at 10% initially. That is, the likelihood that
a single gene may be affected. When an attempt to add an
individual fails, we increase the mutation rate by one to help
to promote wider selection. For generations 0 to 99, the
potential bump is set to a maximum limit of 20%. After 100
generations are evaluated, mutation may rise as high as 50%.
After each successful addition to the genepool, mutation is
reset to 10% - this is to ensure that unnecessarily high
mutation rates do not apply to the first candidate offspring of
a generation.

4) Remark
Since the pathfinding uses a variation of the A*-algorithm,
and initial routing and subsequent rerouting for 15’200
vehicles through a 2km*2km city was an extremely
expensive operation in terms of time taken, cells were used
to describe areas of common congestion. Penalty and reward
had been introduced for moving to a cell of higher
congestion or to a cell of lower congestion respectively.
These two notions would tend to derive routes of consistent
or improved congestion levels without the need to evaluate
every lane in that area. Two additional genes (TransitHigh,
TransitLow) controlling the penalty and reward were then
initially incorporated to facilitate routing and pathfinding
throughout the city. However improvements made to the
pathfinding algorithm rendered this rather unnecessary. The
algorithm was improved through type-specific high-speed
custom collections for the open and closed lists, and also by
maintaining two in-memory indices which facilitated look-up
by lane id, and lane cost. Pathfinding using the new
algorithm was approximately 100 times faster than the
previous implementation. The TransitHigh and TransitLow
genes were therefore discarded as experiments showed that
these genes had value and interest only to a less-efficient
pathfinding mechanism. With an efficient pathfinding
algorithm, the fittest function was not affected by these two
values.

IV. EXPERIMENTS AND RESULTS

The results presented here relate to 158 generations obtained
through the genetic algorithm. We performed 3315
simulations where mutation was increased automatically in
order to find fitter solutions worthy of addition to the
genepool. The optimum has been found at generation 133.

1) Global Result
Presently there is about a 13% variation between worst and
best case in terms of journeys made. Given that each of the
1520 lanes in the 2km*2km block begins filled to 50%
capacity, and there are 15’200 vehicles vying for scarce
resources, 13% enhancement can be considered a good result
(see Table 2).

 Fitness Journeys
Minimum 2’454’721 24’546
Maximum 2’774’920 27’748

Average 2’595’877 25’958

Absolute Difference 320’199 3’202
Percentage
Difference 13.04% 13.04%

Table 2: Global Results

The city starts off with each of its 1’520 lanes at 50%

congestion, i.e. with 10 vehicles on it. Choosing such a high
rate of initial congestion is particularly important for our
purposes, i.e. to demonstrate that local messaging and auto-
rerouting may contribute to improving throughput in a
congested urban environment. The difference between best
case and worst case was over 13%, i.e. 3’202 extra journeys
were catered for.

2) Number of individuals per generation
Significantly at higher generations, many more simulations
had to be undertaken at increasing rates of mutation in order
to find candidates fit enough to be added to the genepool.
The results at central gene values were favourable to the
simulations, and improvements, while incremental,
demonstrate a tendency to increase fitness across
generations. Figure 3 shows the number of new individuals
created at each generation. For instance, at generation 122,
51 new individuals (and consequently 51 simulations) have
been created. Such peaks correspond to high mutation rate,
and correspond to periods where the system had difficulties
in finding a solution to insert into the genepool. We can
observe that the number required for finding a candidate
fitter than the prevailing worst-case in the genepool generally
increases steeply as generations increase. Mutation rates
were permitted to rise to 50% (that a single element would
vary) once generations rose above 100. This was done in
anticipation of the difficulty of finding solutions eligible to

748 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

enter into the genepool. The simulations appear stuck in
local minima around generation 120-130. The number of
simulations required to advance peaking around this time.
The data shows this effect ameliorated in subsequent
generations, once an optimum has been found at generation
133, and lower numbers of simulations are necessary with
each advancing generation. This probably shows the
effectiveness of the genetic algorithm, and the variable
mutation rate.

Simulations per generation

0

20

40

60

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151

Generations

S
im

ul
at

io
ns

Figure 3: Number of simulations per generation

On Figure 3, we can see in the data the effect that mutation
has on the simulations, where new gene values emerge
through increasing mutation rates as generations become
stifled in local minima. This yields an eligible candidate and
the generation proceeds forwards. If we consider as before,
the generation 122, with high mutation rate (and high
number of individuals created), the system finds a local
maximum (maximum value of the fitness function is
2703321 for generation 122). At each peak in Figure 3
corresponds a local maximum in Figure 4. This figure also
clearly shows the convergence (a regular linear progression
trend) of the genetic algorithm towards fittest generations.

Max Fitness - Linear Trend

2500000

2550000

2600000

2650000

2700000

2750000

2800000

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151

Generations

F
it

n
es

s
V

al
u

e

Figure 4: Max fitness function value per generation

3) Convergence of genetic algorithm

Figure 5 shows the progression of the average fitness
function values at each generation (over the different
individuals created at each generation). This figure shows
that the average fitness value remains rather stable. This is
due to the fact that there are large differences between
minimum and maximum fitness values inside a given
generation.

Average Fitness - Linear Trend

2500000

2550000

2600000

2650000

2700000

2750000

2800000

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151

Generations

F
it

n
es

s
V

al
u

e

Figure 5: Average fitness function value per generation

4) Genes and Corresponding Parameters values

����� � � � � � �

����	�
���
������� ���
���	�� ��	�
���	�� ��������� ���	�� �����		�

���	������ �������� ����� ����� �� ���� ��� ����

��	������ ����� ��� ����� ���� �� ���� ���!����

�����	�� � � � �

����	�
���
������� ���
���	�� ��	�
���	�� ��������� ���	�� �����		�

���	������ ���� !��� ���� �� ���� ��"�!���

��	������ #�� "��� ���� �� ���� ���� ���

$������� � � � �

����	�
���
������� ���
���	�� ��	�
���	�� ��������� ���	�� �����		�

���	������ ��� !��� !��� ��� #��� �"�"!���

%&	������ #�� !��� !��� ��� ����� �!!" ���

Table 3: Parameters value (best/least fit genes)

The first rows (Average) in Table 3 show the average

genes values for the first and last generations (generation 0
and generation 157). The second set of row (Fittest) shows
the exact genes values for the fittest individual in the first
and last generations. Finally, the third set of rows (Overall)
shows the exact genes values for the fittest (gen. 133) and
least fit individuals (gen. 143) overall (across all
generations). Genes have 7 values representing different
cases in the simulation model (see Table 1).

Generally a lower tendency to re-evaluate journeys tends
to improve fitness (low values for the EvalTrigger gene).
This is likely due to the local cooperation which emerges
between lanes and nodes to ameliorate congestion through
message propagation. It appears initially that local effort to
reduce congestion for all journeys outperforms the
individual's tendency to re-route.

It is different for the average values because each
generation must find a fitter than current worst-case
individual in order to move to the next generation.

The fittest genome in the final generation tends towards a
lower propensity to re-evaluate journeys, and a generally mid
to low set of remaining characteristics.

As said before, the fittest individual was found in
generation 133, and from that point to final the genepool has

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 749

been constantly refined with increasing average fitness
despite not finding a new topmost candidate.

V. RELATED WORKS

Swarm-based traffic control usually employs ant metaphor
for inducing a decentralised traffic control. We can cite
Ando et al. [2] who apply the pheromone metaphor to
provide a decentralised traffic congestion prediction system:
cars deposit pheromone along their route which is later
retrieved by forthcoming cars. The amount of pheromone
deposited depends on the speed of the car, and represents the
density of traffic: low speed produces high concentrations of
pheromone, while high speed produces low concentrations of
pheromone. The amount of pheromone later retrieved by
other cars provides an indication about traffic congestion and
thus serves for short-time traffic predictions.

Similarly, Hoar et al. [4] use the ant metaphor to
communicate among cars and to provide a simulation of
traffic dynamics in different scenarios. In this case, an
additional evolutionary algorithm, including a swarm voting
system for preferred traffic light timing, is introduced in
order to minimise the average waiting time of vehicles.

An ant-based system for decentralised re-routing is
provided by Tatomir et al. [7]. It follows the AntNet
algorithm. Artificial ants roam the network of streets and
update routing tables at each node (road intersection) which
serve for guiding cars. Data provided by cars themselves is
also used to enrich the routing.

Other decentralised solution, without message
propagation, can be worth mentioning as well. De Oliveira et
al. [3] use a reinforcement learning algorithm for updating
the parameters of traffic light controllers at run-time in non-
stationary environments, specifically studying individual
drivers’ behaviours. Rochner et al. [6] use a specific three-
layer architecture, where the first layer acts as a "reflex"
layer and sits at the level of the traffic light controllers: fixed
durations, or variable phases based on traffic detectors
information. The second layer is based on monitoring,
experience and learning and acts on the parameters of the
first layer: identified traffic situations are mapped to
parameters of the first layer. The third layer is based on some
planning concerns, and uses an internal simulation to help
take decisions for unknown situations, by optimising the
values of the parameters of the lower layers. The third layer
works "off-line" contrarily to the first layer which is for
decisions that have to be taken on the fly as congestion
arises.

VI. CONCLUSION

The linear trend shown by Figure 4 lets presuppose that, by
further running the genetic algorithm, we could potentially
find a better optimum. Thus, in a first instance, we will
continue pursuing experiments with the current model in
order to identify additional optimums; then we will extend
the current experiments by comparing with other techniques

and evaluating the current model under different congestion
situations. Second, another model is planned which will
tackle re-routing of emergency vehicles only. We are also
planning to combine these two models together where both
regular and emergency vehicles are re-routed and traffic
globally optimised. Third, as most simulations of car traffic
control, we are using a square grid of routes for modelling
the city. Once, the simulation proves to be worthy in this
"simplistic" case, it will be necessary to translate it into an
actual car traffic schema. Finally, the models proposed
consider fixed parameter values that allow the system to
adapt to changing conditions within a fixed period of time
(e.g. from 8am to 10am). In order to enhance the adaptability
to unexpected traffic conditions, it is necessary to integrate
into the model the possibility to change these parameters on
the fly (e.g. combining instance message propagation with
reinforcement learning).

REFERENCES

[1] http://www.policyalmanac.org/games/aStarTutorial.htm.
[2] Y. Ando et al. “Pheromone Model: Application to Traffic Congestion

Prediction”. In Engineering Self-Organising Systems, volume 3910 of
LNAI, pages 182--196. Springer-Verlag, 2005.

[3] D. de Oliveira et al. “Reinforcement Learning-based Control of
Traffic Lights in Non-Stationary Environments: A Case Study in a
Microscopic Simulator”. In Fourth European Workshop on Multi-
Agent Systems (EUMAS'06), 2006.

[4] R. Hoar, J. Penner, and C. Jacob. “Evolutionary Swarm Traffic: If Ant
Roads Had Traffic Lights”. In Congress on Evolutionary
Computation (CEC'02), pages 1910--1915. IEEE, 2002.

[5] M. Kelly and G. Di Marzo Serugendo. “A Decentralised Car Traffic
Control System Simulation Using Local Message Propagation
Optimised with a Genetic Algorithm”. In Engineering Self-
Organising Systems, volume 4335 of LNAI, pages 192--210.
Springer-Verlag, 2007.

[6] F. Rochner et al. “An Organic Architecture for Traffic Light
Controllers”. In Informatik 2006 - Informatik fur Menschen, volume
P-93 of Lecture Notes in Informatics, pages 120--127. Kollen Verlag,
2006.

[7] B. Tatomir, L. Rothkrantz. “Dynamic Traffic Routing Using Ant
Based Control”. In IEEE International Conference on Systems, Man
and Cybernetics, pp. 3970-3975, vol. 4, 2004.

750 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

