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Abstract—Today’s software applications increasingly feature
a great deal of openness, dynamism and unpredictable behav-
ior, forcing to shift design and engineering from traditional,
centralized approaches to nature-inspired, self-organizing tech-
niques. Among the others, biology has been adopted as a source
of inspiration to solve some of the issues proper of nowadays
systems by self-organizing techniques, usually exploited in an
ad-hoc way. As a result, little or no effort has been made to
clearly describe and classify these techniques in terms of design
patterns, preventing them from being systematically applied to
solve recurrent problems.

Correspondingly, this paper is targeted at modeling bio-
inspired mechanisms in terms of design patterns, arguing that
some fundamental biological behavior can play the role of
basic design patterns to define higher-level patterns featuring
more complex behavior and interaction. In this way, we aim at
easing both the creation of new mechanisms from adaptation of
existing ones, and the classification of the biological behaviors
underlying each pattern. The viability of this approach is exem-
plified through the description of two bio-inspired mechanisms,
aggregation and spreading, taken as basic design patterns to
define gossip as a composite design pattern.

Keywords-self-organization; bio-inspired design patterns; ag-
gregation; spreading; gossip.

I. INTRODUCTION

Today’s software applications increasingly rely on wire-
less devices — such as, PDAs, laptops, mobile phones or
sensors — interacting and aggregating with one another on
top of novel infrastructures (e.g. sensor networks, ad-hoc
networks). Such infrastructures are characterized by a great
deal of openness, dynamism and unpredictability, which
cannot be coped with by traditional, centralized approaches
to system design and engineering. Accordingly, a paradigm
shift is needed in order to cope with these issues and
effectively design and engineer system behavior by relying
on self-* approaches. Furthermore, as today’s infrastructures
are characterized by a large number of connected devices
with a low computation power, current approaches tend
to reduce the computational requirement of algorithms and
strengthen interaction and coordination, so as to achieve the
intended goals in a collaborative way. As a consequence,
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new mechanisms are needed that are able to efficiently scale
with the aforementioned requirements.

Biological systems have been adopted as a source of
inspiration to solve these issues in a self-organizing way.
A variety of self-organizing, bio-inspired mechanisms have
been applied in different domains, achieving results that go
beyond traditional approaches [1]. Researchers usually apply
these mechanisms in an ad-hoc way. However, their inter-
pretation, definition, boundary and implementation typically
vary among the existing literature, thus preventing these
mechanisms from being applied clearly and systematically
to solve recurrent problems. A few proposals aimed at
expressing some of these bio-inspired mechanisms under
the form of design patterns have been provided [2]. These
patterns provide useful descriptions that help clarify the def-
initions of these mechanisms. However, these efforts are still
fragmented: no clear catalogue of these patterns is provided,
interpretations vary among authors, the relations among
patterns and their precise boundaries are not described.

In this paper, we focus on modeling design patterns
inspired from biology, arguing that some mechanisms can be
described in terms of basic ones, i.e. fundamental biological
mechanisms that can be used alone or as a part of more
complex patterns. From the one hand, structuring design
patterns in such a fashion allows a better support to create
new mechanisms and adapt existing ones to solve new
problems. On the other hand, this structure also allows
for a clear identification and separation of the mechanisms
proper of each pattern. Every pattern is provided with
a detailed description of the problem, the corresponding
solution specified as a set of abstract transition rules, the
list of the entities involved in the pattern and their behavior
(interaction dynamics and algorithmic behavior).

This work has to be regarded as part of a larger work
aimed at providing a comprehensive set of patterns. Due to
lack of space, this paper only describes in detail three bio-
inspired patterns: aggregation, spreading, and gossip as a
composition of the first two patterns. Their exact boundaries
and relations are also clearly introduced.

The rest of the paper is organized as follows. Section II
introduces related work. Section III presents the reference
model afterwards adopted to describe the example patterns.
Then, Section IV incrementally details the example patterns,
starting from aggregation and spreading, concluding with
gossip as a composition of the first two patterns. Finally,
Section V concludes, providing for final remarks.



II. RELATED WORK

The idea of engineering self-organizing systems has at-
tracted different researchers since 2004. Nagpal et al. [3]
present a set of biologically-inspired primitives that describe
how organizing principles from multi-cellular organisms
may apply to multi-agent systems. That paper was a first
attempt towards assembling a catalog of primitives for multi-
agent control. However, those primitives are not presented
together with an implementation process or by taking into
consideration the different scenarios where the primitives
can be applied. It is then difficult to use them in a systematic
way. Mamei et al. [1] propose a taxonomy to classify self-
organizing mechanisms and describe a set of mechanisms.
Even when these descriptions can drive the implementation
of the mechanisms, they are far away to be considered as
patterns to apply systematically.

Since 2007, different authors have focused on proposing
descriptions of self-organizing mechanisms under the form
of software design patterns [4]. The idea of the design
pattern structure makes it easy to identify the problems
that each mechanism can solve, the specific solution that it
brings, the dynamics among the entities and the implemen-
tation. Gardelli et al. [5] propose a set of design patterns
for self-organizing systems all related with the ant colonies
behavior, together with the idea that a mechanism can be
composed from other mechanisms that can be used alone.
The provided model, however, presents too many constraints
to be generalized and the examples of usage are not related
to engineered self-organizing systems. Based on the set of
mechanisms proposed in [1], Sudeikat et al. [6] discuss
how intended multi-agent systems (MAS) dynamics can be
modeled and refined to decentralized MAS designs, propos-
ing a systematic design procedure that is exemplified in a
case study. De Wolf [7] presents an extended catalogue of
mechanisms as design patterns for self-organizing emergent
applications. The patterns are presented in detail and can
be used to systematically apply them for engineering self-
organizing systems. However, relations among the patterns
are missed, i.e. the authors do not describe how patterns
can be combined to create new patterns or adapted to tackle
different problems.

III. A MODEL TO DESCRIBE BI10-INSPIRED DESIGN
PATTERNS

This section presents the computational model used in
this paper to describe the dynamics of the patterns and
the relations between the different entities involved in each
pattern. The proposed model is clearly inspired by biology
but specialized for the artificial world where the patterns will
be engineered.

In biological systems, used as inspiration for self-
organizing mechanisms, two main entities can be observed:
(1) the organisms that collaborate in the biological process

(e.g. ants, fish, bees, cells, virus, etc.) and (2) the environ-
ment, a physical space where the organisms are located.
The environment provides resources that the organisms can
use (e.g. food, shelter, raw material) and events that can
be observed by the agents and can produce changes in the
system (e.g. toxic clouds, stormy, thunder, a fire). Organisms
can communicate with each other, sense from the environ-
ment and act over the environment. Moreover, organisms are
autonomous and proactive and they have a partial knowledge
of the world. The environment is dynamic and acts over the
resources and over the organisms (e.g. it can kill organisms,
destroy resources, change the topology of the space where
the organism are living, change the food location, remove
food, add new food, etc.). The communication between
the organisms can be direct (e.g. dolphins sending ultra-
sounds through the water, or beavers emitting sounds to
alert about a predator presence, etc.) or indirect using the
environment to deposit information that other agents can
sense (e.g. pheromone in ants colonies, morphogens in the
specialization of cells, etc).

The biological model may be summarized by two layers:
organisms and environment, see Figure 1 (a). In order to
create a computational model inspired by the biological
model, a new layer is added, Figure 1(b). This new layer
called the infrastructure layer, is necessary because, in
an engineered system, the software agent must be hosted
in a device with computational power that provides the
agents with the ability to interact with the environment (i.e.
sensing the environment through sensors or acting in the
environment through actuators) and to communicate with
other agents.

The entities proposed in the computational model are:
(a) the agents that are pro-active software entities, (b) the
infrastructure, that contains hosts with computational power,
sensors and actuators and (c) the environment, the space
where the infrastructure is located. Events are phenomena
of interest that appear in the environment, can be sensed
by the agents using the host’s devices. Each agent needs
a host to be executed, to communicate with other agents,
to sense events or to act in the environment. Thus, the
infrastructure provides the agents with all the necessary
tools to simulate organisms’ behavior and a place where
information can be stored and possibly read by other agents.
In most of the biological processes, the environment plays a
key role, due to its ability to act over the entities present in
the system. (e.g. spreading and removing chemical signals
in the environment). To tackle this ability, each host in
the infrastructure has a software embedded in it, called
Infrastructural Agent (IA). Both IA’s and agent’s behaviors
must be designed to follow self-organizing patterns. IAs play
an important role when agents can move freely over the
hosts. For instance, IAs may be responsible for managing
information deposited in hosts by the agents or spreading
information over other hosts. In other cases, the IA stands



Mobile Agents Mobile Hosts Known Application
no no Sensor Networks
no yes - controlled Swarm Robotics
yes no Sensor Networks
yes yes - uncontrolled | Pervasive Scenarios

Table 1

APPLICATION EXAMPLES - DIFFERENT KINDS OF AGENTS AND HOSTS
AND CORRESPONDING KNOWN SYSTEMS.

for software embedded into a middleware providing built-in
features (e.g. evaporation of digital pheromone).

Figure 2 shows the different layers of the computational
model and their corresponding interactions. The top layer
represents software agents in the system. Agents use the
infrastructure layer to host themselves, communicate with
each other, sense and act with the environment and to
deposit information that other agents can read. There are
two variants in the model: when agents can move freely over
the hosts (e.g. mobile agents) or when they are coupled to
the host (e.g. swarm of robots). The separation between the
agents layer and the infrastructure enables to cover a larger
variety of scenarios. Table I summarizes the different kinds
of systems that can be modeled. On the one hand, software
agents may be mobile or may be coupled with hosts. On the
other hand the infrastructure may be fixed (i.e. stationary
hosts) or mobile. Mobile hosts may be controlled by the
agents (e.g. a robot) or not (e.g. PDA’s movements under the
control of its owner). This is typical of pervasive scenarios
where several mobile devices, such as, PDAs, laptops or
mobile phones are located in a common physical space
(e.g a shopping mall, a museum, etc.), forming what is
usually referred to as an opportunistic infrastructure, where
the nodes are moving according to the movements of the
user carrying them, and the agents freely jump from one
node to another. An example of this architecture is the
Hovering Information Project [8], where information is an
active entity storing itself and its replica according to some
specified spatial structure. Sensor networks are instead a
good example of systems where agents are mobile and hosts
are not but, on the other hand, they also well represent
systems where not only hosts but also agents are static, as
reported in [9].

To summarize, the entities used in the computational
model are:

o Agents: autonomous and pro-active software entities
running in a host.

« Infrastructure: the infrastructure is composed by a set
of connected Hosts and Infrastructural Agents. A Host
is an entity with computational power, communication
capabilities and may have sensors and actuators. Hosts
provide services to the agents. An Infrastructural
Agent is an autonomous and pro-active entity, acting
over the system at the infrastructure level. Infrastruc-
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(a) Biological Model (b) Computational Model

Figure 1. Relevant entities of the biological and computational models.

tural agents may be in charge of implementing those
environmental behaviors present in nature, such as
diffusion, evaporation, aggregation, etc.

« Environment: The Environment is the space where the
Infrastructure is located. An Event is a phenomenon of
interest that appears in the Environment and that may
be sensed by the Agents using the sensors provided by
the Hosts.

In this paper, we regard a system as composed of
Agents, Infrastructure, Infrastructural Agents, Hosts, and
Environment. Behavior of Agents and Infrastructural Agents
is defined by a set of rules (hereafter referred to as transition
rules), while Hosts are defined by the interface they provide.

Transition Rules: the behavior of agents or infrastructural
agents is defined by a set of rules. We define abstract
transitions rules that apply concurrently within a given
mechanism. A transition rule is specified by Equation 1.
A transition rule has an effect on information, transforming
some specified input into some output. A matching input
causes the transition to fire instantaneously at a specified
frequency noted on top of the arrow (freq).

name :: input_value freq, output_value (1)

IV. EXAMPLES OF BIO-INSPIRED DESIGN PATTERNS

In software engineering, a design pattern describes a
reusable solution for a commonly recurring problem. Soft-
ware design patterns were proposed by [4], [10] and [11]
for the development of object-oriented software.

Many bio-inspired self-organizing mechanisms have been
proposed in literature that allow to achieve a good perfor-
mance when coping with openness, unpredictability, and
dynamism proper of today’s decentralized and distributed
application domains. However, the knowledge and experi-
ence on how, when, and where to use them is spread across
the corresponding literature. This motivated to focus on
novel researches targeted at proposing a scheme similar to
those presented in [7] and [5] to describe design patterns
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in self-organizing systems. To describe patterns, we use the
scheme shown in Table II, which is based on the scheme
proposed in [5], extended with some ideas from [7].

The rest of the section is focused on describing aggre-
gation and spreading as examples of fundamental design
patterns exploiting bio-inspired behavior observed in nature.
These patterns, detailed according to the model introduced
in Section III, are then exploited as the basic blocks to define
the gossip pattern shown in IV-C.

A. Aggregation Pattern

The Aggregation Pattern is a basic pattern for information
fusion. The dissemination of information in large scale
systems deposited by the agents or taken from the envi-
ronment may produce network and memory overload, thus,
the necessity to synthesize the information. The Aggregation
Pattern reduces the amount of information in the system and
assesses meaningful information. It was proposed in [5].

Problem: in large systems, excess of information pro-
duced by the agents may produce network and memory
overloads. Information must be distributively processed in
order to reduce the amount of information and to assess
meaningful information.

Solution: aggregation consists in locally applying an ag-
gregation operator to process the information and synthesize
macro information. This operator can take many forms, such
as filtering, merging, aggregating or transforming.

Inspiration: in the nature, the aggregation (sum) of ant’s
pheromones allows the colony to find the shortest path to
the food, and to discard longer paths. (i.e. two pheromone
scents together create an attractive field bigger than a single

Model

Name The pattern’s name.

Aliases Alternative names used for the same pattern.

Problem Which problem is solved by this pattern and situ-
ations where the pattern may be applied.

Solution The way the pattern can solve the problems.

Inspiration Biological process that inspires the design pattern.

Forces Prerequisites for using the pattern and aspects of
the problem that lead the implementation, includ-
ing parameters (trade-offs).

Entities Entities that participate in the pattern and their
responsibilities. Entities are agents, infrastructural
agents and hosts.

Dynamics How do the entities of the pattern collaborate to
achieve the goal. Typical scenario describing the
run-time behavior of the pattern.

Infrastructure Infrastructural requirements to apply the pattern.

Example A simple and abstract example of the pattern
usage.

Implementation/ | Hints of how the pattern could be implemented.

Simulation Include parameters that must be tuned.

Known Uses Examples of application where the pattern has
been applied successfully.

Consequences Effect on the overall system design.

Related Reference to other patterns that solve similar prob-

Patterns lems, can be beneficially combine with this pattern
or present conflicts with this pattern.

Table II
DESCRIPTION FIELDS

pheromone scent). In nature the aggregation is a process
done by the environment. Even when there are no agents
present in the system, the environment keeps doing the
aggregation process.

Forces: aggregation applies on all the information avail-
able locally or only on part of that information. The parame-
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Figure 3. Aggregation dynamics.

ter involved is the amount of information that is aggregated;
it relates to the memory usage in the system. This pattern is
not repetitive (i.e. there is no frequency involved, the pattern
applies only once), even though it can be repeatedly invoked
from within another pattern.

Entities-Dynamics-Environment: aggregation is exe-
cuted either by agents or by infrastructural agents. In both
cases, the agents aggregate the information that they access
locally. The information comes from the environment or
from other agents. Information that comes from the en-
vironment is typically read by sensors (e.g. temperature,
humidity, etc.). According to the model presented in Section
III, the aggregation is executed by an agent that receives
information from the host where the agent is residing. Such
a host is either a sensor reading information from the envi-
ronment or a communication device receiving information
from neighboring hosts. Figure 3(a) shows the case of an
agent aggregating information, while Figure 3(b) shows the
case of aggregation performed by an infrastructural agent.
More generally, the aggregation may be applied by any agent
that receives information independently of the underlying
infrastructure. This general case is shown in Figure 3(c),
where the host is abstracted. The aggregation process is
not repetitive and finishes when one agent executes the
aggregation function.

The transition rule for aggregation is given by Equation
2. Information in input (possibly a set of information) I
is transformed into a new set of information through an
aggregation operator op().

aggregation :: I — op(I) 2)

Implementation: available information takes the form
of a stream of events. Aggregation of information can
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Figure 4. Aggregation: agent behavior.

take various forms: from a simple operator (sum, mult,...)
like in ACO, to more complex operators (e.g. Kohonen
Self-Organizing Map to aggregate sensor data in clusters
[12]). Aggregation operators are classified into four different
groups [13]: (1) filter: this operator selects a subset of
the received events (e.g. the sensor takes 10 measures per
second, but the application processes only 1 per second);
(2) transformer: this operator changes the type of the in-
formation received in input (e.g. input are GPS coordinates
and output is the country where the position is located);
(3) merger: this operator unifies all information received
and outputs all information received as a single piece of
information (e.g. input is the position of many sensors
and the output is the corresponding tuple of positions); (4)
aggregator: this operator applies a specific operation (e.g.
max, min or avg) to one or more incoming information; input
and output types can all be different. Figure 4(a) shows how
the agent or infrastructural agent uses the interface provided
by the host to get the data, applies an aggregation operator
and deposits the aggregated data back in the host. This
interaction between the agent or infrastructural agent and
the host is shown in Figures 3(a) and Figure 3(b). The flow
chart 4(b) shows that the aggregation process starts when the
agent receives the information (an event), it then applies the
aggregation operator and sends the aggregated information
back to the host.

Known uses: aggregation has been used in the ACO
algorithm [14], where aggregation is used to aggregate
pheromones, simulating higher concentrations when two or
more pheromones are close to each other. In [15] the aggre-
gation is also used in digital pheromones for autonomous
coordination of swarming UAVs. Moreover, aggregation has
been used in the field of information fusion, which studies
how to aggregate individual belief bases into a collective
one [16], or for truth-tracking in MAS [17].



Consequences: aggregation increases the efficiency in
networks (e.g. sensor networks, ad-hoc or P2P), by reducing
the number of messages, thus, increasing the battery life.
Also aggregation provides a mechanism to extract macro-
information in large-scale systems, such as extracting mean-
ingful information from data reads obtained from many
sensors. Thus, the amount of memory used by the system is
reduced.

Related Patterns: the Aggregation Pattern can be im-
plemented together with Evaporation and Gradient Patterns
so as to form digital pheromone [15]. The evaporation
can be used with aggregation in order to aggregate those
information recently collected from the environment. The
Gossip Pattern (Section IV-C) is a pattern composed by
the Aggregation Pattern and the Spreading Pattern (Section
IV-B).

B. Spreading Pattern

The Spreading Pattern is based on direct communication
among agents for progressively sending information over the
system. The spreading of information in multi-agent systems
allows the agents to increment the global knowledge of the
system.

Problem: in systems, where agents perform only local
interactions, agents’ reasoning suffers from the lack of
knowledge about the global system.

Aliases: spreading is also known as diffusion, dissemina-
tion, flooding, broadcast, epidemic spreading.

Solution: a copy of the information (received or held
by an agent) is sent to neighbors and propagated over the
network from one node to another. Information spreads
progressively over the system and reduces the lack of
knowledge of the agents while keeping the constraint of the
local interaction.

Inspiration: spreading is proposed as a low level pattern
that is extended by all the other patterns that use direct
communication. Spreading appears in important processes,
such as, Morphogenesis, Chemotaxis and patterns of animal
coats (e.g. stripes).

Forces: if spreading occurs with high frequency, the
information spreads over the network quickly but the number
of messages increases. A quick spread is desired when the
environment is changing continuously and the agents must
know the new values and adapt themselves. It may happen
that the information is only interesting for agents close to
the source, in that case, the information spreads only up
to a determined number of hops, reducing in that way the
number of messages. Another way to reduce the number of
messages is to determine the number of neighboring nodes
that receive the information. It was demonstrated that it is
not necessary to send the information to all the neighboring
nodes [18] in order to ensure that every node has received
the information.
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Figure 5. Spreading dynamics.

Entities-Dynamics-Environment: the entities involved in
the spreading process are the hosts, agents and infrastructural
agents. The spreading process is initiated by an agent that
first spreads the information in the host it is residing in. Two
cases occur, either the agent spreads itself the information
further by sending it to its neighbors, Figure 5(a), or an
infrastructural agent is responsible for the spreading, Figure
5(b). If the neighboring node hosts an agent, that agent
propagates the information further, Figure 5(c). Otherwise, if
the host has no agent, the infrastructural agent is responsible
to further propagates the information to the neighbors,
Figure 5(d). Each agent forwards the information received
to a specified number of neighbors and up to the specified
number of hops. The dynamic is usually extended in order
to avoid infinite loops and wasted duplicate deliveries (e.g.
when one agent receives the same information it has sent
before, the agent does not resend that information).

The transition rule for the Spreading Pattern is given by
Equation 3. Information in input inf is sent to a set of
neighbors.

spreading :: inf — send(inf, neighbors) 3)

Example: Figure 6 shows the different steps of the spread-
ing process: (a) an agent initiates the spreading process
(black node); (b) the information spreads over the network;
and (c) the process finishes when information reaches all the
nodes in the network.

Implementation: the most common algorithm used to



Figure 6. Sample spreading evolution.

spread the information to the neighbors is the broadcast algo-
rithm. Its implementation may assume a MAC identification
phase, in which the protocol exchanges the mac address
of two nodes before sending any information, or it may
happen without establishing the communication. When the
MAC identification is avoided and the broadcast is used, this
causes what is called the Broadcast Storm Problem [19]. The
Broadcast Storm Problem appears when the radius of signal
of many nodes overlaps. Thus, a straightforward broadcast-
ing by flooding will result in serious redundancy, contention
and collision. In order to solve the Broadcast Storm Problem,
an optimized broadcast can be implemented. If we imple-
ment the broadcast assuming a MAC identification phase, we
avoid the Broadcast Storm Problem. This, however, involves
a higher number of messages and as a consequence, higher
power consumption. The implementation assuming a MAC
discovery phase ensures good communication but involves
an increment in the number of messages. If the MAC
discovery phase is avoided, the Broadcast Storm Problem
appears [19] thus forcing the use of optimized broadcast
algorithms.

Figure 7(a) shows the flow chart where the information is
spread when it is received, provided it has not been received
already. Figure 7(b) shows the interaction diagram of the
spreading initialization, related with the dynamics shown in
Figures 5(a) and 5(b). Figure 7(c) represents the interactions
when the information arrives from a neighbor. It is related
with the dynamics shown in Figures 5(c) and 5(d).

Known uses: spreading is used in higher level patterns,
such as, Gradient, Morphogenesis, or Chemotaxis Patterns.
The Spreading mechanism has been applied to several appli-
cations: from Swarm motion coordination, to coordination
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Figure 7. Spreading: agent behavior (a) and corresponding initialization
(b) and interactions with its host and neighboring hosts (c).

in games, to problem optimization, etc.

Consequences: when the Spreading Pattern is applied, the
agents in the system sense information from beyond their
local senses. There is then an increment in the network load.
This increment becomes extreme when the environment is
very dynamic and the agents desire to keep the information
updated as soon as possible.

C. Gossip Pattern

The goal of the Gossip Pattern is to obtain an agreement
about the value of some parameters in the system in a
decentralized way. All the agents in the system collaborate
to progressively reach this agreement: all of them contribute
with their knowledge by aggregating their own knowledge
with the neighbors’ knowledge and by spreading this aggre-
gated knowledge. Gossip was proposed as an Amorphous
computing primitive mechanism by Abelson et al. [20].
Gossip is also known as epidemic communication.

Problem: in large-scale systems, agents need to reach
an agreement, shared among all agents, with only local
perception and in a decentralized way.

Solution: the gossip mechanism combines the aggregation



mechanism (see section IV-A) with the spreading mecha-
nism (see section IV-B) to progressively reach an agreement
taking into account the information of all the agents in
the system. Information spreads to neighbors, where it is
aggregated with local information. Aggregates are spread
further and their value progressively reaches the agreement.

Inspiration: gossip is inspired from the human social
behavior linked to spreading rumors. People add their own
information to information received from other people, they
increase their knowledge and spread this knowledge further.
When the process is repeated several times, people start to
share the same knowledge that results from the sharing of
the knowledge of different people.

Forces: the Gossip Pattern is composed by the Spreading
and Aggregation Patterns. It thus presents the same tradeoffs
(see Section IV-B and Section IV-A). As in spreading, the
main problem of gossip is the network overload that is
produced by the continuous broadcast performed by the
agents. In order to reduce the network overload, optimized
broadcast can be applied (e.g. not all the neighbors receive
the information). The number of neighbors that receive
the information is the tradeoff of this pattern. The more
neighbors that receive the information, the more robust the
system is in the case of failures, but the more network
overload is produced.

Entities-Dynamics-Environment: the entities involved in
the gossip mechanism are agents, infrastructural agents and
hosts. As it was presented before, gossip is a combined
pattern. The dynamics between the entities is then the same
as for aggregation and spreading. Analogously to spreading,
only an agent can initiate the process. When one agent
desires to initiate a gossip process, it sends the information
(e.g. parameters and values) to a set of its neighbors. If
an agent is hosted in one of those neighbor nodes, the
agent gets the information, aggregates the information re-
ceived with its own information and resends the aggregated
information to its own neighbors nodes, Figure 8(a). The
same behavior is produced by the infrastructural agent when
no agent is hosted in one host and the host receives an
information, Figure 8(b). The process can be generalized
(abstracting the host) as shown in Figure 8(c), where an
agent receives the information from other agents, aggregates
the information received with its own information and then,
sends the aggregated information to the neighbors. One
agent or infrastructural agent ends the gossip process when
the information received and the information previously sent
are the same, that means that an agreement has been reached.

The transition rule for gossip is given by Equation 4. In-
formation received from the neighbors (I..,q) is aggregated
to local information (in fj,¢q;) and sent to a set of neighbors.

gOSSip = (Ircvda inflocal) -

4
Send(op((lrcvd7 inflocal))7 neighbors) ( )

©

@ Host

Figure 8.

@ Agent

Infrastructural Agent

Gossip dynamics.

Implementation: regarding implementation, optimized
broadcast can be applied. One interesting example of im-
plementation appears in [21], where a probabilistic gossip
is proposed. It was demonstrated that executing the gossip
(broadcast) with a probability between 0.6 and 0.8 is enough
to ensure that almost every node gets the message in almost
every execution. This optimization decrements the number
of messages by 35%. Figure 9(a) shows the flow chart for the
standard gossip mechanism where the information is spread
using the broadcast. Figures 9(b) shows the interaction
between the agent that initiates the gossip process, the host
where the agent is running and the neighbor hosts. Once
the gossip has started, the agents and infrastructural agents
follow the behavior presented in Figure 9(c).

Known uses: Kempe et al. [22] analyze a simple gossip-
based protocols for the computation of sums, averages, ran-
dom samples, quantiles, and other aggregate functions, and
demonstrate that this protocol converges to the agreement
faster than the uniform gossip. Norman et al. [23] propose an
aggregation based on Evolutionary Algorithm. They present
a mechanism for coordination in large convention spaces
(finding a common vocabulary (lexicon) in their case).
The Evolutionary Algorithm approach keeps the diversity
throughout the agreement process (not 100% of agents get
the same agreement), this guarantees that when the scenario
changes the system can quickly achieve a new agreement. It
was demonstrated that this approach is resilient to unreliable
communications and guarantees the robust emergence of
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Figure 9.  Gossip: agent behavior (a), initialization (b) and interactions
with the host and neighboring hosts (c).

conventions.

Consequences: the main advantage of gossip is the ro-
bustness: even in the presence of failures, the pattern is able
to reach the agreement.

Related Patterns: the Gossip Pattern is composed by the
Spreading Pattern (see Section IV-B) and the Aggregation
Pattern (see section IV-A).

V. CONCLUSION AND FUTURE WORK

This paper is a first attempt towards a clear classification
of bio-inspired design patterns targeted at easing the design
and engineering of today’s application domains. The con-
tribution of the paper is twofold. From the one hand, we
proposed a concrete model upon which to define patterns,
that relies on the concept of structured patterns, i.e. the fact
that some basic patterns can be exploited as building blocks
for defining more complex patterns. On the other hand, we
provided an example of how the model can be concretely
adopted by presenting aggregation and spreading as basic
bio-inspired patterns, exploited as a base to define gossip as
a composite patterns.

As a future work, we are planning to work on a compre-
hensive description of the most relevant bio-inspired patterns

found in existing literature, as well organize them into layers
according to their biological inspiration and role in defining
composite patterns. Furthermore, as a part of the EU Project
SAPERE, we will investigate the role of these bio-inspired
patterns to enact emergent and self-organizing behaviors into
a middleware target at developing service-based pervasive
applications in novel domains.
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