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Abstract 

In this papel; we present COMSCRIPT, a language designed for  
protocol entity implementation and protocol stack manipulation. 
The COMSCRIPT language is an interpreted language derived from 
POSTSCRIPT and enriched by concurrent processes which syn- 
chronize their execution and exchange data in a controlled and 
restricted way. The language adheres to an event driven program- 
ming approach which is very suitable for  the implementation of 
both low and high level protocols. Communication between pro- 
cesses takes place through manipulable andjexible links created 
and configured dynamically. 

This paper presents the COMSCRIPT language and its execution 
environment from a programming point of view. It introduces all 
its basic concepts showing how they can be used in the implemen- 
tation of an application. 
Keywords: computer communications, protocol implementation, 
protocol stack configuration, COMSCRSPT. 

1 Introduction 

Classical computer communication software is structured as a 
stack of protocol entities which offer a well defined service to 
an application. However, in this approach the protocol stack is 
considered as a “black box” completely decoupled from the appli- 
cation. The application has no means to tailor the stack to its own 
requirements. Moreover, two hosts must have identical preconfig- 
ured protocol stacks to be able to exchange data; it is difficult to 
achieve interoperability of different protocol stacks. 

This static approach to protocol stack implementation seems 
very restrictive. Many research works have shown the neces- 
sity of more flexible, reconfigurable protocol stacks [ 101 and new 
approaches have been proposed: 

0 The Unix System V STREAMS approach [ 141 allows different 
STREAMS modules to be dynamically pushed and/or popped 
on a STREAMS head. All the modules must however be pre- 
compiled in the kernel, the adjunction of new modules re- 
quires to recompile the kernel; 

e A highly layered stack architecture using both “micro pro- 
tocols” and “virtual protocols” has been implemented with 
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similar or even better performance than monolithic protocol 
stacks[5]; 

e The three layered DaCaPo approach [SI allows an application 
to request, at initializationtime, the desired quality of service; 
the middle layer ensures that the offered service permanently 
fulfills the application requirements. 

We present here the COMSCRIPT approach to flexible protocol 
stacks. This approach brings more flexibility because the applica- 
tion can, at any moment, configure the protocol stack according 
to its needs. The interpreted aspect of COMSCRIPT and its inter- 
process communication model are the basic mechanisms used for 
achieving the desired stack flexibility. 

The configuration process is not limited to the initialization 
phase, and it is even possible to (re)configure a remote protocol 
stack [13]. The possibility to download COMSCRSPT code for 
execution in a remote host is the basis for realizing communication 
between two hosts not having the same protocol stack, and thus to 
achieve interoperability. Moreover both interpreted COMSCRIPT 
modules and existing precompiled modules can be combined to 
build and to configure a protocol stack. 

The COMSCRIPT approach to flexible protocol stacks uses a uni- 
form way to both the implementation and the reconfiguration of 
protocol stacks: the same interpreted language is used to imple- 
ment and reconfigure protocol stacks. Other approaches decouple 
the two aspects of this problem handling the reconfiguration dif- 
ferently from the implementation. 

In section 2,  we show the link between COMSCRIPT and 
POSTSCRIPT; section 3 presents COMSCRIPT processes, section 4 
describes the interprocess communication in COMSCRIPT, while 
section 5 explains how COMSCRIPT platforms are connected to 
the outside world. Section 6 discusses some points relevant to 
COMSCRIPT, and some concluding remarks are given in section 7. 

2 From POSTSCRIPT to COMSCRIPT 

The COMSCRIPT language is derived from the POSTSCRIPT’ lan- 
guage and thus shares its execution model, some of its operators 
and data structures. The following reasons have lead to the choice 
of POSTSCRIPT as a starting point: (a) POSTSCRIPT is widely used, 
(b) it has a very simple execution model, (c) the need for an inter- 
preter for protocol implementation and manipulation, and (d) the 

‘POSTSCRIPT@ is a registered trademark of Adobe System Incorporated 
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SOI:I’CG cock of GHOSTSCRIPT [2], a public domain interpreter was 
available. 

We firs? removed all graphic related operators from 
GHOS~SCRIPT to get a bare COMSCRIPT interpreter. Then, we 
incrementally added new features for concurrency, interprocess 
communication, timeout handling and for access to the external 
world to 11~: COMSCRIPT environment. We assume in this paper 
that the reader is familiar with the POSTSCRIPT stack execution 
model [ I ] .  

CWIPT and processes 

In d 6?0I\.‘,CRIPT environment processes execute concurrently and 
are m m u r e d  in a process tree. The first process created by 

CRIPT environment is the root of this tree and is called 
)recess. New processes are created with the fork 

operator. ’his operator takes as argument a procedure which will 
b c m m  code CO be executed by the newly created process and 
retoins :t i i  ference to the created process. 
_I___- 

I / c  jet  { (Co~bcript s fun) pr-nt r l ~ ~ h  1 oef 

3 /i’ { % c-eat2 2 r e v ,  processes 
4 name the first process ichAldL 
5 

hildl iiodel load fork def 
(Hello World) prir,t flush L o r 4  po3 

Y 1 

Thc rate1 rlretation of the above code is straightforward. Proce- 
dure / co~lc-1 is defined on line 1: it just prints a message on the 
screen. The /go procedure is defined on lines 3 to 8. It creates 
two iiew processes (lines 6-7) and calls the first one /chi_ldl.  
After the micution of the /go  procedure, the Rootprocess 
executei coiil, irrently with the two created processes. 

ization and Data Ex- 

COMS:WP i ,ili ~ W S  concurrcnt processes to synchronize their 
1. to exchange data Data exchange between 

cw take place synchronously or asynchronously 
rmli the interprocess communication (IPC) to a 

direct cc”Uli lCdCiO,? between a process and its children or be- 
tween sibling prcjcc:7ws. This section presents the ingredients used 
by ~ ~ ~ M ~ ~ ~ ~ I ~  : I C  

~ints,  Event Handlers and 

The C::O%’S;7KirJ> G;RV 3 c:rmeii t recognizes three kinds of events’ 

a ,?ala exchange with another process or with the outsidc 
worid IXS occur id ;  

a ~ y r I c i ~ o ~ j ~ a ~ ~ o ~ ~  with hncsthr -process has occurred (without 
data exchange); 

a timetrut period has ziapwd. 

A COMSCRIPT process can request that these events be sig- 
naled to it through synchronization points (s-points) attached to 
it. There are three kinds of s-points corresponding to these three 
kinds of events: (a) input and output s-points for synchronous or 
asynchronous data exchange, @)pure s-points for synchronization 
without data exchange, and (c) timer s-points for synchronization 
with the system clock. 

A procedure called an event handler is associated with each 
s-point. When an event occurs at a given s-point, its associated 
event handler is executed by the COMSCRIPT environment to han- 
dle the event. 

A flag, called a guard, is associated with each s-point, allowing 
the process to enable or disable the s-point. Disabled s-points ar’e 
ignored by the COMSCRIPT environment, they can not convoy an 
event. Thus, a process can choose at any moment the events to be 
signaled to it by the COMSCRIPT environment. 

A process can wait for events on more than one s-point. When 
this configuration is used, the COMSCRIPT environment passes t’o 
the process only the first event to occur for handling. If multiple 
events can be realized when the process passes its request to the 
COMSCRIPT environment, the environment picks up one of the 
possible events in a non deterministic way. 

Processes are event driven; most of the time they are blocked 
waiting for one of the requested events to occur. For each pro- 
cess, only one event can occur at a time. As a consequence, a 
COMSCRIPT process is logically structured in two parts: (a) an ini- 
tialization code which is executed once when the process is create’d 
and (b) a collection of event handlers associated to the process’ 
s-points. Amongst other, the initialization code is responsible for 
creating s-points and providing them with an event handler. After 
the initialization code is executed, the process enters an infinite 
loop where it is waiting for an event to occur on one of its s-points. 
Whenever an event occurs on an s-point, the associated handler 
is executed and the process waits for the following event. This 
continues until the process is explicitly killed. 

4.2 Gates and Links 

Processes that want to synchronize their execution or to exchange 
data must be “connected”: for this, s-points are connected through 
gates. A gate implements a message queue of length over or 
equal to zero. A gate with a zero length queue is used to link two 
processes that want to exchange data in a synchronous way or that 
synchronize their execution without data exchange. A gate with a 
queue of length greater than zero is used to obtain an asynchronous 
data exchange between two processes. 

In a communication between a process and its child, the parent 
process is responsible for providing a gate and configuring the 
links between its s-point and the associated s-point belonging 10 
its child. In a communication between two sibling processes, their 
parent is still responsible for providing a gate and configuring 
the links of its children. In fact a process is never aware that it 
is communicating with its parent or with its sibling process. A 
parent process can also change at any moment the configuration 
links of its children in a transparent way. 

Figure 1 shows two processes P1 and P2 linked through their 
s-points / ! o u t  and / ? i n  and gate of a four length queue. The 
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gate 

P2 

Figure 1: Two processes linked by their parent through a gate 

gate belongs to their parent P which must link the two processes. 

4.3 The Flexibility of the COMSCRIPT IPC Model 

Although the COMSCRIPT interprocess communication model is 
simple, i t  is flexible and powerful as illustrated by the following 
considerations: 

1. The use of gates in process communication links brings more 
flexibility. An s-point can be linked to only one gate but it 
is common to have multiple s-points linked to the same gate. 
COMSCRIPT docs not handle this situation as a broadcast. 
On the contrary, only one process will receive the data item 
exchanged. This provides non deterministic data exchange. 
It becomcs possible for a process to interact in a transparent 
way with another process belonging to a group of processes. 
Figure 2 shows three processes linked through the same gate. 

D gate 

Figure 2: Multiple s-points linked through the same gate 

2. It is possible to dynamically manipulate communication links 
between processes; a parent process can at any moment 
change the way its children are linked together, i.e. by 
(a) breaking their communication links, (b) replacing one 
of the communicating partners with another process and (c) 
reconfiguring the communication links so that subsequent in- 
teractions take place with the new configured process. This 
possibility is illustrated by figure 3. An event occiirs on the 
/ ? i n  s-point of the parent process P and its event handler is 
activated (left part of the figure). The execution of the event 
handler leads the parent process to break the link between PI 
and P2 and to establish a new link between P1 and P3. Af- 
ter the event handler has completed its execution (right part 
of the figure), PI is ready to exchange data with P3. PI is 

a )  before link reconfiguration 

,’ I Z  I 
, ‘ I  I 

b) after link reconfiguration 

Figure 3: A dynamic reconfiguration of a communication link of 
process P1 by its parent P 

not aware of the fact that P2 has been replaced by another 
process. 

5 Opening the COMSCRIPT environment to 
the outside world 

COMSCRIPT processes can access the world outside the 
COMSCRIPT environment and exchange data with it via “device 
drivers”. A device driver can be seen as an “external process” 
offering a well defined functionality. Examples of device func- 
tionalities are: receiving Ethernet packets, reading from a file or 
navigating in a file system. 

Each device is uniquely identified by a name (just like 
POSTSCRIPT fonts). Instances of these device drivers are cre- 
ated dynamically on demand by COMSCRIPT processes. As far 
as COMSCRIPT processes are concerned, all the device drivers are 
accessed in a uniform and consistent way; each device driver is 
an array of s-points. The s-points allow a COMSCRIPT process to 
access the well defined “services” of the device driver. 

A device for reading a file, for example, would contain among 
others, an s-point for opening arequested file, an s-point forreading 
from the opened file, and another one to close the file after the read 
operation is completed. 

Although some devices are likely to be implemented in every 
COMSCRIPT environment, the number of devices available and the 
complexity of the services they offer can vary greatly from one 
environment to another. AI1 device types known in the system are 
contained in a global data structure called the DeviceDictionary. 
A COMSCRIPT process can define new devices and add them in 
the DeviceDictionary, in order to make them accessible by other 
COMSCRIPT processes. 

Currently, our COMSCRIPT environment contains devices ac- 
cessing: 

1. the file system for creating, reading and writing files and 

2. the connectionless and connection oriented sockets (UDP and 

directories: 

TCP); 

Ethernet on SUN. 
3. the NIT (Network Interface Tap) device for access to the raw 
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Figure 4 shows the way the service offered by the NIT device 
driver is accessed by a COMSCRIFT process. 

The following COMSCRIPT code shows how a process interacts 
with a device driver. In this example, we use the NIT device, the 
access to the other devices is done in a similar way. 

1 /initdevice { % init (create a n i t  access) 
2 /rwEthernet finddevice { 1 clonedevice 
3 { 
4 /ethernet exch def 
5 2 { 0 creategate) repeat 1 
6 ethernet 1 index linkltol 

X /rnit /?r 1 createsync clef 
9 /mit /!w 2 createsync def 

I O  [ rnit wnit I exch linkltol 

I? (Error: Can not clone rwEthernet device) 

I4 I ifelse 
I T  1 def 

I ?  /readpacket { % read one Ethernet packet 

19 ) def 

7 

11 

13 print flush 

16 

18 rnit input 

C o m S c r i p t  Environment 

I C e m s c r i p t  P r e c e s s  I 

i ver 

Figure 4: The view of the NIT device driver by a COMSCRIPT 
process 

Two procedures are defined in the above code; the 
/ ini t devi c e procedure on lines 1-1 5 and the / readpac ke t 
procedure on lines 17-19. 

The /initdevice procedure creates a new instance of the 
/rwEthernet device on line 2 .  The finddevice opera- 
tor searches in the COMSCRIPT environment for the existence of 
the named device, (in this case the /rwEthernet) and returns 
a reference to the device if it exists in the environment. The 
clonedevice operator takes as arguments a device and a pro- 
cedure, creates and returns a new instance of the device. The 
created device instance is an array of s-points. The procedure is 
used to control the access right to the device. In our example, no 
access control is done to create an instance of the device. The 
rwEthernet device has only two s-points, one for reading an 
Ethernet packet and one for writing a packet. On line 4, the created 
Ethernet device instance is saved in the / ethernet variable for 
later references. On line 5 ,  an array of two gates of zero length 
queue is created. The linkltol procedure (code not shown 
here) links, on line 6, each s-point of the Ethernet device with the 
corresponding gate of the previously created asray of gates. On 
lines 8-9, two s-points are created; an input s-point called / ?r, 
stored in the /rnit variable, and an output s-point called / ! w 

and stored in the /wnit variable. On line 10, the two created 
s-points are also linked to the gates created on line 5. 

The /readpacket procedurereads oneEthernet packet. With 
the input operator on line 18, the process asks the COMSCRIPT 
environment to realize an interaction with the Ethernet device 
through the rnit s-point. As the rnit s-point is linked to the 
device’s s-point implementing the ‘read from Ethernet’ service, 
this interaction results in the reading of an Ethernet packet. 

6 Discussion 

COMSCRIPT is not just another programming language. Its basic 
concepts are simple but yet powerful enough to allow a rapid and 
incremental implementation of protocol entities. Moreover, the 
COMSCRIPT environment offers the necessary ingredients to build 
in an elegant way very flexible protocol stacks. This section shows 
how COMSCRIPT can be used for the implementation of network 
applications. 

6.1 Implementation of Protocol Entities 

Communication software is classically structured in static layers of 
protocol entities forming a protocol stack. Each layer offers a well 
defined service to its upper neighbor layer and uses the service 
provided by its lower neighbor layer. The interaction between 
neighbor layers is done through the so-called service access points 
( S A P ) .  

The COMSCRIPT language is well suited for the implementation 
of protocol entities and stacks. Each protocol entity module can be 
implemented either as a COMSCRIPT process or as a tree of com- 
municating COMSCRIPT processes. A protocol stack is naturally 
implemented by concurrent COMSCRIPT processes and s-points are 
used to implement SAPS. 

Moreover, as COMSCRIPT processes are event driven, it is quite 
straightforward to translate a finite state machine (FSM) protocol 
specification into its corresponding COMSCRIPT code. Each event 
occurring in the protocol machine can be captured by an s-point 
in an implementation. The action triggered by the event in the 
protocol machine is naturally implemented as the event handler 
associated to the s-point which captures the event in the imple- 
mentation. 

In the following example we show the code for the sender side of 
the well-known Alternating Bit Protocol (ABP). The code dealing 
with the external representation of PDUs has been omitted - we 
assume that some underlying entity will map the ABP PDUs (of 
theform [true ackflag (datastring) I fordatapackets 
and [false ackf lag] for acknowledgements) to a flat string 
of bytes. Note also that the ABP entity passes the user data 
downwards regardless of its size and type. 

The implementation is based on the finite state machine (FSM) 
model of figure 5. The FSM starts in the idle state and waits for 
a synchronization with a user entity. On reception of the user data, 
an ABP PDU is assembled and the FSM is ready to send it down the 
channel (state rdy). After synchronization with the channel, we 
have to wait for an acknowledge message or a timeout event (state 
wack). Only an acknowledgement with the right sequence flag 
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timeout 

toChan!pdu 3r wack 
fromUser?data* 0 

f romChan  ?good-ack 

Figure 5:  The Finite State Machine for the ABP Sender 

leads back to the initial i d l e  state, while a timeout requires the 
retransmission of the PDU. All other incoming acknowledgements 
are then discarded (this is not shown in figure 5). 
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/abpSender { 
clear 

/ddbegin i Clict exch 1 index def begin 1 bind clef 
/findsync { 

I bind def 
/installsync { createsync begin 

currentprocess /syncdict get exch get 

/handler i 

1 bind de€ 
/guard { 

I bind def 

transdict state get 1 index get exec 

transdict state get exch known 

end 1 bind clef 

/enCOdePDU i 1 def % currently empty 
/decodePDU { 1 def 9 currently empty 

/?fromUser 1 installsync /! toChan 2 installsync 
/?fromChan 1 installsync /$timeout -1 installsync 

/transdict 3 ddbegin 
/idle 2 ddbegin 

/?fromUser findsync { 
/data get [ true seqflag 4 3 roll I 
encodePDU /pdu exch def 
/!toChan findsync /data pdu put 
/state /rdy def 

1 dcf 
/?fromChan findsync { pop } def 

end 
/rdy 2 ddbegin 

/ ? f romchan f indsync { 
/data get decodePDU 1 get seqflag eq 
I 

/seqflag seqZlag not def 
/state /idle def 

1 if 
1 def 
/!toChan Eindsync { 

pop /$timeout findsync /timer gmt 
delta add put 
/state /wack def 

1 def 
end 
/wack 2 ddbegin 

/?fromChan findsync dup rdy exch get def 
/$timeout findsync { 

pop /!toChan findsync /data pdu put 
/state /ray def 

1 def 
end 

end 

/state /idle def 
/seqflag false def 
/delta 1000 def % set timeout to 1 second 

59 1 def 

be enabled in the given state. The transition table is stored in the 
transdict dictionary: to each state is associated a dictionary, in 
which the procedures are stored for the allowed events. What the 
implementor of a FSM based protocol entity has to do is to declare 
the set of possible events (lines 20-21), to set up the transdict 
(lines 23-54), and to initialize the value of the state variable 
and other protocol dependent values (lines 56-58). 

How are activated the procedures defined in /transdict? 
How are set the guards? The small support needed for this can 
be found in the procedure /installsync on the lines 8-15. 
Every “event” is represented by an s-point. In fact, all s-points 
will have the same generic event handler and the same generic 
guard procedure. To enable a s-point we just have to check if a 
procedure is defined for the given <state, sync> pair. The generic 
event handler just looks up this procedure and executes it. 

COMSCRIPT code can be “compressed” by using standard 
POSTSCRIPT techniques to compact code. This requires the use 
of short variable names, the redefinition of often used and long 
keyword sequences and the inclusion of spaces only where neces- 
sary. This reduces the overhead when COMSCRIPT code has to be 
downloaded to a remote host. Using this compression technique, 
the COMSCRIPT code of a full duplex ABP protocol entity fits in 
less than 700 bytes. 

6.2 The Configuration of Protocol Stacks 

In the previous section, we have seen that it is quite simple to 
implement protocol entities in COMSCRIPT. It is also simple to 
implement an entire protocol stack in the framework of existing 
standards. 

Moreover, COMSCRIPT contains the ingredients to allow the 
building and the (re)configuration of flexible protocol stacks. In 
COMSCRIPT, a protocol stack can be implemented by concurrent 
COMSCRIFT processes which synchronize their execution and ex- 
change data through their s-points. At any moment, the “s-point- 
gate” links between processes can be broken and reconfigured 
differently leading to the protocol stack (re)configuration. 

6.3 Code downloading in COMSCRIPT 

Another attractive aspect of COMSCRIPT is that it allows code 
downloading. A COMSCRIPT process running in an environment 
can send COMSCRIPT code which will be executed by a COMSCRIFT 
environment running in a remote host. This is done by installing in 
each host, a COMSCRIW server which executes COMSCRIPT code 
received from clients. Two such servers have been implemented 
in our prototype. 

6.4 Current State 

The COMSCRIPT implementation uses a table driven approach: 
to each allowed combination of state (idle, rdy, wack) 
and event (fromuser, toChan, fromChan, timeout) 
we associate a procedure that has to be executed if that event 
“happens” in the given state. If there is no procedure defined for 
a <state, event> pair, it means that the given event should not 

A first COMSCRIPT interpreter prototype has been implemented. 
Both low level and high level protocol entities have been imple- 
mented in the framework of existing standards. The environment 
proved to be also suitable for the (re)configuration of protocol 
stacks. Moreover, it has been also possible to configure an opti- 
mized protocol stack in COMSCRIPT, using optimized precompiled 
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protocol entities implemented in other languages, and thus to over- 
come the disadvantages of protocol interpretation. 

Two COMSCRIPT servers have been implemented: one server 
uses the UDP protocol and the other, the TCP protocol. While 
all requests directed to the UDP server are handled in the same 
COMSCRIPT environment, each connection established with the 
TCP server leads to the creation of a new COMSCRIPT environment 
which handles all subsequent requests. 

Using these servers, we successfully realized code downloading 
of a whole protocol stack and the data exchange between two hosts 
not having identical preconfigured protocol stacks. 

Being only a prototype, our implementation does not address 
neither performance considerations, nor security aspects which 
must surely be carefully addressed in a productive environment. 
Our effort has been focused on the implementation of the basic 
concepts underlying COMSCRIPT to show that they are feasible and 
suited for network programming. 

COMSCRIPT is both an interpreter and an environment for the ex- 
ecution and the synchronization of concurrent processes. The 
primary aims pursued by the COMSCRIPT project is the implemen- 
tation and the configuration of protocol stacks. The basic model 
underlying COMSCRIPT, i.e. concurrent event driven processes 
and their manipulable communication links formed of s-points 
and gates, proved to be well suited for the efficient realization of 
these aims. 

Experiments with communities of COMSCRIPT nodes have been 
made. In such a community, it is possible to realize code down- 
loading, communication between two hosts with different protocol 
stacks, as well as dynamic reconfiguration of a remote protocol 
stack directly by the application. 

The future of protocol stacks lies in the flexibility and recon- 
figurability. We are convinced that the COMSCRIPT approach will 
bring some promising solutions in the areas of interworking be- 
tween different protocol stacks and the tailoring of application- 
specific stacks. 
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