
Implementation and Interpretation of Protocols in
the COMSCRIPT* Environment

Murhimanya Muhugusa, Giovanna Di Marzo, Christian Tschudin,
Eduardo Solana and Jiirgen Harms

Centre Universitaire d’Informatique, University of Geneva

Abstract

In this papel; we present COMSCRIPT, a language designed for
protocol entity implementation and protocol stack manipulation.
The COMSCRIPT language is an interpreted language derived from
POSTSCRIPT and enriched by concurrent processes which syn-
chronize their execution and exchange data in a controlled and
restricted way. The language adheres to an event driven program-
ming approach which is very suitable for the implementation of
both low and high level protocols. Communication between pro-
cesses takes place through manipulable andjexible links created
and configured dynamically.

This paper presents the COMSCRIPT language and its execution
environment from a programming point of view. It introduces all
its basic concepts showing how they can be used in the implemen-
tation of an application.
Keywords: computer communications, protocol implementation,
protocol stack configuration, COMSCRSPT.

1 Introduction

Classical computer communication software is structured as a
stack of protocol entities which offer a well defined service to
an application. However, in this approach the protocol stack is
considered as a “black box” completely decoupled from the appli-
cation. The application has no means to tailor the stack to its own
requirements. Moreover, two hosts must have identical preconfig-
ured protocol stacks to be able to exchange data; it is difficult to
achieve interoperability of different protocol stacks.

This static approach to protocol stack implementation seems
very restrictive. Many research works have shown the neces-
sity of more flexible, reconfigurable protocol stacks [101 and new
approaches have been proposed:

0 The Unix System V STREAMS approach [141 allows different
STREAMS modules to be dynamically pushed and/or popped
on a STREAMS head. All the modules must however be pre-
compiled in the kernel, the adjunction of new modules re-
quires to recompile the kernel;

e A highly layered stack architecture using both “micro pro-
tocols” and “virtual protocols” has been implemented with

*This work is supported by Swiss National Fund for Scientific Research (FN-
SRS) grant 2 0 -3 4 ‘ 0 7 0 .9 2, E-mail: muhugusa@cui.unige.ch

similar or even better performance than monolithic protocol
stacks[5];

e The three layered DaCaPo approach [SI allows an application
to request, at initializationtime, the desired quality of service;
the middle layer ensures that the offered service permanently
fulfills the application requirements.

We present here the COMSCRIPT approach to flexible protocol
stacks. This approach brings more flexibility because the applica-
tion can, at any moment, configure the protocol stack according
to its needs. The interpreted aspect of COMSCRIPT and its inter-
process communication model are the basic mechanisms used for
achieving the desired stack flexibility.

The configuration process is not limited to the initialization
phase, and it is even possible to (re)configure a remote protocol
stack [13]. The possibility to download COMSCRSPT code for
execution in a remote host is the basis for realizing communication
between two hosts not having the same protocol stack, and thus to
achieve interoperability. Moreover both interpreted COMSCRIPT
modules and existing precompiled modules can be combined to
build and to configure a protocol stack.

The COMSCRIPT approach to flexible protocol stacks uses a uni-
form way to both the implementation and the reconfiguration of
protocol stacks: the same interpreted language is used to imple-
ment and reconfigure protocol stacks. Other approaches decouple
the two aspects of this problem handling the reconfiguration dif-
ferently from the implementation.

In section 2, we show the link between COMSCRIPT and
POSTSCRIPT; section 3 presents COMSCRIPT processes, section 4
describes the interprocess communication in COMSCRIPT, while
section 5 explains how COMSCRIPT platforms are connected to
the outside world. Section 6 discusses some points relevant to
COMSCRIPT, and some concluding remarks are given in section 7.

2 From POSTSCRIPT to COMSCRIPT

The COMSCRIPT language is derived from the POSTSCRIPT’ lan-
guage and thus shares its execution model, some of its operators
and data structures. The following reasons have lead to the choice
of POSTSCRIPT as a starting point: (a) POSTSCRIPT is widely used,
(b) it has a very simple execution model, (c) the need for an inter-
preter for protocol implementation and manipulation, and (d) the

‘POSTSCRIPT@ is a registered trademark of Adobe System Incorporated

0-7803-2486-2195 $4.00 0 1995 IEEE 379

SOI:I’CG cock of GHOSTSCRIPT [2], a public domain interpreter was
available.

We firs? removed all graphic related operators from
GHOS~SCRIPT to get a bare COMSCRIPT interpreter. Then, we
incrementally added new features for concurrency, interprocess
communication, timeout handling and for access to the external
world to 11~: COMSCRIPT environment. We assume in this paper
that the reader is familiar with the POSTSCRIPT stack execution
model [I] .

CWIPT and processes

In d 6?0I\.‘,CRIPT environment processes execute concurrently and
are m m u r e d in a process tree. The first process created by

CRIPT environment is the root of this tree and is called
)recess. New processes are created with the fork

operator. ’his operator takes as argument a procedure which will
b c m m code CO be executed by the newly created process and
retoins :t i i ference to the created process.
_I___-

I / c jet { (Co~bcript s fun) pr-nt r l ~ ~ h 1 oef

3 /i’ { % c-eat2 2 r e v , processes
4 name the first process ichAldL
5

hildl iiodel load fork def
(Hello World) prir,t flush L o r 4 po3

Y 1

Thc rate1 rlretation of the above code is straightforward. Proce-
dure / co~lc-1 is defined on line 1: it just prints a message on the
screen. The /go procedure is defined on lines 3 to 8. It creates
two iiew processes (lines 6-7) and calls the first one /chi_ldl.
After the micution of the /go procedure, the Rootprocess
executei coiil, irrently with the two created processes.

ization and Data Ex-

COMS:WP i ,ili ~ W S concurrcnt processes to synchronize their
1. to exchange data Data exchange between

cw take place synchronously or asynchronously
rmli the interprocess communication (IPC) to a

direct cc”Uli lCdCiO,? between a process and its children or be-
tween sibling prcjcc:7ws. This section presents the ingredients used
by ~ ~ ~ M ~ ~ ~ ~ I ~ : I C

~ints, Event Handlers and

The C::O%’S;7KirJ> G;RV 3 c:rmeii t recognizes three kinds of events’

a ,?ala exchange with another process or with the outsidc
worid IXS occur id ;

a ~ y r I c i ~ o ~ j ~ a ~ ~ o ~ ~ with hncsthr -process has occurred (without
data exchange);

a timetrut period has ziapwd.

A COMSCRIPT process can request that these events be sig-
naled to it through synchronization points (s-points) attached to
it. There are three kinds of s-points corresponding to these three
kinds of events: (a) input and output s-points for synchronous or
asynchronous data exchange, @)pure s-points for synchronization
without data exchange, and (c) timer s-points for synchronization
with the system clock.

A procedure called an event handler is associated with each
s-point. When an event occurs at a given s-point, its associated
event handler is executed by the COMSCRIPT environment to han-
dle the event.

A flag, called a guard, is associated with each s-point, allowing
the process to enable or disable the s-point. Disabled s-points ar’e
ignored by the COMSCRIPT environment, they can not convoy an
event. Thus, a process can choose at any moment the events to be
signaled to it by the COMSCRIPT environment.

A process can wait for events on more than one s-point. When
this configuration is used, the COMSCRIPT environment passes t’o
the process only the first event to occur for handling. If multiple
events can be realized when the process passes its request to the
COMSCRIPT environment, the environment picks up one of the
possible events in a non deterministic way.

Processes are event driven; most of the time they are blocked
waiting for one of the requested events to occur. For each pro-
cess, only one event can occur at a time. As a consequence, a
COMSCRIPT process is logically structured in two parts: (a) an ini-
tialization code which is executed once when the process is create’d
and (b) a collection of event handlers associated to the process’
s-points. Amongst other, the initialization code is responsible for
creating s-points and providing them with an event handler. After
the initialization code is executed, the process enters an infinite
loop where it is waiting for an event to occur on one of its s-points.
Whenever an event occurs on an s-point, the associated handler
is executed and the process waits for the following event. This
continues until the process is explicitly killed.

4.2 Gates and Links

Processes that want to synchronize their execution or to exchange
data must be “connected”: for this, s-points are connected through
gates. A gate implements a message queue of length over or
equal to zero. A gate with a zero length queue is used to link two
processes that want to exchange data in a synchronous way or that
synchronize their execution without data exchange. A gate with a
queue of length greater than zero is used to obtain an asynchronous
data exchange between two processes.

In a communication between a process and its child, the parent
process is responsible for providing a gate and configuring the
links between its s-point and the associated s-point belonging 10
its child. In a communication between two sibling processes, their
parent is still responsible for providing a gate and configuring
the links of its children. In fact a process is never aware that it
is communicating with its parent or with its sibling process. A
parent process can also change at any moment the configuration
links of its children in a transparent way.

Figure 1 shows two processes P1 and P2 linked through their
s-points / ! o u t and / ? i n and gate of a four length queue. The

380

gate

P2

Figure 1: Two processes linked by their parent through a gate

gate belongs to their parent P which must link the two processes.

4.3 The Flexibility of the COMSCRIPT IPC Model

Although the COMSCRIPT interprocess communication model is
simple, i t is flexible and powerful as illustrated by the following
considerations:

1. The use of gates in process communication links brings more
flexibility. An s-point can be linked to only one gate but it
is common to have multiple s-points linked to the same gate.
COMSCRIPT docs not handle this situation as a broadcast.
On the contrary, only one process will receive the data item
exchanged. This provides non deterministic data exchange.
It becomcs possible for a process to interact in a transparent
way with another process belonging to a group of processes.
Figure 2 shows three processes linked through the same gate.

D gate

Figure 2: Multiple s-points linked through the same gate

2. It is possible to dynamically manipulate communication links
between processes; a parent process can at any moment
change the way its children are linked together, i.e. by
(a) breaking their communication links, (b) replacing one
of the communicating partners with another process and (c)
reconfiguring the communication links so that subsequent in-
teractions take place with the new configured process. This
possibility is illustrated by figure 3. An event occiirs on the
/ ? i n s-point of the parent process P and its event handler is
activated (left part of the figure). The execution of the event
handler leads the parent process to break the link between PI
and P2 and to establish a new link between P1 and P3. Af-
ter the event handler has completed its execution (right part
of the figure), PI is ready to exchange data with P3. PI is

a) before link reconfiguration

,’ I Z I
, ‘ I I

b) after link reconfiguration

Figure 3: A dynamic reconfiguration of a communication link of
process P1 by its parent P

not aware of the fact that P2 has been replaced by another
process.

5 Opening the COMSCRIPT environment to
the outside world

COMSCRIPT processes can access the world outside the
COMSCRIPT environment and exchange data with it via “device
drivers”. A device driver can be seen as an “external process”
offering a well defined functionality. Examples of device func-
tionalities are: receiving Ethernet packets, reading from a file or
navigating in a file system.

Each device is uniquely identified by a name (just like
POSTSCRIPT fonts). Instances of these device drivers are cre-
ated dynamically on demand by COMSCRIPT processes. As far
as COMSCRIPT processes are concerned, all the device drivers are
accessed in a uniform and consistent way; each device driver is
an array of s-points. The s-points allow a COMSCRIPT process to
access the well defined “services” of the device driver.

A device for reading a file, for example, would contain among
others, an s-point for opening arequested file, an s-point forreading
from the opened file, and another one to close the file after the read
operation is completed.

Although some devices are likely to be implemented in every
COMSCRIPT environment, the number of devices available and the
complexity of the services they offer can vary greatly from one
environment to another. AI1 device types known in the system are
contained in a global data structure called the DeviceDictionary.
A COMSCRIPT process can define new devices and add them in
the DeviceDictionary, in order to make them accessible by other
COMSCRIPT processes.

Currently, our COMSCRIPT environment contains devices ac-
cessing:

1. the file system for creating, reading and writing files and

2. the connectionless and connection oriented sockets (UDP and

directories:

TCP);

Ethernet on SUN.
3. the NIT (Network Interface Tap) device for access to the raw

38 1

Figure 4 shows the way the service offered by the NIT device
driver is accessed by a COMSCRIFT process.

The following COMSCRIPT code shows how a process interacts
with a device driver. In this example, we use the NIT device, the
access to the other devices is done in a similar way.

1 /initdevice { % init (create a n i t access)
2 /rwEthernet finddevice { 1 clonedevice
3 {
4 /ethernet exch def
5 2 { 0 creategate) repeat 1
6 ethernet 1 index linkltol

X /rnit /?r 1 createsync clef
9 /mit /!w 2 createsync def

I O [rnit wnit I exch linkltol

I? (Error: Can not clone rwEthernet device)

I4 I ifelse
I T 1 def

I ? /readpacket { % read one Ethernet packet

19) def

7

11

13 print flush

16

18 rnit input

C o m S c r i p t Environment

I C e m s c r i p t P r e c e s s I

i ver

Figure 4: The view of the NIT device driver by a COMSCRIPT
process

Two procedures are defined in the above code; the
/ ini t devi c e procedure on lines 1-1 5 and the / readpac ke t
procedure on lines 17-19.

The /initdevice procedure creates a new instance of the
/rwEthernet device on line 2 . The finddevice opera-
tor searches in the COMSCRIPT environment for the existence of
the named device, (in this case the /rwEthernet) and returns
a reference to the device if it exists in the environment. The
clonedevice operator takes as arguments a device and a pro-
cedure, creates and returns a new instance of the device. The
created device instance is an array of s-points. The procedure is
used to control the access right to the device. In our example, no
access control is done to create an instance of the device. The
rwEthernet device has only two s-points, one for reading an
Ethernet packet and one for writing a packet. On line 4, the created
Ethernet device instance is saved in the / ethernet variable for
later references. On line 5 , an array of two gates of zero length
queue is created. The linkltol procedure (code not shown
here) links, on line 6, each s-point of the Ethernet device with the
corresponding gate of the previously created asray of gates. On
lines 8-9, two s-points are created; an input s-point called / ?r,
stored in the /rnit variable, and an output s-point called / ! w

and stored in the /wnit variable. On line 10, the two created
s-points are also linked to the gates created on line 5.

The /readpacket procedurereads oneEthernet packet. With
the input operator on line 18, the process asks the COMSCRIPT
environment to realize an interaction with the Ethernet device
through the rnit s-point. As the rnit s-point is linked to the
device’s s-point implementing the ‘read from Ethernet’ service,
this interaction results in the reading of an Ethernet packet.

6 Discussion

COMSCRIPT is not just another programming language. Its basic
concepts are simple but yet powerful enough to allow a rapid and
incremental implementation of protocol entities. Moreover, the
COMSCRIPT environment offers the necessary ingredients to build
in an elegant way very flexible protocol stacks. This section shows
how COMSCRIPT can be used for the implementation of network
applications.

6.1 Implementation of Protocol Entities

Communication software is classically structured in static layers of
protocol entities forming a protocol stack. Each layer offers a well
defined service to its upper neighbor layer and uses the service
provided by its lower neighbor layer. The interaction between
neighbor layers is done through the so-called service access points
(S A P) .

The COMSCRIPT language is well suited for the implementation
of protocol entities and stacks. Each protocol entity module can be
implemented either as a COMSCRIPT process or as a tree of com-
municating COMSCRIPT processes. A protocol stack is naturally
implemented by concurrent COMSCRIPT processes and s-points are
used to implement SAPS.

Moreover, as COMSCRIPT processes are event driven, it is quite
straightforward to translate a finite state machine (FSM) protocol
specification into its corresponding COMSCRIPT code. Each event
occurring in the protocol machine can be captured by an s-point
in an implementation. The action triggered by the event in the
protocol machine is naturally implemented as the event handler
associated to the s-point which captures the event in the imple-
mentation.

In the following example we show the code for the sender side of
the well-known Alternating Bit Protocol (ABP). The code dealing
with the external representation of PDUs has been omitted - we
assume that some underlying entity will map the ABP PDUs (of
theform [true ackflag (datastring) I fordatapackets
and [false ackf lag] for acknowledgements) to a flat string
of bytes. Note also that the ABP entity passes the user data
downwards regardless of its size and type.

The implementation is based on the finite state machine (FSM)
model of figure 5. The FSM starts in the idle state and waits for
a synchronization with a user entity. On reception of the user data,
an ABP PDU is assembled and the FSM is ready to send it down the
channel (state rdy). After synchronization with the channel, we
have to wait for an acknowledge message or a timeout event (state
wack). Only an acknowledgement with the right sequence flag

382

timeout

toChan!pdu 3r wack
fromUser?data* 0

f romChan ?good-ack

Figure 5: The Finite State Machine for the ABP Sender

leads back to the initial i d l e state, while a timeout requires the
retransmission of the PDU. All other incoming acknowledgements
are then discarded (this is not shown in figure 5).

I

2
7
4
7

h
7
8
J

I O
I I
12
13
I4

I S
16
17
I K
1‘)

I1

21

23
24
25

27
2x

9
30
21
12
13
14
35
36
37
38
39
Jo
41
42
43
U
47

46
41

4X
4‘)
SO
T I
52
73
$4

55
56
77

58

26

/abpSender {
clear

/ddbegin i Clict exch 1 index def begin 1 bind clef
/findsync {

I bind def
/installsync { createsync begin

currentprocess /syncdict get exch get

/handler i

1 bind de€
/guard {

I bind def

transdict state get 1 index get exec

transdict state get exch known

end 1 bind clef

/enCOdePDU i 1 def % currently empty
/decodePDU { 1 def 9 currently empty

/?fromUser 1 installsync /! toChan 2 installsync
/?fromChan 1 installsync /$timeout -1 installsync

/transdict 3 ddbegin
/idle 2 ddbegin

/?fromUser findsync {
/data get [true seqflag 4 3 roll I
encodePDU /pdu exch def
/!toChan findsync /data pdu put
/state /rdy def

1 dcf
/?fromChan findsync { pop } def

end
/rdy 2 ddbegin

/ ? f romchan f indsync {
/data get decodePDU 1 get seqflag eq
I

/seqflag seqZlag not def
/state /idle def

1 if
1 def
/!toChan Eindsync {

pop /$timeout findsync /timer gmt
delta add put
/state /wack def

1 def
end
/wack 2 ddbegin

/?fromChan findsync dup rdy exch get def
/$timeout findsync {

pop /!toChan findsync /data pdu put
/state /ray def

1 def
end

end

/state /idle def
/seqflag false def
/delta 1000 def % set timeout to 1 second

59 1 def

be enabled in the given state. The transition table is stored in the
transdict dictionary: to each state is associated a dictionary, in
which the procedures are stored for the allowed events. What the
implementor of a FSM based protocol entity has to do is to declare
the set of possible events (lines 20-21), to set up the transdict
(lines 23-54), and to initialize the value of the state variable
and other protocol dependent values (lines 56-58).

How are activated the procedures defined in /transdict?
How are set the guards? The small support needed for this can
be found in the procedure /installsync on the lines 8-15.
Every “event” is represented by an s-point. In fact, all s-points
will have the same generic event handler and the same generic
guard procedure. To enable a s-point we just have to check if a
procedure is defined for the given <state, sync> pair. The generic
event handler just looks up this procedure and executes it.

COMSCRIPT code can be “compressed” by using standard
POSTSCRIPT techniques to compact code. This requires the use
of short variable names, the redefinition of often used and long
keyword sequences and the inclusion of spaces only where neces-
sary. This reduces the overhead when COMSCRIPT code has to be
downloaded to a remote host. Using this compression technique,
the COMSCRIPT code of a full duplex ABP protocol entity fits in
less than 700 bytes.

6.2 The Configuration of Protocol Stacks

In the previous section, we have seen that it is quite simple to
implement protocol entities in COMSCRIPT. It is also simple to
implement an entire protocol stack in the framework of existing
standards.

Moreover, COMSCRIPT contains the ingredients to allow the
building and the (re)configuration of flexible protocol stacks. In
COMSCRIPT, a protocol stack can be implemented by concurrent
COMSCRIFT processes which synchronize their execution and ex-
change data through their s-points. At any moment, the “s-point-
gate” links between processes can be broken and reconfigured
differently leading to the protocol stack (re)configuration.

6.3 Code downloading in COMSCRIPT

Another attractive aspect of COMSCRIPT is that it allows code
downloading. A COMSCRIPT process running in an environment
can send COMSCRIPT code which will be executed by a COMSCRIFT
environment running in a remote host. This is done by installing in
each host, a COMSCRIW server which executes COMSCRIPT code
received from clients. Two such servers have been implemented
in our prototype.

6.4 Current State

The COMSCRIPT implementation uses a table driven approach:
to each allowed combination of state (idle, rdy, wack)
and event (fromuser, toChan, fromChan, timeout)
we associate a procedure that has to be executed if that event
“happens” in the given state. If there is no procedure defined for
a <state, event> pair, it means that the given event should not

A first COMSCRIPT interpreter prototype has been implemented.
Both low level and high level protocol entities have been imple-
mented in the framework of existing standards. The environment
proved to be also suitable for the (re)configuration of protocol
stacks. Moreover, it has been also possible to configure an opti-
mized protocol stack in COMSCRIPT, using optimized precompiled

383

protocol entities implemented in other languages, and thus to over-
come the disadvantages of protocol interpretation.

Two COMSCRIPT servers have been implemented: one server
uses the UDP protocol and the other, the TCP protocol. While
all requests directed to the UDP server are handled in the same
COMSCRIPT environment, each connection established with the
TCP server leads to the creation of a new COMSCRIPT environment
which handles all subsequent requests.

Using these servers, we successfully realized code downloading
of a whole protocol stack and the data exchange between two hosts
not having identical preconfigured protocol stacks.

Being only a prototype, our implementation does not address
neither performance considerations, nor security aspects which
must surely be carefully addressed in a productive environment.
Our effort has been focused on the implementation of the basic
concepts underlying COMSCRIPT to show that they are feasible and
suited for network programming.

COMSCRIPT is both an interpreter and an environment for the ex-
ecution and the synchronization of concurrent processes. The
primary aims pursued by the COMSCRIPT project is the implemen-
tation and the configuration of protocol stacks. The basic model
underlying COMSCRIPT, i.e. concurrent event driven processes
and their manipulable communication links formed of s-points
and gates, proved to be well suited for the efficient realization of
these aims.

Experiments with communities of COMSCRIPT nodes have been
made. In such a community, it is possible to realize code down-
loading, communication between two hosts with different protocol
stacks, as well as dynamic reconfiguration of a remote protocol
stack directly by the application.

The future of protocol stacks lies in the flexibility and recon-
figurability. We are convinced that the COMSCRIPT approach will
bring some promising solutions in the areas of interworking be-
tween different protocol stacks and the tailoring of application-
specific stacks.

References

[9] Plagemann T., Gotti A., Plattner B., CORA - A Heuristic f o r Protocol Con-
jiguration and Resource Allocation, Submitted to IFIP Fourth Intemational
Workshop on Protocols for High-speed Networks, Vancouver, Canada, Aug.
IO-12,1994.

[IO] Tschudin Chr. E, Flexible Protocol Stacks, In SIGCOMM'91 Conference
on Communications Architectures & Protocols, pp. 197-204, Sept. 1991.

[111 Tschudin Chr. F., MuhugusaM., SolanaE., Harms J., ComScript- Concept
and Lunguage, Intemal report, UniversitC de Geneve, Nov. 1992.

[I21 Tschudin Chr. E, On the Structuring of Computer Communicutions, Ph.D
Thesis no. 2632, UniversitC de Genhe, 1993.

[I31 Muhugusa M., Di Marzo G., Tschudin Chr. F., Solana E., Harms J.,
COMSCRIPT: An Environment for the Implementation of Protocol Stacks
and their Dynamic Reconfiguration, in the proceedings of ISACC'94, Mon-
terrey, Mexico, Oct. 26-27, 1994.

[141 Sun Microsystems, Inc. STREAMS Programming M " u z , March 1990.

Murhimanya Muhugusa received the M Sc degree
in computer science in 1991 and the B.Sc degree in
mathematics in 1994 all from the University of Geneva,
Switzerland He is currently member of the Telein-
formatics research group of the Centre Universitaiie
d'hformatique (CUI) and a Ph D student in the "Dr-
partement d' Informatique" of the University of Geneva
His research interests are in the fields of Teleinfoimatic',,
Distnbuted and Operating Systems

Giovanna Di Marzo received the M Sc degree in math-
ematics in 1993 and the M Sc degree in computer sci-
ence in 1994 all from the University of Geneva, Switzei-
land She is currently member of the Teleinformatics
research group of CUI and a Ph D student in the "De-
partement d'lnformatique" of the University of Geneva
Her research interests are in the fields of Computercom-
munications, Distributed and Operating Systems, and
Formal Specification Languages.

Christian Tschudinreceived the M.Sc. degree in mathe-
matics in 1986 from the University of Basel, Switzerland.
Afterwards he worked for two years at the University's
computing center before joining the Teleinformatics re-
search group of the CUI of the University of Geneva.
He received his Ph.D. in computer science in 1993 and
is currently a "maitre assistant'' in the CUI. His main re-
search interests are communication protocol implemen-
tation and interpretation, mainly in terms of communi-
cation messengers, as well as the design of distributed
operating systems.

Eduardo Solana received the M Sc. degree in com-
puter science in 1991 from the University of Geneva,
Switzerland He 15 currentlv member of the Telein

Adobe Systems Incorporated, editor. Po ?tScriptLnnguage Reference Man-
ual, Addlaon-Wesley, fifteenth edition, 1990
Deutsch L P (Aladdin Enterpnses), GhostScrrpt--ifn Interpreter for the
PostScript Language distributed under the GNU General Public License
Hutchinson N C , Peterson L L , The x-kernel. An Archztecruie for iniple-

Jan 1991,pp 64-76
Muhugusa M , Solana E , Tschudin Chr F , Harms J , ComScript - Zm-
plementafion and Expenencer, Internal report, UniverTite de Genkve. No\

formatics research group of the Centre Universitaire
d'lnformatique (CUI) and a Ph D student in the "De-
partement d'Informatique" of the University of Geneva.
He is a member of the IBM technical staft of Geneva
His research interests are in the fields of Computer com
municationq, Management of Distnbuted Applications,
and Cryptology

menting nefworLprotoc olr, In IEEE Transactions on Software Engineering

1992.
O'Malley S. VI., Peterson L. L., A Highly Layered Architecture for High-
Speed Networks. In Marjory J. Johnson, editor, Protocols for High-speed
Networks 11, pp 141-156,Elsevier, 1991.
O'Malley S. W., Peterson L. L., A DynamicNehvork Architecture, ln: ACM
Transactionson Computer Systems, Vol. 10, No. 2, May 1992,pp. 110-143.
Plagemann T., Plattner B., Vogt M., Walter T., A Modelfor Dynamic Con-
figuration oflight-Weight Protocols, In: lEEE Third Workshop on Future
Trends of Distributed Computing Systems, Taipei, Taiwan, April 1992, pp.
100- 106.
Plagemann T., Plattner B., Modules as Building Blocks for Protocol Con-
$figuration, Proceedings lntemational Conference on Network Protocols,
ICNP'93, San Francisco, CA, Oct. 19-22, 1993, pp, 106-1 15.

Jiirgen Harms Studies in physics at the Polytechnical
school of Vienna (Austria) and in electronic engineering
at the University of California (USA). Since 1972 pro-
fessor of computer science at the University of Geneva
President of the SWITCH foundation (Swiss national re-
search network). Fields of interests: operating systems,
teleinformatics.

384

