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Abstract—This paper proposes Tuple MapReduce, a new
foundational model extending MapReduce with the notion of
tuples. Tuple MapReduce allows to bridge the gap between the
low-level constructs provided by MapReduce and higher-level
needs required by programmers, such as compound records,
sorting or joins. This paper presents as well Pangool, an open-
source framework implementing Tuple MapReduce. Pangool
eases the design and implementation of applications based
on MapReduce and increases their flexibility, still maintaining
Hadoop’s performance.
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I. INTRODUCTION

During the last years, the amount of information handled

within different fields (i.e. webs, sensor networks, logs, or

social networks) has increased dramatically. Well established

approaches, such as programming languages, centralised

frameworks, or relational databases, do not cope well with

current companies requirements arising from needs for

higher-levels of scalability, adaptability, and fault-tolerance.

These requirements are currently demanded by many com-

panies and organisations that need to extract meaningful

information from huge volumes of data and multiple sources.

Even though many new technologies have been recently

proposed for processing huge amounts of data, there is

still room for new technologies that combine efficiency and

easiness in solving real-world problems.

One of the major recent contributions, in the field of

parallel and distributed computation, is MapReduce [1] -

a programming model introduced to support distributed

computing on large data sets on clusters of computers.

MapReduce has been proposed in 2004 [2] and is intended

to be an easy to use model, that even programmers without

experience with parallel and distributed systems can apply.

Indeed the MapReduce programming model hides paralleli-

sation, fault-tolerance or load balancing details. Additionally,

it has been shown that a large variety of problems can easily

be expressed as a MapReduce computation.

MapReduce has been massively used by a wide variety of

companies, institutions, and universities. This booming has

been possible mainly thanks to an open-source implementa-

tion of MapReduce, Hadoop, in 2006 [3]. Since then, many

higher-level tools built on top of Hadoop have been pro-

posed and implemented (e.g. Pig [4], Hive [5], Cascading1,

FlumeJava [6]). Additionally, many companies have en-

gaged in training programmers to extensively use them (e.g.

Cloudera2). The massive investment in programmers training

and in the development of these tools by the concerned

companies would suggest some difficulties in the use of

MapReduce for real-world problems and actually involves a

sharp learning curve. Specifically, we have noticed that most

common design patterns, such as compound records, sort or

join, useful when developing MapReduce applications, are

not well covered by MapReduce fundamentals. Therefore,

derived with direct experience with our customers, we found

it necessary to formulate a new theoretical model for batch-

oriented distributed computations. Such a model needs: to

be as flexible as MapReduce; to allow easier direct use; and

to let higher-level abstractions to be built on top of it in a

straightforward way.

In this paper, we propose a new foundational model

of MapReduce - Tuple MapReduce - which targets those

applications that perform batch-oriented distributed compu-

tation. Moreover, an implementation of the proposed model -

Pangool - is provided and compared with existing implemen-

tations of MapReduce. As a result of this work, we suggest

that Tuple MapReduce can be used as a direct, better-

suited replacement of the MapReduce model in current

implementations without the need of modifying key system

fundamentals.

This paper is structured as follows: Next section provides

a brief overview of MapReduce, and existing implementa-

tions in the literature. In Section III, we identify current

problems that arise when using MapReduce. In order to over-

come the problems mentioned previously, a new theoretical

model called Tuple MapReduce is proposed in Section IV.

In Section V, we propose and analyse a Tuple MapReduce

implementation called Pangool, which has been built on

1http://www.cascading.org
2http://www.cloudera.com/
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top of Hadoop. Finally, conclusions and future work are

explained in Section VI.

II. RELATED WORK

In this paper we concentrate on MapReduce, a program-

ming model that was formalized by Google in 2004 [2] and

on Hadoop, its associated de-facto open-source implementa-

tion. We briefly describe the main idea behind MapReduce

and its Hadoop implementation, then we review a series of

abstraction and tools built on top of Hadoop, and mention

an alternative model to MapReduce.
MapReduce can be used for processing information in

a distributed, horizontally-scalable fault-tolerant way. Such

tasks are often executed as a batch process that converts a

set of input data files into another set of output files whose

format and features might have mutated in a deterministic

way. Batch computation allows for simpler applications to

be built by implementing idempotent processing data flows.

It is commonly used nowadays in a wide range of fields: data

mining [7], machine learning [8], business intelligence [9],

bioinformatics [10], and others.
Applications using MapReduce often implement a Map

function, which transforms the input data into an interme-

diate dataset made up by key/value records, and a Reduce
function that performs an arbitrary aggregation operation

over all registers that belong to the same key. Data trans-

formation happens commonly by writing the result of the

reduced aggregation into the output files. Despite the fact

that MapReduce applications are successfully being used to-

day for many real-world scenarios, this simple foundational

model is not intuitive enough to easily develop real-world

applications with it.
Hadoop is a programming model and software framework

allowing to process data following MapReduce concepts.

Many abstractions and tools have arisen on top of MapRe-

duce. An early abstraction is Google’s Sawzall [11]. This

abstraction allows for easier MapReduce development by

omitting the Reduce part in certain, common tasks. A

Sawzall script runs within the Map phase of a MapReduce

and “emits” values to tables. Then the Reduce phase (which

the script writer does not have to be concerned about)

aggregates the tables from multiple runs into a single set of

tables. Another example of such abstractions is FlumeJava,

also proposed by Google [12]. FlumeJava allows the user to

define and manipulate “parallel collections”. These collec-

tions mutate by applying available operations in a chained

fashion. In the definition of FlumeJava, mechanisms for

deferred evaluation and optimisation are presented, leading

to optimised MapReduce pipelines that otherwise would be

hard to construct by hand. A private implementation of

FlumeJava is used by hundreds of pipeline developers within

Google. There are recent open-source projects that imple-

ment FlumeJava although none of them are mainstream3.

3https://github.com/cloudera/crunch

One of the first and most notable higher-level, open-

source tools built on top of the mainstream MapReduce

implementation (i.e. Hadoop) has been Pig [4], which offers

SQL-style high-level data manipulation constructs that can

be assembled by the user in order to define a dataflow

that is compiled down to a variable number of MapReduce

steps. Pig is currently a mature open-source higher-level

tool on top of Hadoop and implements several optimiza-

tions, allowing the user to abstract from MapReduce and

the performance tweaks needed for efficiently executing

MapReduce jobs in Hadoop.

Also worth mentioning is Hive [5], which implements

a SQL-like Domain Specific Language (DSL) that allows

the user to execute SQL queries against data stored in

Hadoop filesystem. These SQL queries are then translated

to a variable length MapReduce job chain that is further

executed into Hadoop. Hive approach is specially convenient

for developers approaching MapReduce from the relational

databases world.

Jaql [13] is a declarative scripting language for analyzing

large semistructured datasets built on top of MapReduce.

With a data model based on JSON, Jaql offers a high

level abstraction for common operations (e.g., join) that are

compiled into a sequence of MapReduce jobs.

Other abstractions exist, for instance, Cascading4, which

is a Java-based API that exposes to the user an easily

extendable set of primitives and operations from which

complex dataflows can be defined and further executed into

Hadoop. These primitives add an abstraction layer on top

of MapReduce that remarkably simplify Hadoop application

development, job creation and job executing.

The existence of all these tools, and the fact that they are

popular sustain the idea that MapReduce is a too low-level

paradigm that does not map well to real-world problems.

Depending on the use case, some abstractions may fit better

than others. Each of them have their own particularities

and there is also literature on the performance discrepancies

between each of them [14], [15], [16].

While some of these benchmarks may be more rigorous

than others, it is expected that higher-level tools built on top

of MapReduce perform poorly compared to hand-optimized

MapReduce. Even though there exists many options, some

people still use MapReduce directly. The reasons may

vary, but they are often related to performance concerns or

convenience. For instance, Java programmers may find it

more convenient to directly use the Java MapReduce API

of Hadoop rather than building a system that interconnects

a DSL to pieces of custom business logic written in Java.

In spite of these cases, MapReduce is still the foundational

model from which any other parallel computation model on

top of MapReduce must be written.

MapReduce limitations for dealing with relational data

4http://www.cascading.org
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have been studied by [17]. The authors illustrate MapReduce

lack of direct support for processing multiple related hetero-

geneous datasets and perform relational operations like joins.

These authors propose to add a new phase to MapReduce,

called Merge, in order to overcome these deficiencies. This

implies changes in the distributed architecture of MapRe-

duce.

Although we share the same concerns about MapReduce

weaknesses, the solution we propose in this paper beats these

problems but without the need of a change in MapReduce

distributed architecture and in a simpler way.

III. THE PROBLEMS OF MAPREDUCE

Although MapReduce has been shown useful in facili-

tating the parallel implementation of many problems, there

are some many common tasks, recurring when develop-

ing distributed applications, that are not well covered by

MapReduce. Indeed, we have noticed that most of the

common design patterns that arise with typical Big Data

applications, although simple (e.g. joins, secondary sorting),

are not directly provided by MapReduce, or, even worst,

they are complex to implement with it. In this section, we

analyse and summarise the main existing problems arising

when using MapReduce for solving common distributed

computation problems:

1) Compound records: In real-world problems, data

is not only made up of single fields records. But

MapReduce abstraction forces to split the records in

a key/value pair. MapReduce programs, processing

multi-field records (e.g. classes in object oriented

programming terminology), have to deal with the ad-

ditional complexity of either concatenating or splitting

their fields in order to compose the key and the value

that are required by the MapReduce abstraction. To

overcome this complexity, it has become common

practice to create custom data-types, whose scope

and usefulness is confined to a single MapReduce

job. Frameworks for the automatic generation of data-

types have then been developed, such as Thrift [18]

and Protocol Buffers [19], but this only alleviates the

problem partially.

2) Sorting: There is no inherent sorting in the MapRe-

duce abstraction. The model specifies the way in

which records need to be grouped by the imple-

mentation, but does not specify the way in which

the records need to be ordered within a group. It

is often desirable that records of a reduce group

follow a certain ordering; an example of such a need

is the calculation of moving averages where records

are sorted by a time variable. This ordering is often

referred to as “secondary sort” within the scope of

Hadoop programs and it is widely accepted as a hard-

to-implement, advanced pattern in this community.

3) Joins: Joining multiple related heterogeneous datasets

is a quite common need in parallel data processing,

however it is not something that can be directly

derived from the MapReduce abstraction. MapReduce

implementations such as Hadoop offer the possibility

of implementing joins as a higher-level operation on

top of MapReduce; however, a significant amount of

work is needed for efficiently implementing a join

operation - problems such as 1) and 2) are strongly

related to this.

In this paper, we propose a new theoretical model called

Tuple MapReduce aimed at overcoming these limitations.

We state that Tuple MapReduce can even be implemented

on top of MapReduce so no key changes in the distributed

architecture are needed in current MapReduce implemen-

tations to support it. Additionally we present an open-

source Java implementation of Tuple MapReduce on top

of Hadoop called Pangool5, that is compared against well-

known approaches.

IV. TUPLE MAPREDUCE

In order to overcome the common problems that arise

when using MapReduce, we introduce Tuple MapReduce.

Tuple MapReduce is a theoretical model that extends

MapReduce to improve parallel data processing tasks using

compound-records, optional in-reduce ordering, or inter-

source datatype joins. In this section, we explain the foun-

dational model of Tuple MapReduce, and show how it

overcomes the existing limitations reported above.

A. Original MapReduce

The original MapReduce paper proposes units of exe-

cution named jobs. Each job processes an input file and

generates an output file. Each MapReduce job is composed

of two consecutive steps: the map phase and the reduce

phase. The developer’s unique responsibility is developing

two functions: the map function and the reduce function.

The rest of the process is done by the MapReduce imple-

mentation. The map phase converts each input key/value

pair into zero, one or more key/value pairs by applying the

provided map function. There is exactly one call to the map

function for each input pair. The set of pairs generated by

the application of the map function to every single input pair

is the intermediate dataset. At the reduce phase MapReduce

makes a partition of the intermediate dataset. Each partition

is formed by all the pairs that share the same key. This

is the starting point of the reduce phase. At this point,

exactly one call to the reduce function is done per each

individual partition. The reduce function receives as input

a list of key/value pairs, all of them sharing the same key,

and converts them into zero, one or more key/value pairs.

5http://pangool.net
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The set of pairs generated by the application of the reduce

function to every partition is the final output.

Equations 1(a) and 1(b) summarize the behaviour map and

reduce function must follow. Remember that the particular

implementation of these functions must be provided by the

developer for each individual job.

map (k1, v1)→ list(k2, v2) (1a)

reduce (k2, list(v2))→ list(k3, v3) (1b)

The map function receives a pair of key/value of types

(k1, v1) that it must convert into a list of other data pairs

list(k2, v2). The reduce function receives a key data type

k2 and a list of values list(v2), that it must convert into a

list of pairs list(k3, v3). Subscripts refer to data types. In

other words:

• All key and value items received by the map function

have the same data types k1 and v1 respectively.

• All key and value items emitted by the map function

have the same data types k2 and v2 respectively.

• Reduce input key and values data types are k2 and v2
respectively. That is, map output and reduce input must

share the same types.

• All key and value pairs emitted by the reducer have the

same types k3 and v3 respectively.

The summary of the process is the following: the map

function emits pairs. Those pairs are grouped by their key,

thus those pairs sharing the same key belong to the same

group. For each group, a reduce function is applied. The

pairs emitted by applying the reduce function to every single

group constitute the final output. All this process is executed

transparently in a distributed way by the MapReduce imple-

mentation.

B. Tuple MapReduce

The fundamental idea introduced by Tuple MapReduce

is the usage of tuples within its formalisation. Tuples

have been widely used in higher-level abstractions on top

of MapReduce (e.g. FlumeJava [6], Pig [4], Cascading6).

Nonetheless, the innovation of Tuple MapReduce lies in

revisiting the foundational theoretical MapReduce model

by using as a basis a tuple-based mathematical model.

Namely, we substitute key/value records as they are used in

traditional MapReduce by a raw n-sized tuple. The user of a

Tuple MapReduce implementation, instead of emitting key

and value data-types in the map stage, emits a tuple. For

executing a particular MapReduce job, the Tuple MapRe-

duce implementation has to be provided with an additional

group-by clause declaring the fields on which tuples must

be grouped on before reaching the reduce stage. In other

words, the group-by clause specifies which fields tuples

emitted by the map function should be grouped on. By

6http://www.cascading.org

eliminating the distinction between key and value and by

allowing the user to specify one or more fields in the group-

by clause, the underlying Tuple MapReduce implementation

easily overcomes the difficulties imposed by the original

MapReduce constraint that forces to use just pairs of values.

Equations 2(a) and 2(b) summarize the new map and

reduce functions contract and the data types for each tuple

field.

map (i1, . . . , im)→ list((v1, . . . , vn))
(2a)

reduce ((v1, . . . , vg), list((v1, . . . , vn))sortedBy(v1,...,vs))

→ list((k1, . . . , kl)) g ≤ s ≤ n
(2b)

In Tuple MapReduce, the map function processes a tuple

as input of types (i1, . . . , im) and emits a list of other tuples

as output list((v1, . . . , vn)). The output tuples are all made

up of n fields out of which the first g fields are used to

group-by and the first s fields are used to sort the fields (see

Figure 1). For clarity, group-by fields and sort-by fields are

defined to be a prefix of the emitted tuple, being group-by

a subset of the sort-by ones. It is important to note that the

underlying implementations are free to relax this restriction,

but for simplifying the explanation we are going to consider

that fields order in tuples is important. As for MapReduce,

subscripts refer to data types.

v1, v2, v3, v4, v5, v6,v7

Group by

Sort by

Figure 1. Group-by and Sort-by fields

The reduce function then takes as input a tuple of size g,

(v1, . . . , vg) and a list of tuples list((v1, . . . , vn)). All tuples

in the provided list share the same prefix which correspond

exactly to the provided tuple of size g. In other words, each

call to the reduce function is responsible to process a group

of tuples that shares the same first g fields. Additionally,

tuples in the input list are sorted by theirs prefixes of size

s. The responsibility of the reduce function is to emit a list

of tuples list((k1, . . . , kl)) as result.

Therefore, the developer is responsible for providing:

• The map function implementation

• The reduce function implementation

• g, s with g ≤ s ≤ n

Let’s say that tuple A has the same schema as tuple B if

A and B have the same number of fields n and the type of

field i of tuple A is the same as the type of field i of the

tuple B for every i in [1 . . . n]. The main schemas relations

in Tuple MapReduce are the following:

201263



• All map input tuples must share the same schema

• All map output tuples and reduce input tuples in the

list must share the same schema

• All reduce output tuples must share the same schema

By using tuples as a foundation we enable underlying

implementations to easily implement intra-reduce sorting

(the so called “secondary sort” in Hadoop terminology). The

user of a Tuple MapReduce implementation may specify an

optional sorting by specifying which fields of the tuple will

be used for sorting (v1, v2, . . . , vs). Sorting by more fields

than those which are used for group-by (v1, v2, . . . , vg)
will naturally produce an intra-reduce sorting. Intra-reduce

sorting is important because the list of tuples received as

input in the reducer can be so long that it does not fit on

memory. Since this is not scalable, the input list is often

provided by the implementations as a stream of tuples. In

that context, the order in which tuples are retrieved can

be crucial if we want some problems such as calculating

moving averages for very long time series to be solved in a

scalable way.

As MapReduce, Tuple MapReduce supports the use of a

combiner function in order to reduce the amount of data

sent by network between mappers and reducers.

C. Example: cumulative visits

As mentioned above, many real-world problems are dif-

ficult to realize in traditional MapReduce. An example of

such a problem is having a register of daily unique visits for

each URL in the form of compound records with fields (url,

date, visits) from which we want to calculate the cumulative

number of visits up to each single date.

For example, if we have the following input:

yes.com, 2012-03-24, 2
no.com, 2012-04-24, 4
yes.com, 2012-03-23, 1
no.com, 2012-04-23, 3
no.com, 2012-04-25, 5

Then we should obtain the following output:

no.com, 2012-04-23, 3
no.com, 2012-04-24, 7
no.com, 2012-04-25, 12
yes.com, 2012-03-23, 1
yes.com, 2012-03-24, 3

The pseudo-code in Algorithm 1 shows the map and

reduce function needed for calculating the cumulative visits

using Tuple MapReduce.

The map function is the identity function: it just emits the

input tuple. The reduce function receives groups of tuples

with the same URL sorted by date, and keeps a variable

for calculating the cumulative counting. Group-by is set to

“url” and sort-by is set to “url” and “date” in order to receive

Algorithm 1: Cumulative visits

map(tuple):

emit(tuple)

reduce(groupTuple, tuples):

count = 0

foreach tuple in tuples do
count += tuple.get(“visits”)

emit(Tuple(tuple.get(“url”),
tuple.get(“date”), count))

groupBy(“url”)
sortBy(“url”, “date”)

the proper groups and with the proper sorting at the reduce

function.

Tuple MapReduce will call 5 times the map function (one

per each input tuple), and twice the reduce function (one per

each group: no.com and yes.com)

For performing the above problem we used some of

Tuple MapReduce key characteristics: on one side, we used

the ability of working with compound records (tuples) and

on the other side we used the possibility of sorting the

intermediate outputs by more fields than those that are

needed for grouping.

D. Joins with Tuple MapReduce

Finally, we incorporate to the foundational model the

possibility of specifying heterogeneous data source joins.

The user of a Tuple MapReduce implementation needs only

to specify the list of sources - together with a data source

id - and the fields in common among those data source

tuples in order to combine them into a single job. The user

will then receive tuples from each of the data sources in the

reduce groups, sorted by their data source id. This predictive,

intra-reduce sorting enables any type of relational join to be

implemented on top of a Tuple MapReduce join.

Equations 3(a) to 3(c) summarize the functions contract

and the data types for each tuple field in a two data

sources join. The mapA and mapB functions are map
functions of Tuple MapReduce that map tuples from two

different sources A and B. The reduce function in the case

of multiple data sources, receives an input tuple of types

(v1, v2, . . . , vg) representing the common fields in both data

sources on which we want to group-by, and two lists of

tuples, the first with tuples emitted by mapA, and the second

with tuples emitted by mapB . The output of the reduce
function is a list of tuples.

202264



mapA(i1, i2, . . . , io)→ list((v1, v2, . . . , vn)A) (3a)

mapB(j1, j2, . . . , jp)→ list((v1, v2, . . . , vm)B) (3b)

reduce(v1, v2, . . . , vg), list((v1, v2, . . . , vn)A),

list((v1, v2, . . . , vm)B)→
list((k1, k2, . . . , kq)) (3c)

(g ≤ n)(g ≤ m)

It is easy to extend this abstraction to support multiple

input sources, not just two.

For simplicity reasons, the above model only contemplates

the possibility to perform intra-reduce sorting by source

id A or B. But it would be possible to set a different

intra-reduce sorting, including using source id at different

positions. For example, it would be possible to perform a

sort-by (v1, v2, id) with a group-by clause of (v1).

E. Join example: clients and payments

Algorithm 2 shows an example of inner join between

two datasets: clients (clientId, clientName) and payments

(paymentId, clientId, amount). For example, if we have

client records like:

1, luis
2, pedro

And payment records like:

1, 1, 10
2, 1, 20
3, 3, 25

Then we want to obtain the following output:

luis, 10
luis, 20

Because we want to join by clientId, then we group by

clientId. Each client can have several payments, but each

payment belongs to just one client. In other words, we have

a 1-to-n relation between clients and payments. Because of

that, we are sure that in each reduce call we will receive as

input at most 1 client, and at least one tuple (reduce groups

with zero tuples are impossible by definition). By assigning

the sourceId 0 to clients and 1 to payments and configuring

an inner-sorting by sourceId we ensure that clients will

be processed before payments in each reducer call. This is

very convenient to reduce the memory consumption, because

otherwise we would have to keep every payment in memory

until we retrieve the client tuple, then perform the join with

the in memory payments and then continue with the rest

of payments already not consumed (remember that reduce

input tuples are provided as a stream). This would be not

scalable when there are a lot of payments per client so

that they don’t fit in memory. Tuple MapReduce allows for

Algorithm 2: Client-payments inner join example

map(client):

client.setSourceId(0)

emit(client)

map(payment):

payment.setSourceId(1)

emit(payment)

reduce(groupTuple, tuples):

client = first (tuples)

if client.getSourceId() != 0

return

foreach payment in rest(tuples) do
emit(Tuple(client.get(“clientName”),

payment.get(“amount”)))

groupBy(“clientId”)
sortBy(“clientId”, sourceId)

reduce-side inner, left, right and outer joins without memory

consumption.

F. Rollup

Dealing with tuples adds some opportunities for providing

a richer API. That is the case of the rollup feature of

Tuple MapReduce, which is an advanced feature that can

be derived from the Tuple MapReduce formalisation. By

leveraging secondary sorting, it allows to perform computa-

tions at different levels of aggregation within the same Tuple

MapReduce job. In this section we will explain this in more

detail.

Lets first see the case of an example involving

tweets data. Imagine we have a dataset containing

(hashtag, location, date, count) and we want to calculate

the total number of tweets belonging to a particular hashtag

per location and per location and date by aggregating the

partial counts. For example, with the following data:

#news, Texas, 2012-03-23, 1
#news, Arizona, 2012-03-23, 2
#news, Arizona, 2012-03-24, 4
#news, Texas, 2012-03-23, 5
#news, Arizona, 2012-03-24, 3

We would like to obtain the totals per hashtag per location

(that is, how many tweets have occurred in a certain location

having a certain hashtag):

#news, Arizona, total, 9
#news, Texas, total, 6

And the totals per hashtag per location and per date (that

is, how many tweets have occurred in a certain location

having a certain hashtag within a specific date):

203265



#news, Arizona, 2012-03-23, 2
#news, Arizona, 2012-03-24, 7
#news, Texas, 2012-03-23, 6

The straightforward way of doing it with Tuple MapRe-

duce is creating two jobs:

1) The first one grouping by hashtag and location
2) The second one grouping by hashtag, location and

date

Each of those jobs just performs the aggregation over

the count field and emits the resultant tuple. Although

this approach is simple, it is not very efficient as we

have to launch two jobs when really only one is needed.

By leveraging secondary sorting, both aggregations can be

performed in a job where we only group by hashtag and

location. How is that possible? The trick consists in sorting

each group by date and maintaining a state variable with

the count for each date, detecting consecutive date changes

when they occur and thus resetting the counter.

The idea is then to create a single job that:

• groups by hashtag, location
• sorts by hashtag, location, date

As we said, the reduce function should keep a counter

for the location total count, and a partial counter used for

date counting. As tuples come sorted by date it is easy to

detect changes when a date has changed with respect to the

last tuple. When detected, the partial count for the date is

emitted and the partial counter is cleaned up.

The proposed approach only needs one job, which is more

efficient, but at the cost of messing up the code. In order

to better address these cases, we propose an alternative API

for Tuple MapReduce for supporting rollup.

The developer using rollup must provide a rollup−from
clause in addition to group − by and sort − by clauses.

When using rollup, the developer must group by the nar-

rowest possible group. Every aggregation occurring between

rollup − from and group − by will be considered for

rollup. The additional constraint is that all rollup-from clause

fields must be also present in the group-by clause. The

developer provides the functions onOpen(field, tuple) and

onClose(field, tuple). These functions will be called by the

implementation on the presence of an opening or closing of

every possible group.

The pseudo code presented in Algorithm 3 shows the

solution with the proposed rollup API for the counting of

tweets hashtags. There is a global counter locationCount
used for counting within a location. Each time a location

group is closed, the aggregated location count is emitted and

the locationCount variable is reset. The reduce function

updates the locationCount and the dateCount with the

counts from each tuple, and is responsible for emitting the

counts for dates.

The rollup API simplifies the implementation of efficient

Algorithm 3: Rollup example

locationCount = 0

map(tuple):

emit(tuple)

onOpen(field, tuple):

onClose(field, tuple):

if field == “location”:

locationCount += tuple.get(“count”)

emit(Tuple(tuple.get(“hashtag”),
tuple.get(“location”),
“total”,
locationCount))
locationCount = 0

reduce(groupTuple, tuples):

dateCount = 0

foreach tuple in tuples do
locationCount += tuple.get(“count”)

dateCount += tuple.get(“count”)

emit(Tuple(groupTuple.get(“hashtag”),
groupTuple.get(“location”),
groupTuple.get(“date”),
dateCount))

groupBy(“hashtag”, “location”, “date”)
sortBy(“hashtag”, “location”, “date”)
rollupFrom(“hashtag”)

multilevel aggregations by the automatic detection of group

changes.

G. Tuple Mapreduce as a generalization of classic MapRe-
duce

Tuple MapReduce as discussed in this section can be seen

as a generalisation of the classic MapReduce. Indeed, the

MapReduce formalisation is equivalent to a Tuple MapRe-

duce formalisation with tuples constrained to be of size

two, group-by being the first field (the so called key in

MapReduce) and an empty set sorting with no inter-source

joining specification. Because MapReduce is contained in

Tuple MapReduce, we observe that the latter is a wider,

more general model for parallel data processing.

Tuple MapReduce comes with an additional advantage.

Implementing Tuple MapReduce in existing MapReduce

systems does not involve substantial changes in the dis-

tributed architecture. For implementing Tuple MapReduce

on top of a classic MapReduce implementation, it is usually

sufficient to support custom serialization mechanisms, cus-

tom partitioner and low-level sort and group comparators

of the existing MapReduce implementation. A proof of
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Hadoop’s
code lines

Pangool’s
code lines

% Reduction

Secondary sort 256 139 45.7%
URL Resolution
(join)

323 158 51%

Table I
LINES OF CODE REDUCTION

that is Pangool, an open source implementation of Tuple

MapReduce on top of Hadoop.

V. PANGOOL: TUPLE MAPREDUCE FOR HADOOP

In March, 2012, we released an open-source Java imple-

mentation of Tuple MapReduce called Pangool7 ready to be

used in production. We have developed Pangool on top of

Hadoop without modifying Hadoop source code. Pangool is

a Java library. Developers just need to add it to their projects

in order to start developing with Tuple MapReduce.

Pangool implements Tuple MapReduce paradigm by al-

lowing the user to specify an intermediate tuple schema that

will be followed by the map output and the reduce input.

This schema defines the tuple data types and fields. Pangool

allows to specify group-by and sort-by clauses per each job.

Additionally, several data sources can be added by employ-

ing different intermediate tuple schemas and specifying a

common set of fields that will be used for joining these data

sources. Users of Pangool define a map and reduce function

similar to how they would do in Hadoop, but wrapping their

data into tuple objects. In addition, Pangool offers several

enhancements to the standard Hadoop API: configuration

by instances and native multiple inputs / outputs. Pangool’s

user guide8 is the reference for learning how to use it.

Additionally, many examples showing how to use Pangool

are provided on-line9.

Table I shows the differences in number of lines when im-

plementing two different tasks in either Hadoop or Pangool.

The first task involves a secondary sort, while the second

task involves joining two datasets. Both use compound

records. These tasks can be seen in Pangool’s examples10

and benchmark11 projects. In both examples, we notice a

reduction of about 50% in lines of code when using Pangool

as opposed to when using Hadoop.

Figure 2 shows a benchmark comparison between Pan-

gool, Hadoop and two other Java-based higher-level APIs on

top of Pangool (Crunch 0.2.012, Cascading 1.2.513). In the

graphic we show the time in seconds that it takes for each

7http://pangool.net
8http://pangool.net/userguide/schemas.html
9https://github.com/datasalt/pangool/tree/master/examples/src/main/java

/com/datasalt/pangool/examples
10https://github.com/datasalt/pangool/tree/master/examples
11https://github.com/datasalt/pangool-benchmark
12https://github.com/cloudera/
13http://www.cascading.org/

implementation to perform a simple MapReduce parallel

task. This task is the “Secondary sort example” whose

code lines were compared in Table I. It involves grouping

compound records of four fields grouping-by two of them

and performing secondary sort on a third field.

Figure 2. Secondary sort time (seconds)

Figure 3 shows the relative performance between different

implementations of a reduce-join on two datasets of URLs.

We decided to benchmark Pangool to other higher-level

APIs in spite of the fact that Pangool is still a low-

level Tuple MapReduce API, mainly for showing that the

associated implementation of Tuple MapReduce should still

be powerful enough to perform comparably to an associated

implementation of MapReduce (Hadoop). In these graphics

we can see that Pangool’s performance is in the order

of 5% to 8% worse than Hadoop, which we think is

remarkably good considering that other higher-level APIs

perform 50% to (sometimes) 200% worse. We also think

that Pangool’s performance is quite close to the minimum

penalty that any API on top of Hadoop would have. In any

case, this overhead would be eliminated with a native Tuple

MapReduce implementation for Hadoop, which we believe

would be very convenient as Tuple MapReduce has shown

to keep the advantages of MapReduce but without some of

its disadvantages.

The benchmark together with the associated code for

reproducing it is available at the following location14. The

full benchmark consists of a comparison of three tasks, one

of them well-known (the word count task).

Pangool is currently being used with success in Datasalt15

projects, simplifying the development and making code

easier to understand, while still keeping efficiency.

So far we have been using it for building inverted indexes

and performing statistical analysis on banking data. On the

other hand we have developed some use case examples like

14http://pangool.net/benchmark.html
15http://www.datasalt.com
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Figure 3. URL resolution time (seconds)

writing a scalable Naive Bayes text classifier16. This example

illustrates that scalable MapReduce-based data mining algo-

rithm implementations such as the ones in Mahout project17

would benefit from being implemented on top of Pangool.

Any computation that involves the usage of MapReduce can

be implemented easily and more conveniently using Pangool

because, as we have stated, it will usually involve the usage

of compound records, inter-group sorting or joins. A popular

example of such a calculation is PageRank. Implementations

of PageRank involve the serialization of compound records

containing multiple authorities and a score metric. It is also

needed to join data from previous steps in order to take into

account, for example, dangling nodes.

VI. CONCLUSIONS AND FUTURE WORK

Our theoretical effort in formulating Tuple MapReduce

has shown us that there is a gap between MapReduce, the

nowadays de-facto foundational model for batch-oriented

parallel computation - or its associated mainstream imple-

mentation (Hadoop) - and mainstream higher-level tools

commonly used for attacking real-world problems such as

Pig or Hive. MapReduce key/value constraint has been

shown too strict, making it difficult to implement simple

and common tasks such as joins. Higher-level tools have

abstracted the user from MapReduce at the cost of less

flexibility and more performance penalty; however, there is

no abstraction in the middle that retains the best of both

worlds: simplicity, easy-to-use, flexibility and performance.

We have shown that Tuple MapReduce keeps all the

advantages of MapReduce. Indeed, as shown, MapReduce

is a particular case of Tuple MapReduce. Besides, Tuple

MapReduce has a lot of advantages over MapReduce, such

as, compound records, direct support for joins, and intra-

reduce sorting. We have implemented Pangool for showing

that there can be an implementation of Tuple MapReduce

16http://www.datasalt.com/2012/04/building-a-parallel-text-classifier
-in-hadoop-with-pangool/

17http://mahout.apache.org/

that performs comparably to an associated implementation

of MapReduce (Hadoop) while simplifying many common

tasks that are difficult and tedious to implement in MapRe-

duce. Pangool also proves that key changes in the distributed

architecture of MapReduce are not needed for implement-

ing Tuple MapReduce. For all these reasons, we believe

that Tuple MapReduce should be considered as a strong

candidate abstraction to replace MapReduce as the de-facto

foundational model for batch-oriented parallel computation.

Future work includes the development of new abstractions

that simplify the task of chaining MapReduce jobs in a

flow. We believe there is room for improvement in this

field. Concretely, we plan to build an abstraction for easing

running flows of many parallel jobs, incorporating ideas

from tools such as Azkaban18 and Cascading.
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