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Abstract. Run-time evolution of applications is an important issue for
safety critical systems, such as nuclear power plants management sys-
tems; or for night-and-day used software like mail/Web servers and bank-
ing systems. It may also be useful, during an application development,
to let portions of code evolve at run-time, not restarting the debugged
application, and still using it. In addition, today’s software is surrounded
by a highly dynamic environment, in terms of softwares, network topolo-
gies, or communication means. Thus, evolution of code cannot always be
anticipated, i.e., foreseeable at design time. At our sense, unanticipated
run-time evolution of object code is favored by disconnection of com-
municating components, i.e., by avoiding as much as possible dependen-
cies among components. Anonymous and asynchronous communications
are two means for realizing disconnection. This paper presents first a
model for unanticipated run-time evolution of code, based on these prin-
ciples. The model enables communication among components through
asynchronous services, which are described rather than designated, thus
respecting the anonymity of communicating parties. Second, we describe
two implementations of the model: a local one allowing to add and re-
move services at run-time on a local host; and a distributed one, which
enables the distribution of an application, while it is still running. We
report as well our experience in realizing a restricted Web server and a
tic-tac-toe game, which demonstrate that our evolution model allows to
hot-swap, duplicate, and remove parts of an application at run-time.

Keywords. Evolution, Run-time, Disconnection, Components, Associa-
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1 Introduction

Programs managing safety critical systems, such as nuclear power plants, satel-
lites orbits, or rocket flights may rarely be stopped. It becomes then difficult
to operate updates of these programs, even when driven by debugging or secu-
rity purposes. Long-running, heavily used software, such as operating systems,
mail accounts managers, e-commerce applications, telebanking, or mobile phone



management appear to have the same needs. Indeed, stopping and restarting a
software offering services to its users 24 hours a day, necessarily implies “delog-
ging” users, unacceptable delays for customers, or careful halt of on-going elec-
tronic transactions. We identify these needs as the need for software dynamic,
i.e., run-time, evolution.

In the dynamic software evolution paradigm we distinguish two types of evo-
lution: anticipated evolution and unanticipated evolution. Anticipated evolution
is an evolution that has been foreseen, at design-time, by the programmer. This
means that plug-ins technologies (like Java servlets [16], Adobe Photoshop plug-
ins [25], or object oriented language inheritance) are mechanisms that allow
programmers and maintainers to extend functionalities, but not to modify the
heart of the application itself. Unanticipated evolution consists in evolution that
has not been foreseen by the programmer. Changes have thus to be supported
either by the language or the execution platform. In the following we have only
interest to the case of unanticipated evolution.

Dynamic evolution of code allows the transparent replacement of a whole or
a part of a system while running. Current approaches to run-time software evo-
lution usually address evolution problems either in the functional programming
paradigm [15,11], limiting thus the problems related to objects transfer; or on
an object-oriented basis but restraining a lot possible changes [34,21,9]. In this
case, run-time changes do not necessarily ensure consistency, or preservation of
desired properties. Object-oriented approaches usually impose rigid constraints
on APIs, ensuring dynamic replacement of compatible sub-types at run-time,
but preventing more flexible evolution schemas.

The evolution model, presented in this paper, supports unanticipated dy-
namic evolution of code. It is based on a run-time platform that provides built-
in facilities for code evolution, and ensures desired properties to be preserved
despite run-time changes. Our model focuses on disconnection among software
entities (components, agents, objects), favoring as much as possible time, space,
reference, and APIs decoupling among communicating entities. It is thus founded
on a disconnected service architecture favoring evolution, through asynchronous
and enonymous communications between entities. Entities do not reference ser-
vices, but provide a description of them. This ensures anonymity, preservation
of services properties despite run-time changes, and frees entities from commu-
nicating through fixed APIs.

This paper is organized as follows. First, Section 2 presents the proposed
evolution model based on a disconnected service architecture. Second, Section 3
describes two implementations of the run-time platform (LuckylJ), a local and a
distributed one. Third, Section 4 describes two case studies built on top of the
implemented platforms. Finally, Section 5 discusses some related works.

2 Evolution Model

The evolution model, presented in this paper, results from the observation that
code evolution is hindered by connections among software entities that insert



dependencies, and thus complicate or limit severely updating of running appli-
cations. Connections take several forms: inheritance/instantiation links between
classes/objects; direct references on data structures between classes/objects; ref-
erences between caller and callee of methods or services; synchronization con-
straints between caller and callee of methods or services; and fixed APIs between
caller and callee of methods or services. The nature of these connection links
among entities suggests that evolution is facilitated if there is time, space, ref-
erences, and APIs decoupling among entities. We chose the following means to
realize decoupling.

Asynchronous communication enables the removal or replacement of entities
without other entities being obliged to wait for all answers to be computed,
delivered, or received.

Anonymous communications allows entities to communicate with each other
with no reference either on the partner’s identities or on the partner’s code or
objects. In our model, anonymous communications heavily rely on service de-
scriptions. Indeed, anonymity implies that an entity, asking for an invocation,
cannot reference either an entity or a service. The approach taken here is that
an entity instead describes the required service. This means that programmers
then specify required actions to be invoked on entities. Similarly, when creating
services, programmers describe actions provided by entities. Service description,
instead of service naming, offers several advantages in the framework of code evo-
lution. First, entities providing equivalent services can be replaced transparently.
Second, qualifying a service, rather than simply relying on a naming reference,
offers a greater assurance on the service functionality, I/O parameters, and QoS.
In addition, service description prevents entities to rely on rigid APIs. It ensures
consistency, since properties, specified in the service description, are guaranteed
despite code evolution.

We chose to restrict interactions among entities, by authorizing parameters of
primitive types only. Indeed, interactions, where parameters carry complex data
structures, prevent easy update of those data structures, since both communi-
cating entities heavily rely on them. Code evolution is encouraged if parameters
are only of primitive types, such as Strings, Integers, Chars, Boolean, etc. These
types are not subject to change, since they are not specific to any program. This
restriction does not limit the programmer from using complex data structures
inside an entity. It does not restrict as well the richness of communications. In-
deed, any object may be serialized. The deserialization thus creates a clone of
the original object, which is free from any reference.

Finally, we chose a service based architecture that offers a convenient granu-
larity level. Code evolution then occurs at the services level, which offer each a
specialized task, whose replacement or removal does not affect the whole system.

The combined use of the above mechanisms results in a disconnected ser-
vice based architecture, where: time decoupling is realized through asynchronous
communications; space decoupling is obtained by a distributed service architec-
ture; reference and APIs decoupling is the result of anonymous communications
using service descriptions.



Unanticipated evolution of code is based on the unique constraint that the
new service has to provide the same service description as the old one. Since
it is an abstract description of the service, any implementation respecting this
description can correctly serve the request. For instance, this allows programmers
to replace an outdated service by a newer one without caring for translation
methods, ensuring that calls to the old service can still be satisfied by the new
one; or for inheritance or sub-typing consistencies between the old and the new
version.

2.1 Disconnected Service Architecture

The model for code evolution, presented here, is based on a disconnected service
architecture, following the above principles. Entities communicate exclusively by
requesting services fulfilled by other entities. In order to avoid as much as pos-
sible connection links among entities, communication occurs anonymously and
asynchronously. Service description, instead of service references, and a coor-
dinating element among the entities achieve disconnection, since they enable
anonymity, asynchrony, and avoid fixed APIs.

Figure 1 shows the basic elements of the architecture. The model consists of
several entities offering some services. Due to anonymity, entities do not com-
municate directly, they address their requests, using a service description, to a
service manager that is in charge of finding an adequate service to invoke.

Service Manager

Matching

Tag Generation

Tag Returned

Service Publication

Entity

Entity

Fig. 1. Service Publication, Request, and Invocation

The model is intended for a distributed scheme, where the service manager
and the entities do not run all at the same location; and where the service
manager is itself made of several distributed pieces.

In a sense, our approach may be considered as a special case of the pub-
lish /subscribe mechanism [10], where subscribers express a long-term interest in
events furnished by publishers. Similarly to the publish/subscribe mechanisms
communications occur asynchronously and anonymously. The main differences



reside in the fact that, in the publish/subscribe model, subscribers are contin-
uously informed of events in which they are interested, and all subscribers of
a given event receive the notification of that event through a bus of events. In
our model instead, service requests do not express long-term interest in an event,
they mean that a given computation is requested (only once). In addition, even if
several requests are performed for the same service, that service is computed for
each subscriber, in a customized way with the subscribers own parameters. Fi-
nally, regarding the infrastructure, our model is not based on a bus of events, but
more on a middleware performing an asynchronous and anonymous connection
between one subscriber and one publisher.

Service Manager. At the heart of the model, the service manager acts as a
coordinating element among the anonymous entities. Entities, offering services,
submit the descriptions of their services to the service manager. Entities, request-
ing a service, ask for it by submitting a description of the requested service to the
service manager. The service manager stores service publications from entities;
and satisfies requests for services from entities. It matches services publications
and services requests, chooses the best adapted service, and actually invokes it.
The coordinating element, here the service manager, is the only element that
knows the identities (references, pointers) of the entities.

From now on, the terms calling/answering entities will be used for the entities
performing service requests, and those satisfying them respectively. We will also
use the terms service publication and service request for a service description
submitted to the service manager announcing an available service, and for a
service description requesting a service, respectively.

Entities. An entity is a running software coupling data and services, such as a
program, a thread, a servlet, a component, or an object. In the framework of our
disconnected architecture, entities communicate with each other anonymously
and asynchronously.

Anonymity means that a calling entity cannot know which entity, and which
service, will answer its service request. In fact, it is not necessary to know the
identities, but it is necessary to have the assurance that the requested task will
be correctly done: the service, actually satisfying the request, should conform to
the service request. Anonymity implies also that there is no reference on other
entities code.

Asynchrony prevents the entity, requesting a service, to wait for the service
to return. The answer, if there is any, will be delivered to the calling entity, by
requesting one of its services. This also means that entities are programmed in
an asynchronous-aware style.

Services. Our evolution model presents a service-based architecture. Interac-
tions among communicating entities occur through service requests exclusively,
i.e., the return of a service occurs also through a service request.



A service is a piece of code, performing some customized computation when-
ever it is invoked with appropriate parameters. A service is coupled with a formal
description of itself including: the service functionality, the behavior (parameters
and returned values), and some quality of service features.

Evolution of a service can then occur transparently. Indeed, replacing an old
service can occur independently of the entities that are requesting it. It suffices
that the new service presents the same, or a stronger description, as the one of

the old servicel.

Tags. A tag is an anonymous reference, uniquely denoting an entity, a service, or
an interaction (a communication). The coordinating element (the service man-
ager) is the only element of the model able to associate to each tag the corre-
sponding reference designating explicitly the entity or the service. Indeed, the
service manager stores service publications along with their service tag, entity
tag, and direct reference.

Tags are generated by the service manager, and serve different purposes.
Whenever an entity is loaded in the system, it receives from the service man-
ager, an entity tag, which will serve to further publish/remove its services, or to
remove itself from the system. Every time a service publication is submitted to
the service manager, a unique service tag is returned to the entity publishing
the service. This tag is further used by the entity to replace/remove the ser-
vice. Whenever a service request is submitted to the service manager, a unique
communication tag is returned to the calling entity, which will then use it for
declaring a new service able to receive the answer of the requested service. This
communication tag is also passed to the actually invoked service, which will
use it for addressing its answer. The communication tag acts as a temporary
anonymous reference between the calling and the answering entities.

It is worth noting that the returns of the tags are the only interactions
occurring synchronously in the model. They occur between the service manager
and the entities. This fact does not prevent the global interactions among the
entities to occur asynchronously.

2.2 Communication

We now describe a whole interaction among anonymous entities. Service publi-
cation, request and invocation are depicted by Figure 1, while service return is
shown in Figure 2.

Service Publication. Publishing a service actually consists in announcing it
to the service manager, by submitting a description of the service 0. The service
manager generates the service tag, stores the service description along with the
tag, and returns the tag to the entity publishing the service [I.

! Subsection 2.3 discusses service descriptions, and Subsection 2.4 the matching
process.



Service Request. Requesting a service simply results in submitting a service
description to the service manager [1. The service description contains as well
the parameters necessary for the communication.

It is worth noting that service descriptions are not publicly available for enti-
ties or for their programmers. An entity actually tries to have its request fulfilled,
by asking for some service. It can happen that there is no service available that
can satisfy it.

Matching. Every time it receives a service request, the service manager per-
forms a matching, i.e, it looks in the service publications storage for the service
description which best matches the request [.

Two cases occur: (a) no corresponding service is found, then the service
manager sends null to the requesting entity. In this case, no communication tag
is generated for the potential answer. The entity, waiting for the tag, then knows
that there is no corresponding service available; (b) one or more services have
been found, the service manager chooses the one that best matches the request?.
In case, several services match in an equivalent manner the request, one of them
is randomly selected. The service manager generates a new communication tag,
that will be used for a potential answer [J. The calling entity, receiving the
communication tag, will immediately use it for registering a new service 0,
which simply waits for the answer from the actually invoked service, if there is
any.

Service Invocation. We differentiate the service request, from the service in-
vocation, where the service is actually called by the service manager to satisfy
a service request.

Once a service satisfying the service request has been selected, the service
manager actually invokes the selected service, passing to it: its own service tag,
the service request (containing potential parameters), and the communication
tag generated after the matching [J.

Service Return. A service, invoked by the service manager, performs the cor-
responding computation, using the parameters included in the service request
received at invocation time. The satisfaction of a service may either consist in
a computation without particular notification to the entity that requested it, or
returns some resulting value or computation notification. In this latter case, the
answering entity performs a service request for delivering its result.

The return of a service is an operation completely symmetric to the service
request. Indeed, the answering entity furnishes the answer, by requesting a ser-
vice, more precisely the service previously registered by the calling entity (at step
[0). In order to unambiguously address the answer to the calling entity, it builds

% Subsection 2.4 defines matching, and best matching.



a service request using the communication tag it received during the invocation
0.

The service manager then performs a matching [J. It invokes the correspond-
ing service U, previously registered using the communication tag 0, enabling
then the calling entity to receive, asynchronously, the return value. The answer-
ing entity, since it performs a service request for delivering the result, receives
a mew communication tag, as a result of the matching process realized by the
service manager. However, in this case, this communication tag is not used for
a further response.

Service Manager

Matching
&

Tag Generation

Fig. 2. Service Return

2.3 Service Description

Since there is no reference, shared among entities, there is no possibility to
namely reference services. The philosophy adopted by our model consists in
describing the requested service. Focus is put on the service and not on the
particular entity that will satisfy it. Service description has two main goals:

— Allow the infrastructure to decide which service publication is the one that
fits the best the service request;

— Let programmers specify, as precisely as they need, services they request or
provide.

In this context, we need to know what kind of service we want, how the
answering entity satisfies the service, and how well the entity satisfies the service.
Informally, services may then be described in three parts answering these three
questions respectively:

Functionality. This is the message part that describes the functionality of a
service by characterizing its kind. An analogy with traditional object pro-
gramming could be the names of a method, its class name, and its package
name. For example, a service allowing to read on a file system has the fol-
lowing functionality, expressed in a pseudo-language:

Functionality: "FileSystem": "Read".



Behavior. This is the information that will guarantee the compliance of the
functional check. It contains basically: arguments proposed to the service
to realize its task; and the way the service has to work (e.g. does it return
an answer, if so, is it answering through a particular service or a service
built with the communication tag, etc.). An analogy with traditional object
programming could be the types of a method and its arguments. In the
reading files example, the behavior specifies that it takes in parameter one
String and returns the result which is also a String, using the communication
tag (implicit by the use of return). The Behavior is expressed as follows:
Behavior: String: "return": String.

Quality of Service. This is the part of the message that allows to select a par-
ticular service from a group of equivalent services by matching most exactly
the quality of service desired with the quality of service proposed. There is
no analogy with traditional programming since the choice between methods
is not an issue for programmers. The reading file example would then indi-
cate that it should be performed locally. In the direct line of the previous
parts we express the quality of service as follows: QoS: "local".

A service description is made of four fields: one for each part - Functionality,
Behavior, and QoS; and a triple of numeric values [d;,ds,ds], indicating the
minimum matching depth of each part.

Each part is described using: first a preamble, specifying the related part:
Functionality, Behavior, or QoS; second, a series of labels.

In the case of the Functionality and QoS parts, the sequence of labels, serve
to specify the functionality and the quality of service respectively, using an in-
creased level of details. For instance, a service offers the functionality Read, in
a FileSystem application. In the case of the Behavior part, two cases occur: ei-
ther the service description is a service publication, or it is a service request. In
the first case, the labels specify the types of the input parameters, the possible
return value, and its type. In the second case, the labels specify typed values,
a possible expected returned answer, and its type. Parameters types are only
primitive types, such as String, Integers, etc.

The fourth field of a service description is a triple of numeric values indicating
the required minimum matching depth each part must reach, when a service
publication and a service request are compared. The matching depth of each
part is the maximum number of consecutive labels that match.

For instance, the following service publication:

(Functionality: "FileSystem": "Read",
Behavior: String: "return": String,
QoS: "local",

[3,2,11)

means that: the minimal functionality is 3, i.e., the service furnishes a reading file
service; the minimal behavior is 2, i.e., the service requires an input parameter,
but does not necessarily return an answer; and the quality of service is 1, i.e.,
the service prefers a local interaction, but it is not necessary.
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Even though labels are well-known, agreed names, such as Read or local,
it is important to note that it is not necessarily the actual name of the service
that will answer the request. It is simply a way of qualifying the kind of service,
used in the service description.

2.4 Matching

Matching is then executed, comparing a service request with the available service
publications. The first three fields are compared separately:

— The Functionality part of the service request is syntactically compared with
the Functionality part of a service publication. The matching mechanism
matches labels according to their position in the Functionality part, going
from left to right. The Functionality part matches at a depth n with another
Functionality part, if n is the greatest number at which they match;

— The matching of the Behavior part is similar to the matching of the Func-
tionality part, except that two different labels, related to parameters, can
match, provided that one is a type name, and the other one is a parameter
value of the same type;

— The matching of the QoS part is similar to the matching of the Functionality
part.

A service publication is equivalent to another one, if it matches at a same
depth for all three parts. A service publication is stronger than another one, if
it matches at a higher depth for at least one of the three parts.

A service request matches a service publication if the 3 matching depths are
greater than the minimum required matching depths [d;,ds,ds] specified in both
the service request and the service publication.

The best adapted service for an invocation is the one that matches at the
highest depth for functionality, behavior and quality of service (first we con-
sider functionality, then behavior and finally quality of service). The minimum
required matching depth ensures a minimal adequacy between what is required
for a service and what is offered by the selected one, which will be actually
invoked. In file system example, the service publication :

(Functionality: "FileSystem": "Read",
Behavior: String: "return": String,
QoS: "local",

[3,2,1D

matches with the following service request:

(Functionality: "FileSystem": "Read",
Behavior: "myFile.html" : "return": String,
QoS: "local",

[3,4,11)
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Indeed, the matching depth is [3,4,2] and it is bigger than the one specified in
the service publication ([3,2,1]), and that of the service request ([3,4,1]). In
this case, the service request needs the service to return a value, therefore the
required depth for Behavior is 4.

Although, in the above example, we use a flat structure to represent each part,
the service description supports a tree-like structure enabling alternatives [27].
Fields corresponding to Functionality, Behavior, and QoS are defined as a tree.
Tt is possible to express conjunctions (between an upper level and its associated
subtree) and disjunctions (among different branches) in a service description.

2.5 Unanticipated Run-time Evolution

Entity Evolution. An entity is first loaded in the system, and further replaced
or removed. In the case of replacement, a state capture functionality (i.e., a
method of the entity called by the coordinating element) enables the transfer of
the state of the old entity to the new entity. Both for replacement and removal,
services publications related to the entity are removed from the repository.

Service Evolution. Service evolution consists in replacing a service by an-
other one which has the same or a stronger service description. Once the new
service has been declared to the service manager, it can then be selected during
a matching process. The replacement can occur after the old service has been
removed; or before its removal, ensuring the continuous availability of the ser-
vice. The service manager is notified of a service removal. It then removes the
service description from its service publications repository. If both the old and
the new services are available simultaneously, the service manager will indiffer-
ently choose one of them during a matching and selection process. It is worth
noting that a service evolution does not imply an entity replacement or removal.

Figure 3 shows a service request [1, followed by a matching process 0. The old
version of the service is no longer available, but the new one is already registered.
Since it satisfies the service request, it is selected by the service manager and
actually invoked [I. The interaction then proceeds as usual. The new version
returns the answer (if there is any), by requesting the appropriate service .
After a new matching process, the service manager invokes the service dedicated
to receive the answer [.

Removing a service is independent of service requests, and generally does
not raise problems, except in some situations, where it may lead to an absence
of service satisfaction. Let us consider the different cases: (1) if the answering
service is removed before a matching service request, or after it has returned, the
service is not available, and no problems arise; (2) if the service is removed after
a matching request, but before a matching selection, the service cannot take
part in a matching process, it is simply not available. If no equivalent service is
found, then the calling entity receives null; (3) the service is removed after a
matching selection, where it was selected, but before its actual invocation from
the service manager. The calling entity is notified that the computation will
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occur, however if the called entity is actually removed, nothing happens; (4)
the service is removed after its actual invocation, but before it returns. This is
similar to (3), the calling entity never receives an answer. The last two cases (3)
and (4) show that in an asynchronous schema, an entity must be programmed
to take into account unexpected cases: missing computations and results.

Service Manager

Matching

Tag Generation

/ Old Version
‘ ~— . —

New Version

Fig. 3. Service Evolution

Unanticipated Evolution. The proposed evolution model favors unantici-
pated evolution at run-time in the following sense. There are no pre-defined
entry-points were code can be modified at run-time. There are no typing or hi-
erarchical constraints on new versions of services, and entities with respect to
old versions. Calling and answering entities are not known at design time. In
addition, their service descriptions are not needed by other entities, either at
design time, or at run-time. In the distributed implementation of the model,
entities are located on different hosts, but none of them knows the location of
the others. The new version of a service can likely be located on a different host
than the old version.

However, of course, entities and services must be programmed according to
the model, and consequently, their design integrates, in an anticipated manner,
mechanisms for run-time evolution: service descriptions, anonymity and asyn-
chrony of computations, as well as possible lack of service return.

2.6 Model Properties

The proposed model, based on a disconnected service architecture, actually en-
ables disconnection: service descriptions enable anonymity and asynchrony, and
remove the need for relying on fixed APIs at run-time; the service manager acting
as a coordinating element frees the entities from being aware of references.

In the case where several services, available simultaneously, are able to satisfy
a given service request, consecutive service requests may likely be satisfied by
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different services. At each request, the service manager performs a matching and
a random selection among equivalent services, i.e., among those having the same
level of matching.

Replacing an old service by a new one does not impose any inheritance or
sub-type constraints on the new service. The only condition is related to the
service description of the new service, which must be equivalent or stronger
than the service description of the old one.

When the removal of an old service is preceded by the registration of the new
version, the permanent availability of the service is guaranteed.

The matching performed on service descriptions is a syntactical matching,
the labels have to match perfectly at the syntax level (except for the parameters
part, whose types only have to match). Labels implicitly refer to an ontology, for
instance, it is clear for all parties that a Read actually stands for reading. The
presented matching scheme supports the insertion of additional label categories.
It can be made more flexible, by allowing semantical labels, instead of syntactical
ones.

All entities and services can evolve at run-time. The coordinating element,
maintaining the connections, is the only element that cannot evolve without
requiring to stop and restart the whole system. However, depending on the way
it is implemented, some parts of it can be implemented as entities, and thus be
subject to run-time evolution. This will be shown in Section 3.

3 Implementation

There are currently two implementations of our model. The first one autho-
rizes the evolution of local Java applications, while the second one enables the
distribution of the entities computations among several hosts.

3.1 Local Implementation

This subsection presents the local implementation, called LuckyJ, of our model.
The name we chose comes from the "I’'m feeling lucky!” functionality of the
Google® search engine, which redirects the user to the Web page that best
matches the request. Similarly, our infrastructure invokes the service that best
matches the service request.

In the framework of this implementation, entities and the coordinating ele-
ment are all loaded in the same JVM, while in the distributed case entities can
all be loaded in different JVM.

Figure 4 shows the different elements of the platform. As described in section
2 we have entities, services, and tags. In the implementation, the coordinating
element consists of two different parts: a description passer, which maintains
entities references, and a service manager, which performs matching, and ser-
vice selection. This division is due to the observation that in previous works on

3 http://www.google.com
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evolution [15], the main reason to stop the whole platform was due to a bug
discovered in the platform itself. Thus, we chose to modularize the platform, in
order to enable evolution of some parts of it. The description passer, maintaining
connections, cannot evolve at run-time. However, the service passer becomes a
regular entity, and can likely evolve dynamically.

LuckyJ Platform

LJEntityllassLoader

Tag Generation

LJEntityllassLoader nzlger
LJEntityllassLoader

LIEntityllassLoader

LIServiceManager1lassLoader

Fig. 4. LuckyJ Platform: Service Publication

The description passer is the coordinating component of the platform, redi-
recting all the messages from the entities to the service manager, and vice-versa.
It maintains references, and generates tags. The description passer receives re-
quests for loading entities, as well as service requests, and service publications.
Due to its central nature, we put in it administrator interfaces, keeping a trace
of: all published services; all entities; and all active threads present in the ser-
vice manager. These interfaces allow the administrator of the platform to kill an
entity or a service manually, and to ensure consistency in the platform and in
its threads.

The service manager is the element of the platform that matches service re-
quests with service publications, and performs a random selection among equiv-
alent matching services. The default implementation stores the different service
publications in a labeled tree that simplifies the matching process and main-
tains a consistency between announced services and invoked services. It is, for
example, impossible to remove a service during a matching process (while the
algorithm goes all over the tree). Two threads control a request and an invoca-
tion respectively. The first thread, originating from the calling entity, serves the
request and reception of the communication tag. The second thread, created by
the service manager, whenever a matching service has been found, serves the
invocation of the selected service. The use of two threads provides asynchrony
in service calls, and computation.

An entity is an aggregate of user defined classes and user-defined instances.
This means also that an entity is loaded in its own ClassLoader. In that manner,
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different versions of the same classe(s) can be loaded in the same JVM. It means
also that once an entity is deactivated (does not have any more active thread)
and that there is no more reference on it and its code, the garbage collector may
remove the code itself as specified in the JVM specifications [20].

Tags are built using two values: a unique number for each tag in the platform
(an incremented integer), and a sparse value (a big size random number). The
size of the random number guarantees the uniqueness, in the sense that the
probability to generate two identical sparse numbers is very low.

Figure 4 shows a service publication. An entity contacts the description passer
for registering one of its services . The entity sends its entity tag, and the service
publication. The description passer simply forwards the service publication to the
service manager along with a newly generated service tag, returned to the entity
0. The description passer keeps a trace of the service tag only for administrative
purposes. The different parts of the service publication are stored into three
labeled trees maintained by the service manager. The nodes of these trees contain
a description object, together with a list of the services providing it.

Figure 5 shows an entity that requests a service, from another entity, by
contacting the description passer. It sends its own entity tag, together with the
service request [1. The description passer simply forwards the request to the
service manager L.

LuckyJ Platform

LuckyJsescriptionPasser

*\.. LIEntityllassLoader

A

LIEntityllassLoader nznger

LJEntityllassLoader

Thread Creation S Y AT e LJEntity1lassLoader

Fig. 5. LuckyJ Platform: Service Request and Invocation

Once it receives a service request, the service manager performs a matching,
i.e, it looks in the service publication tree for the service description which best
matches the request.

Once a service satisfying the service request has been selected, the service
manager creates a new thread dedicated to the selected service invocation. The
service manager passes the service request along with the service tag, and the
communication tag to the description passer U. Finally, the description passer
actually invokes the corresponding method of the answering entity [I.
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Evolution. This subsection describes various evolution scenarios allowed by the
platforms. This allows us to show additional features, provided by the platforms
such as state capture (and retrieval) functionality, and finalization of an entity.

The replacement of an entity by another one is decomposed as follows: (a)
the description passer loads and instantiates the new entity, (b) once loaded, the
description passer captures the sate of the old entity and transfers it to the new
one, (c) it then removes the old entity (see next paragraph for more details). The
default implementation of the state capture functionality consists in capturing
by reflexivity all the public fields value into a single String. In order to capture
as well the state of non public fields, programmers of components must override
the default implementation of the state capture method.

Removing an entity means that the description passer stops all threads cre-
ated by this entity (an entity has its own thread group). It then unregisters all
its published services, and finalizes the entity.

Adding an entity is simply the act of loading a new entity. Nevertheless, from
an evolution point of view, it is possible to have several versions of the same entity
simultaneously. Thus, it is also important to allow micro-evolutions, where the
administrator manipulates (adds, removes) directly the published services.

Due to the intangible nature of services, replacing a service is assimilated to
publishing a new description and removing the old one. Adding a service sim-
ply consists in registering an additional service publication. Removing a service
means that the service manager removes the service publication from the stor-
age tree. This can occur only when no matching process is running. The service
tag maintained by the description passer is also removed. Invocations cannot be
made, even if the service has just been selected during a matching process.

3.2 Distributed Implementation

The LuckyJ distributed implementation is intended first, to offer the same evo-
lution model, but with services distributed on several LuckyJ platforms, allowing
thus space decoupling. Second, the distributed implementation allows maintain-
ers of an application, written on top of LuckyJ, to distribute it on-the-fly on
several physical networked hosts, and without rewriting any piece of code.

These constraints imply, among others, that the whole system guarantees to
a requesting entity, running in the system, the same behavior as in the local
case, i.e., the best matching service, present in the (global) system, will satisfy
its request.

The chosen architecture is distributed (among several platforms), but still
centralized, as depicted in Figure 6. Platforms are organized hierarchically in
a tree-like structure. A root platform stores all service descriptions, performs
the matching for service requests, and generates tags. Service publications, and
requests are forwarded from local platforms up to the root platform, while match-
ing results, tags, and service invocations are forwarded down to the local plat-
forms.

In order to realize this architecture, and to satisfy the constraints explained
above, we have introduced a new kind of entity, called server entity, whose
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Fig. 6. Distributed LuckyJ: Service Publication

role is to enable communication among two platforms, and forwarding of the
information up or down the hierarchy of platforms. Server entities are present
in all platforms, excepts leafs in the hierarchy.

All platforms, except the root platform, have the particularity that they
have been equipped with a client description passer that relays service regis-
tration/removal and invocations. Such platforms are called Client LuckyJ plat-
forms. The client description passer is a key part of our distributed platform.
First, it forwards up in the hierarchy any service publication, and service re-
quest. Second, it passes any communication tag, and matching results to both:
the server entity (for forwarding the information down the hierarchy); and to its
local service manager (for registering any newly published service).

The top platform is an unmodified LuckyJ platform, i.e., its description
passer is the same as in the local implementation. Nodes in the hierarchy are
clients of the platforms that are above them in the hierarchy.

Service and communication tags are generated by the service manager in the
root platform, hence they are uniquely built. Entity tags are generated by the
local platform, where the entity is loaded. The uniqueness in this case is guar-
anteed by combining a newly generated sparse name, with a sequence number.

Communication in a cluster of LuckyJ platforms fits to the model, since
introduction of the distribution is made transparently for the entities. Indeed,
entities still register their services, or address their service requests locally to
their description passer. The further forwarding of the publication or requests
up in the hierarchy is transparent for the entities. The only difference may reside
in the latency introduced by the networked communication. Indeed, registration
or request of a service, followed by the reception of the service tag or the com-
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munication tag respectively, are the only synchronous operations in the model,
thus subject to latencies.

Figure 6 shows a service publication in the distributed implementation. A ser-
vice publication is always effected as many times as there are levels in the clusters
from the local LuckyJ platform to the top platform. The entity, publishing a ser-
vice, first contacts its local description passer (as in the local implementation),
which in turn immediately forwards the publication to its parent description
passer, communicating through the server entity. The publication then reaches
the root platform, and the registration occurs in its service manager [J. This
service manager generates the service tag, and returns it to its local description
passer, which forwards it back to the client description passer, where one thread
is waiting for the service tag. The service tag propagation follows then the same
path in reverse order as the publication [J. At each platform, the service manager
registers as well the service.

Evolution. We chose to prohibit remote loading and removal of entities, since
these operations may arise in different administrative domains. The default case
is to allow such possibilities on local platforms only.

Transfer state functionality from an entity loaded in a platform to another
loaded in another one (see figure 7) is prohibited. In the case where a whole
entity is delocalized, the new entity starts with its own initial state.

Figure 7 shows a service replacement. Unregistering the old version of the
service follows the same steps as the registration (up and down the hierarchy).
The new version of the service registers regularly to its local description passer
(and hence, is available globally). Once a request for the service arrives, the
matching process (in the root platform) simply chooses the new version of the
service [, leading to its actual invocation [I.

Legend

Unmodified
Luckyd Platform

Client
LuckyJ Platform

Fig. 7. Distributed LuckyJ: Service Evolution
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3.3 Implementations Properties

The LuckyJ local platform is relatively lightweight as the core platform is coded
in approximatively 5000 lines (25 Java classes) and the graphical administrator
interfaces are coded in approximatively 1000 lines (7 Java classes). Although
our primary goal was not to completely optimize the code but to provide a
first prototype for testing purposes, we chose to have structures (especially for
matching) that may use more memory, but reduce the algorithms complexity.
Measurements made with 1000 identical services (worst case) show that 100
requests are effected in approximatively one minute (on a Pentium II at 450
MHz under Linux). In fact the more diverse the proposed services are, the more
the matching is fast, as shown by the benchmarks below.

The distributed implementation sticks to the original model, described in Sec-
tion 2. It benefits from its intrinsic properties of disconnection, asynchrony, as-
sociative naming and anonymity. The distributed architecture guarantees (glob-
ally) the best matching.

Additional properties of the distributed architecture are: (a) distribution of
the processing load is performed transparently and at run-time for the entities;
(b) the same code is used for distributed entities and for non-distributed ones.
It is not necessary to change the code of the entities. The anonymous communi-
cation used for requesting services works in the same way for both the local and
distributed case.

Finally, we can mention the fact, that if one the branches of the tree structure
of platforms is disconnected from the whole tree (due to network problems), this
branch can still continue working, even though in a restricted form, i.e., with
the services available under this branch.

Benchmarks. Several benchmarks have been realized on the local platform [29].
The scalability benchmark measures the time needed by the infrastructure to
invoke a service. This benchmark shows that time is constant and low, inde-
pendently of the number of services, provided their descriptions are different
(e.g., 90ms for 20000 different services descriptions). Time increases exponen-
tially already for a few number of services, when most services have all the same
description (e.g., invocation time is 17s for 20000 services and 3 different services
descriptions). The service description benchmark measures the time employed
to invoke a service with respect to the service descriptions’ lengths and to the
number of services. It shows that lengths over 800 labels cause time picks, while
under 800, time is constant. In both cases, the result is independent of the num-
ber of services. The evolution benchmark measures the time needed to replace
large numbers (45000) of services with respect to the number of entities. State
transfer has been realized using the default implementation of the state capture
functionality. Results show that the time grows in a polynomial manner with
respect to the number of entities. In addition, the maximum average time length
for replacing a single simple entity is less than 2ms (52000ms/45000).

In target applications, we consider that the common case is to have, in a local
application, less than 500 components that use few services each of a length less
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than 50. In such an environment, invocations and component replacements are
effected in less than 50ms in any configuration.
The above benchmarks show few things:

— The more services have distinct descriptions the more the platform is fast
when an invocation is made. This indicates that other solutions should be
found for large peer-to-peer systems in which service descriptions may prob-
ably be very similar.
Structures for representing services use a lot of memory space. Thus, in a
potentially global application built on LuckydJ, other ways should be found to
stock the service descriptions and effectively perform matching. This implies
using massive storage applications like databases and probably delocalizing
the matching to external structures.
— Massive run-time evolution of components is a task that appears to behave
with at most a polynomial complexity. In fact, our algorithms should show
a linear behavior, but the internal JVM memory management implies that
deviations may arise.

4 Case Studies

This section describes two case studies realized on top of the local implementa-
tion of our evolution model.

4.1 WED Evolving SErver on LuckyJ (WeeselJ)

WeeselJ is a Web server, with a restricted functionality. It is on-line since its
early stage of development (October 2002). It displays a lot of information (like
complete API of LuckyJ) and is accessible on-line?.

In WeeselJ, there are two types of entities: (1) resident entities that provide
services to other entities, and may keep values in the long term; and (2) servlet
entities that are loaded on demand by the Web server, according to the clients
requests. The use of two types of entities is motivated by the fact that, on one
hand, there are entities that should remain in WeeselJ indefinitely, like the entity
that listens to HT'TP requests. But on the other hand, it is also convenient
to provide a light-weight mechanism, for server-side code execution, through
servlet-like entities.

In its actual version, the entire WeeselJ counts 7 classes for a total of ap-
proximatively 1000 lines of code. The entity, listening to HT'TP requests, has
had more than 160 different versions and each of them had been tested without
stopping the server. The other entities have had at least 20 different versions
each, that were tested independently. Web pages have been showed continuously
since the third day of development® except in 5 occasions where the application

* http://www.weeselj.org
5 Early October 2002. (Current time: October 2003)
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had to be restarted: once for correcting a bug in the description passer related
servlet-like entities, once because of an NFS problem, once for migrating on
another platform (distributed implementation was not yet available), and once
because of an infinite loop in an entity that crashed the JVM, and once because
of a power cut. At this moment, the Web server has shown an availability of
99.99 percents.

4.2 Tic-Tac-Toe

After two hours presentation, this case study constituted a practical work for
third year students at University of Geneva, and has subsequently been used
for open days of our department. During this event, visitors were given the
possibility to freely build their own version of the Tic-Tac-Toe using the diverse
implementations students made. Unadverted public could then compose on-the-
fly its own tic-tac-toe game, and change parts of the application during the
play. This example demonstrates that the evolution model is also powerful for
component development and integration, allowing to duplicate and remove parts
of an application at run-time.
There are two kinds of components available, each in several versions:

— Game Display : this component represents the basic user interface to com-
municate with the rest of the application.
e Colored Graphical User Interface
o Textual User Interface
— Partner’s choice
e Physical adversary on the network
¢ Computer with different levels

The user combines two components, one of each kind, in order to build his
game. It then can modify a component at run-time to either change the display,
passing from a colored GUI to a textual interface, or to change its adversary,
e.g., changing the level of the computer adversary.

Students who had to compute the different versions of the components, where
given the LuckyJ platform, and the service description of the Game Display, and
of the Partner’s choice component services.

Each student group then implemented the entities, and two versions of the
corresponding services, leading to as many different implementations of a service
as the number of students. These implementations where then all registered in
the system, and all available simultaneously.

The key feature in the evolution consisted in allowing the visitor to change
the graphical interface of the game or the adversary level, while still being able
to continue the game. Changes were unanticipated since participants could freely
chose the components forming their own application.

Even though, the evolution in this example is limited, it nevertheless shows
the power of the proposed architecture, since unexperienced people could easily
build an application, and subsequently let it evolve at run-time.
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4.3 Development Feedback

The feedback we have from developing with LuckyJ results from either the pre-
viously shown Web server, and Tic-Tac-Toe examples and from diverse other
development we made like a small text editor [28], distributed stickers, and a
semi-centralized version of the distributed implementation useful for P2P appli-
cations [35].

Testing on-the-fly. When developing using the LuckyJ environment, the main
interest is not to care for implementing a complete behavior. Indeed, we made
tests and, when entities were evolution-oriented (see next point), we began an
iterative test-and-program cycle. Usually, with LuckyJ we may test every step
of programming, since input/output is generated by the transfer state protocol,
and having incomplete functionalities may only lead to invocations that have no
effect. While testing, we used the transfer state functionality to initialize data
correctly without re-launching the platform. When functionalities were miss-
ing, we did not have to program any wrapper. It seems that programming with
LuckyJ is similar to programming with languages such as Smalltalk, since the
platform is permanently running and, any changes are allowed. But although
Smalltalk is fundamentally untyped, the Java language guarantees a typing con-
sistency inside an entity. Thus, we are able to make applications evolve during
the development cycle, while developing them.

Building evolution-oriented entities. It appears that developing entities and
testing them on-the-fly is an easy task with LuckyJ under certain conditions. The
first condition is that entities should always have a transfer state functionality
implemented. This frees the programmer from relying on the basic transfer state
protocol, which may loose information like private variables state. The second
condition is to always finalize entities, and make sure that there are no other
Java objects that reference objects created by the entity. This allows the garbage
collector to collect the code of the entity. Consequently, this results in a long-
living application that does not grow continuously and that also has better
performances and features.

Strengths and Limitations. Evolution of code can be performed at any mo-
ment, e.g., after a service request, but before a service return. The communica-
tion tag can be transferred from an old service to a new one, thus ensuring the
continuity of a request.

There are no constraints on a new version of a service, such as inheritance
or sub-typing adequacy. Even its service description may change, in this case
calling services may simply not have their request satisfied. Absence of answer,
or no satisfaction of a service request is considered a normal case. This implies
that services must be programmed in order to take into account missing compu-
tations, and missing results. This turns out to be useful to make the applications
more robust to network or peer failures.
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The model is scalable in space, since entities may easily and transparently
be distributed on a network, without changing any line of code.

The implementation of the matching algorithm follows an efficient algorithm
based on trees, avoiding duplicate storage of identical labels, and consequently
duplicate searches. However, due to the potential complexity and number of
service descriptions, the whole matching process reveals to be rather low.

We did not perform a formal change impact analysis [3] of our platform.
Nevertheless, we can mention that changes of services entities implementations,
including changes to the service passer, should not affect other services or en-
tities, provided the new version of the service correctly implements the service
description. However, if changes are made on the core LuckyJ Java package it-
self, the platform, and consequently all entities, need to be stopped. Indeed,
this package defines Java parent classes for entities, services, primitive types,
description passer, and service manager. Clearly, such changes have an impact
on the entities that may need to be reprogrammed or tested. At a higher-level, if
new versions of the description passer or the service manager modify interfaces
for publishing services, and requests, or for loading, unloading entities, etc., it is
clear that services will need as well to be reprogrammed.

5 Related Work

On Dynamic Loading. In literature, run-time evolution of applications is
a preoccupation that migrated from the operating systems to the programming
paradigm. Indeed, early works have been proposed to build dynamically loadable
libraries for C and C++ programs [8,14, 30, 32]. The main problems addressed
by these approaches were mainly technical ones based on dynamic loading of
code in a compiled environment. Several restricted solutions have also been pre-
sented [14, 8] for managing the evolution of versions in these environments. In
the Java language, the ClassLoader abstraction for loading code [19, 20] opened
a wide range of perspectives for code evolution. All these techniques constitute
basic building blocks for programming evolution oriented platforms, but usually
the models still consider evolution as an exceptional event. In addition, for secu-
rity of execution purposes, these models restrict possibilities of evolution. This
means that, usually, a textual identifier (like a function name) is considered as
sufficient to identify a functionality. This implies that there are difficulties to
have different implementations of the same functionality coexist. In the case
where some versioning possibilities are open, it is assumed that there is a single
code provider for a given functionality. This seems to us too much restrictive to
be applied to a, potentially, fast evolving environment, where it is common to
have several implementations of a single functionality.

On Evolution Infrastructures. In the past few years, several works have been
realized in order to provide infrastructures (i.e., run-time platforms) to program-
mers and system administrators, allowing run-time evolution of applications. In
compiled environments the works of Gupta [12, 13] study the time points at which
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on-line software version change may occur depending on the threads execution.
This work, however, cannot be applied to object programming [11] because of
the many object inter-dependencies in such languages. Indeed, this model relies
on state mapping, which is difficult to implement for dynamic object creation.

Hicks [15] proposes an infrastructure for allowing type-safe evolution of ap-
plications programmed in a typed C by adding an indirection level for each
function call. In a sense, this work focuses on similar goals as the work presented
in this paper. However, it does not address object-orientation approach, and its
solution is not easily applicable to objects.

In the object-oriented world, most works are concerned: by safely transferring
state of objects from one class to another and vice-versa [34, 9]; by the typed safe
replacement of methods at run-time [7]; or possibly both [21]. These approaches
are more low-level than ours and lack the possibility to make arbitrary changes.
Indeed, changes imply that new classes are either sister classes, or sub-classes of
old classes, restraining a lot the evolution possibilities.

On Components Evolution. In component-oriented software development,
approaches often consider that the key feature, to make an application evolve, is
to be able to change the inter-component connectors and to replace components
at run-time [26], possibly using reflexive mechanisms [31]. This works resemble to
ours for their granularity and also for connecting components which constitutes
also a main ingredient of our model. However, our approach focuses on the fact
that these connectors are resolved each time a communication is made in the
architecture, allowing to consider the evolution mechanism as a common one
rather than as an exceptional one.

In industrial approaches like Enterprise JavaBeans [36], CORBA [23], ser-
vices are referenced through a naming service (namely JNDI [18] for JavaBeans
or the naming and trading services [22] for CORBA). A component willing to use
another, unknown one, must make a research through these services and, once
found, it has to decide if it is the right one, given some specific informations, and
then use it in a potentially long-term communication process. This has several
implications: (1) this means that a programmer should code the part that de-
cides to use one service or not, (2) if the communication process is long enough,
it should be stopped when updated. In our architecture, clients use associative
naming and communications are basically anonymous. This has several advan-
tages as the fact that we are able to split a component into several independent
parts, we may easily use delegation mechanisms, we may transparently make
the whole system evolve leaving an old version of the code while a newer one is
present.

The work that is probably the closest to ours is the work of Sadou et al. [33]
which describes a way to compose services. In this work, linking service calls with
services invoked is made at invocation. There is an agreement made to find out
if a common environment provides the desired services. In fact, the agreement
is made on groups of method signatures that are called a role in the environ-
ment. Although we also rely on a late binding mechanism, we do not constrain
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ourselves to having a common referential for defining a role, but we rather build
a completely open matching mechanism. Thus, we consider that services may
come and leave from our system anytime without being bound to specific entry-
points, our only entry-point being the service manager. This constitutes a more
adapted mechanism for peer-to-peer networks and open systems in general.

On Ad-Hoc and Peer-to-Peer Applications. A common problem for the
ad-hoc networks paradigm and peer-to-peer application paradigm is service dis-
covery [4]. Numerous applications are possible for a system that would allow
to find and use services directly when needed. Our approach fits completely
to these requirements and we proposed diverse implementations in this direc-
tion [27]; the distributed architecture described in this article is only one of them.
In JXTA [24], for example, a common limitation is that peer-group services are
statically defined. This implies that specific search services must be defined when
willing to use a non-peergroup service [38]. Although it is always possible for a
peer to propagate a service announcement through the peer network, our ap-
proach would allow to have a peer-group service that adds dynamically services
at the peer-group level.

On Dynamic Services and Service Description Languages. Few service
description languages have been described. As an example WSDL [5] is a norm
for describing web services. The description is constituted by a document that
binds some parts to other documents (like protocols description). The goal of
WSDL is mainly to allow programmers to describe services. Once found, ac-
tive components have to decide if the described service corresponds to a valid
possibility or not. Comparing to our infrastructure, there is no service manager
infrastructure that manages the matching between services although one could
easily imagine how to integrate our infrastructure with WSDL descriptions in
order to automate the matching. UDDI [37] allows to fill the gap between de-
scribing and finding a service. It constitutes a phone-book used to find services.
Services described using WSDL can be published and retrieved through UDDI
[6]. Adding WSCL to the whole system [2] allows to decouple conversations, i.e.,
the order in which messages are exchanged, from the exchange of message itself.
The main difference with our solution resides in the fact that, in the WSDL case,
it is the programmer’s role to choose between services matching the description.
This also means that there is no way to quantify the quality of matching. Com-
munication is not anonymous and components have references on each other
when the server and the client have been defined. In our model, we consider sim-
ple service specifications, so that programmers can easily integrate the service
descriptions to their code. Nevertheless, we are also considering the possibility
of using more powerful description service formalisms and thus, possibly let our
infrastructure be integrated with components that propose those services.

The Adaptation Description Language (ADL) is part of WSXL [1], and is
used to adapt the output of a WSDL component without invoking it. Adaptation
points (data, presentation and control adaptation) convey updates (location, op-
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erations, and constraints) made to the component’s output, such as changing a
page’s color, or button’s effects. At design-time, an intermediary (between the
application provider and the end user) defines adaptation points that adapt out-
put to particular end-users. At run-time, the supporting middleware, intercepts
user inputs and performs the adaptation, defined by the intermediary at the
corresponding adaptation point. In this case, changes are statically foreseen at
design-time by both the application provider and the intermediary. The compo-
nents, whose output is adapted, is itself not modified, it did not undergo code
evolution. In this case, the more adaptations are needed, the more adaptation
points and corresponding code are added to the whole application.

6 Conclusion

The evolution model proposed in this paper is based on a disconnected service
architecture. Entities communicate exclusively through services, favoring fine-
grained modular code and data structures replacement. In addition, interactions
among entities and services occur anonymously and asynchronously, relying on
service descriptions. This frees entities from synchronization, references and APIs
constraints. In this paper, we described our model, two prototype implementa-
tions, and the implementation of a tic-tac-toe game. Preliminary results and
experiments show that this lead seems promising for run-time evolution, but
also for software engineering purposes, and for a wide range of applications that
possess unanticipatedly evolving internal organisation, and finally for those con-
sisting of autonomous components.

Future work on this subject will be concentrated on enlarging the scope of
applicability the model has, and in implementing distributed platforms adapted
to these application domains. These application domains are typical domains for
which there is a need for disconnection, such as: peer-to-peer networks and ad-
hoc networks, where peers may appear/disappear asynchronously [27]. A possible
application would be to allow dynamic services in JXTA [24] peer-groups.

Another lead we follow is the possibility to describe services using a more
detailed specification than the current service description. These specifications
would then possibly be automatically generated at compile-time (and verified
at load-time). This will be particularly useful for building self-healing and self-
organizing applications [17]. In this case, our platform would act as a middleware
allowing entities to publish their specifications and requests. The self-organising
mechanism will then be obtained, by the fact that entities, by their requests,
anonymously, and in an unpredictable manner, indirectly activate other entities,
without even knowing them. This constitutes a long-term project for which the
work we described in this article constitutes only a first step.
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