

SAMBA – An Agent architecture for Ambient
Intelligence Elements Interoperability

Arne-Jørgen Berre1, Giovanna Di Marzo Serugendo2, Djamel Khadraoui3, François
Charoy4, George Athanasopoulos5, Michael Pantazoglou5, Jean-Henry Morin6,
Pavlos Moraitis7, Nikolaos Spanoudakis8

1 SINTEF, Forskningsveien 1, Blindern, 0314 OSLO, Norway
arne.j.berre@sintef.no

2 Birkbeck College,University of London, UK
dimarzo@dcs.bbk.ac.uk

3 Centre de Recherche Henri Tudor, Luxembourg
djamel.khadraoui@tudor.lu

4 University Henri Poincaré, France
charoy@loria.fr

5 National and Kapodistrian University of Athens, Greece
gathanas@di.uoa.gr, michaelp@di.uoa.gr

6 Korea University Business School, Seoul, Korea
jhmorin@korea.ac.kr

7 René Descartes University, Paris, France
pavlos@math-info.univ-paris5.fr

8 Singular Logic SA, Greece
nspan@singularlogic.eu

Abstract. The SAMBA (Systems for AMBient intelligence enabled by Agents) architecture
reported here is a conceptual service-oriented architecture supporting the interaction and
interoperability of systems, applications and actors by the notion of an “Ambient
Intelligence Element Society”. The objective is to provide an ecosystem infrastructure
supporting the interaction and interoperability of various elements by encapsulating and
representing them through agents acting as members of an Ambient Intelligence Elements
Society, and by using executable models at run-time in support of interoperability.

1 Introduction

The vision for Ambient intelligence (AmI) envisages that devices (e.g. nodes,
routers, PDAs) and software agents running on those devices, organise themselves

2 A.-J. Berre et al.

for the benefit of their respective users. Ambient Intelligence builds on three recent
key technologies: Ubiquitous Computing, Ubiquitous Communication and
Intelligent User Interfaces. Ubiquitous Computing refers to integration of
microprocessors into everyday objects like furniture, clothing, white goods, toys,
even paint. Ubiquitous Communication enables these objects to communicate with
each other and with the user by means of ad-hoc and wireless networking. An
Intelligent User Interface enables the inhabitants of the Ambient Intelligence
environment to control and interact with the environment in a natural (voice,
gestures) and personalised way (preferences, context).

In this paper, we will refer to those inhabitants (i.e. devices and software
agents) as AmI elements (AmIE). Such AmI elements interoperate and share
knowledge or experiences, they gather information (e.g., about road traffic), and
they automatically pay amounts of money from e-purses, customise room lighting
and temperature, request for references, or build user profiles in loosely coupled
environments. Other AmI elements at the same time serve managerial purposes
dealing with corporate data in B2B or B2A interactions. These applications are
supported by unobtrusive and invisible technology, which is able to take decisions
and initiatives, make proposals to the user, and negotiate with others. In addition,
in order to support human beings fully without overloading them with requests and
information, the underlying technology needs advanced means to let the AmI
elements interact and coordinate their work as autonomously as possible. This can
only be achieved if AmI elements can interoperate with each other from business
point of view as well as from technical and semantic point of view.

More specifically, business interoperability concerns issues related to inter-
organisational business processes. Technical interoperability refers at the
knowledge level (e.g. different formats, schemas, and ontology), and at the level of
the underlying information and communication technologies (ICT) and systems.
Semantic interoperability is crucial for interactions among AmI elements that do
not know each other, and that have no common design time compliance. Semantic
interoperability avoids pre-established (at design-time) agreements on information
formats or communication schemas, allowing the discovery and understanding on-
the-fly of relevant information needed for allowing interactions to take place.
Furthermore, the AmI vision combined with the vision of future Networked
Businesses and eGovernment –the ability of doing “Plug-and-Play” of services by
2010 - has a common need for addressing the problem of semantic interoperability.

In this paper, we present a framework called SAMBA (Systems for AMBient
intelligence enabled by Agents) that provides a solution to the aforementioned
interoperability issues. Section 2 describes the AmIE Society requirements
addressed by SAMBA, while Sections 3, 4 and 5 describe respectively the
SAMBA Architecture and SAMBA Interoperability Infrastructures. Section 6
highlights the use of the Model Driven approach in the context of SAMBA.
Section 7 discusses related works, while Section 8 provides conclusions and a
description of future work.

 SAMBA – An Agent Architecture for Ambient Intelligence Elements Interoperability 3

2 AmIE Society Requirements addressed by SAMBA

The AmIE society contains a set of interacting and interoperating AmI elements,
represented by agents. The SAMBA infrastructure will support the agents'
reasoning mechanism, agents’ individual strategies and dialogues and will provide
a run-time service-oriented infrastructure supporting the execution and social
semantic interactions of AmI elements. This infrastructure integrates in a modular
way the notions of services, autonomous agents, mobile agents and mobile devices
by addressing the following main interoperability requirements between AmI
elements.

Semantic interactions. AmI elements participating in ambient intelligence
application, or simply working on behalf of some user, need to interact with each
other and with their environment in order to realise their individual or collective
goals. This interaction implies an understanding of peers’ behaviour, functionality,
and offered services or requested tasks. These interactions also happen with
unknown peers, or with peers with no pre-established agreement at design time.

Autonomous behaviour. Elements situated in an ambient intelligence
environment interact autonomously with each other. They are each dedicated to a
particular user, but need to interact with other elements in order to realise their
functionality. Designing and developing autonomous embedded systems requires
careful management of autonomy issues.

Social interactions. Elements participating in an ambient intelligence
environment constitute an ecosystem, i.e. a society of autonomous AmI elements
that perform activities similar to human behaviour: collaborations, competitions,
transactions, negotiations, and contracting. In addition, for security purposes, such
elements may gather and share knowledge, information and experience amongst
themselves, building a trust-based system. This kind of social behaviour requires
that AmI elements are equipped with extra functionalities that go beyond their
basic goals. They need to exchange semantic (meaningful) information of different
types: functionality, non-functional aspects, quality of service, current state,
recommendations, and negotiations.

Discovery and Composition of services. Independently of the underlying actual
technology, the interaction model for AmI elements is based on a service-oriented
architecture. AmI elements both offer services to and request services from other
elements. Such services, which may have a heterogeneous format, require an
infrastructure for dynamic advertisement, discovery, retrieval, access and
combination to obtain additional functionality irrespectively of the underlying
protocols and standards as well as platforms used for their provision and usage.

Security. Security issues are intimately linked to the AmI elements’ autonomy
and the fact that they reside in a shared environment over which none of the
elements have complete control, and of which each element has only a local
perception. Nevertheless, AmI elements have to ensure their survival, and reach
their goal. Security issues relate to data integrity, confidentiality, authentication,
non-repudiation, access control and resources management, and also include trust,
risk issues and digital rights and policy management (persistent protection).

Electronic legal transactions. For many domains, not limited just to e-Business,
AmI elements may need to engage in legal transactions for accessing, validating, or

4 A.-J. Berre et al.

authenticating services provided by other elements, or by the environment. These
transactions cover aspects related to electronic contracting, rights and policy
management, transfer of electronic currency, and validation of such transactions.

SAMBA provides an integrated computing infrastructure enabling semantic
interoperability and social interaction among autonomous AmI elements. This
infrastructure addresses the above requirements in an intertwined way (mutual
understanding, knowledge sharing for handling interoperability, security support,
resource management, and electronic transactions).

3 SAMBA Architecture
Context. The SAMBA architecture is currently being discussed in the context of
the domain of “Architecture & Platform interoperability” in the INTEROP
Network of Excellence [3] project. The vision is to support the interaction and
interoperability of various systems, applications and actors by encapsulating and
representing them through agents acting as AmI elements in an AmI society. In the
Agent group of the aforementioned domain we have worked on how to provide
support for semantic interoperability and trust, in the context of Ubiquitous
Communication, for personal, business and governmental interactions.

Approach. The key point in the SAMBA approach resides in the separation of
concern between the code of an AmI element, and the description of its functional
behaviour, its non-functional constraints and requirements (e.g. for low-power
devices, reputation, contracting) and run-time policies. This description (expressed
under the form of a formal specification, active model, or ontology) is available
and used at run-time for publishing AmIE capabilities under the form of services,
for AmIE to request services, and for describing non-functional requirements and
policies.

The ecosystem of AmI elements (AmIE society) is supported by the SAMBA
architecture depicted in Figure 1. Under the generic term of AmI elements, the
SAMBA architecture intends to support the following different kinds of
autonomous software: intelligent agents, mobile agents, mobile devices, and Web
services. All the services used are specified in models before they become AmI
elements of the AmIE Society having their intrinsic discovery and interaction
capabilities based on context, semantic and security interoperability. The SAMBA
architecture is composed of 2 interoperability layers bound together by the notion
of models used at run-time:

• AmIE Semantic Interoperability Infrastructure. This upper layer deals
exclusively with models and provides high-level interoperability among
AmI elements by dealing with contextual, semantic and non-functional
aspects. It thus provides AmI elements with capabilities to discover each
other, to interact with each other (either directly or not) and to enforce
policies.

• AmIE Technical Interoperability Infrastructure. This layer is the
execution environment of the different AmI software. It is responsible for
supporting the models by providing the link between the code and the

 SAMBA – An Agent Architecture for Ambient Intelligence Elements Interoperability 5

corresponding model. This layer provides technical interoperability among
different technologies involved in the AmIE society, essentially through the
agents’ abstraction paradigm.

The key idea for linking the two infrastructure layers and for clearly handling the
different aspects of separation of concerns resides in the use of formal descriptions
or models of the different concerns at run-time. These models describe: functional
behaviour of AmI components, non-functional execution constraints (particularly
for mobile devices), service requests from AmI elements, services provided by
AmI elements, and different security policies needed throughout an AmI
application. These models may be of different nature: active models, formal
specifications, or ontology.

In the following we describe in more detail the two infrastructure layers of the
SAMBA architecture.

Figure 1: SAMBA Architecture

4 AmIE Technical Interoperability Infrastructures

The AmIE Technical Interoperability Infrastructure (lower layer of Figure 1) views
all AmIE as agents, equipped with some reasoning and dialogue capabilities,
providing individual strategies selection. This infrastructure integrates in a modular

6 A.-J. Berre et al.

way the service-oriented components available from the AmIE Semantic
Interoperability Infrastructure (upper layer of Figure 1) and any identified
autonomous agent platform.

Agents. AmI elements are represented as agents. Possible platforms that will
support agents’ development will be identified along with the technical issues
referring to the needs for message exchanging between agents residing in different
platforms. The JADE platform with the LEAP lightweight extension is an example
that could satisfy our requirements, since they are open-source, widely used and
compliant with the FIPA standard. The message delivery mechanism will be FIPA
compliant and also support lightweight devices and mobile agents. Being FIPA
compliant gives the possibility to integrate other modules or agents developed in
different contexts or to easily increase the system functionality.

Agents’ reasoning. An emerging area of the agent technology is the use of
argumentation for the decision making of agents. Argumentation can be abstractly
defined as the principled interaction of different, potentially conflicting arguments,
for the sake of arriving at a consistent conclusion (see e.g. [21]). The nature of the
“conclusion” can be anything, ranging from a proposition to believe, to a goal to
try to achieve, to a value to try to promote. A single agent may use argumentation
techniques to perform its individual reasoning because it needs to make decisions
under complex preferences policies, in a highly dynamic environment (see e.g.
[13]). The Gorgias open source tool offers the possibility of using argumentation
for the decision making process of our agents.

Social Interactions / Autonomous Agent Dialogues. The task of modelling
agent dialogues has proved to be of great importance in representing complex
agent interactions. Since the work of Walton and Krabbe [23] proposing a
classification of possible atomic dialogue types (i.e. deliberation, negotiation,
persuasion, information-inquiry, information-seeking, eristic) a lot of works have
been devoted to modelling the first five of them, the sixth being considered
inappropriate in a multi-agent context. Recently, some of this work has adopted an
argumentation-based approach for such dialogue modelling as can be found for
example in [19, 14]. However, there exist only a few cases (see e.g. [19, 17]) of
study of the combination of atomic dialogues and of the particular combination of
embedded dialogues [11]. The innovation of SAMBA, in this field, is the
realisation of the different dialogue types (i.e. negotiation, persuasion, deliberation,
info-seeking, info-inquiry) identified in the literature using the two-level rules
scheme [15] and enabling the agents that are involved in a conversation to change
the type of the dialogue dynamically depending on their goals and the context the
dialogue is taking place.

AmIE Technical Interoperability Infrastructure. This infrastructure will
support agent’s actions and decisions, and mechanisms favouring the use of
service-oriented components by agents. The link with services available from the
AmIE Semantic Interoperability Infrastructure is provided by a series of executable
models used at run-time to invoke the needed services, thus supporting multi-
technology integrations (Web services, mobile agents, MAS).

 SAMBA – An Agent Architecture for Ambient Intelligence Elements Interoperability 7

5 AmIE Semantic Interoperability Infrastructure

The goal of the AmIE Semantic Interoperability Infrastructure is to facilitate
interoperability and interactions/communication among the diverse AmI elements.
The resulting layer will span across the various heterogeneous, existing and
emerging, service- and agent- related technologies and standards (WSDL, OWL-S,
WSMO, UDDI, JXTA, FIPA, LARKS, etc.) and will provide a means for the
enactment of functional and semantic interoperability among the AmI elements.
AmI elements in SAMBA (being either agents or heterogeneous services,) expose
their functionality and semantics through the use of appropriate description
documents and interfaces. The provided layer will specify what these descriptions
and interfaces comprise, and how they are used for the purposes of publication,
discovery and invocation of the respective agents/services.

Models and Languages. This infrastructure will rely on the definition of the
three following elements: 1. a generic AmI element model supporting all concepts
needed for the description of the functional and non-functional behaviour of AmI
elements within a service-oriented context; 2. an Ambient Intelligence Element
Description Language for the AmI elements to publish their specifications or
requests; 2. an Ambient Intelligence Element Query Language supporting the
unified formulation of requests used by AmI elements for discovering each other,
based on their published descriptions.

AmIE Semantic Interoperability Infrastructure. Each AmI element in
SAMBA must be able to perform the following: 1. advertise its functionality;
2.discover other AmI elements that implement/offer a specific functionality; 3.
interact with other AmI elements, in terms of accessing and invoking their offered
functionality. The AmIE Semantic Interoperability Infrastructure, acting as a
service-oriented middleware, will provide the seamless, transparent
accomplishment of the above tasks at runtime. This engine will implement the
AmIEQL language and will be used by AmI elements for the purposes of agent and
service discovery. It will employ ontology-based techniques and mechanisms to
enhance the discovery process, while the implementation of a matchmaking
algorithm will ensure the compliance of query results with the initial requirements.
Moreover, interactions with external registries and networks will take place in a
seamless, transparent manner. Thus, a wide number of existing and emerging
registry types (e.g. UDDI, LDAP, ebXML, etc.) will be accessible for discovering
existing, registered SAMBA AmI elements. This infrastructure will also provide
the necessary mechanisms, in order to allow the publication of service descriptions
to a registry of choice, as well as the invocation of heterogeneous services (Web,
P2P services), as part of the interaction among AmI elements. Invocation of agents
will be catered by the underlying AmI Technical Interoperability Infrastructure.
Like discovery, both publication and service invocation will take place in a unified,
transparent manner. Thus, the overall platform will retain interoperability among
heterogeneous AmI elements. This infrastructure will be open and extensible; it
will cater for the integration of many diverse and heterogeneous service and agent
technologies. Thus, the offered platform will render feasible their interoperability
and seamless interaction.

8 A.-J. Berre et al.

6 AmIE MDE Executable Models

Besides the technological infrastructure supporting AmI systems, it is important as
well to investigate development techniques supporting semantic interoperability of
AmI elements. Semantic interoperability for autonomous elements implies
independence of communication, independence of business flow, and
independence of information format, or APIs descriptions. The Model Driven
Architecture (MDA) is a promising approach for the support of semantic
interoperability due to its promise of providing consistent models at different
abstraction layers with well-defined mappings in between these layers. MDA is the
OMG’s instance of an approach to software development coming to be known as
Model Driven Engineering (MDE) or Model Driven Development (MDD). MDE
focuses on the Model as the primary artefact in the development process, with
transformations as the primary activity mechanism, which is used to map
information from one model to another. The model-driven approach in the
SAMBA architecture will provide the following benefits:

• AmI models describing at different abstraction levels the AmI elements and
interactions;

• Modelling language for expressing models used at run-time;
• Executable models and appropriate transformations.

Model-Driven Engineering Approach. The high-level models shall provide a

framework that makes it easier for the designer to specify the AmI elements and
their interactions than working with low-level specifications. We will specify and
implement automated transformations from the AmI models to the AmI run-time
environment. The modelling language will logically be separated into different
parts which represent different views of AmI elements, such as component
description, interface description, static information and behavioural/executable
specifications. Furthermore the modelling language needs to support the semantic,
functional, non-functional and security aspects of the SAMBA platform.

Transformation from AmI-models to AmI executable run-time specifications.
A series of transformations starting from high-level models, via detailed models,
and ending at AmI executable specifications will be provided. Orthogonal to these
high-level-to-low-level transformations, we will also aim to define transformations
for the different parts of the AmI modelling language (component, interface, static,
behavioural) into the equivalent parts within the AmI run-time environment.

7 Related Work

AmI Supporting Infrastructures and Technology. Current existing techniques for
realising AmI systems focus on isolated requirements, such as electronic device
technology, user requirements, or specific aspects of the supporting infrastructure.
At the infrastructure level, some approaches, which are essentially user/consumer-
centred, are targeted towards offering relevant information and services to the

 SAMBA – An Agent Architecture for Ambient Intelligence Elements Interoperability 9

individual. Some rely on an underlying infrastructure that allows service discovery
to be built through a component based engineering approach, or by using mobile
agents for connecting AmI elements. Other approaches concentrate on the use of
context tags, which capture and communicate information about the environment.
At the application level, some other approaches take a socio-economic view, where
business models underpin the AmI vision that devices have roles and identities.
They are usually built on top of existing underlying technologies. Finally, yet other
approaches focus on virtual organisations, co-operative workplaces in support of
AmI, or on delivering particular portable audio-visual devices providing location
information to disabled users. Although there are some research initiatives in the
field of ambient intelligence, only a few of them focus on providing a computing
infrastructure to the AmI elements seen as an ecosystem. In addition, it seems that
there is no attempt at providing an integrated or systematic solution to problems
such as semantic interoperability of AmI elements, service discovery and
composition, and application development.

The SAMBA approach is not centred on providing specific services to users; it
is centred on providing an infrastructure for the AmI elements to enable their
interactions. It intends to investigate and derive an integrated computing
infrastructure for AmI elements, allowing them to carry out their own tasks
autonomously, while interacting socially and semantically with each other.

Semantic Interoperability. Formal specifications and models are more and
more being used at run-time in conjunction with executing code in order to address
semantic interoperability and adaptability issues. Self-configuring systems,
specification-carrying code are attempts to replace traditional well-agreed (in
advance) APIs with formal specifications understood at run-time by some
middleware infrastructure [18]. This avoids the need of having shared ontologies,
or agreed contracts, thus favouring a high-degree of interaction among
heterogeneously designed components. Following the same ideas, but a larger level
of granularity, B2B middleware for interoperable business applications, are
addressing similar concerns: allowing interaction and run-time evolution of
independently developed business applications [16]. Dynamic self-organising
software architectures are also being defined in order to provide infrastructures
where “components automatically configure their interactions in a way compatible
with an overall architectural specification” [12]. Open issues related to semantic
interoperability through the use of formal models or specifications encompass: the
definition of specific languages for expressing the different functional and non-
functional aspects; reasoning tool for processing specifications at run-time; and
run-time infrastructure supporting the processing of these specifications and the
execution of the corresponding code.

The SAMBA infrastructure addresses these issues and enhances the state of the
art, by providing: active models for specifying different concerns at run-time (from
functional to non-functional, to policies); run-time reasoning tools for processing
those models, and a technical infrastructure supporting the execution of the
underlying components.

Service-Oriented Architectures. The current state of the art in service-oriented
technology is characterized by a large number of heterogeneous services (e.g. Web
services and P2P services), of different scope, origins and architecture models. All

10 A.-J. Berre et al.

these types of services employ different/incompatible architectural models,
protocols, and standards for service description, discovery, publication and
invocation. More specifically:

• Web services are modular, self-described applications that can be described
and discovered as XML artefacts. They mainly offer coarse-grained
business functionality and abide by the client-server model with the Web
service being the server and with its users being the clients. They are
accessible through the Web using established protocols namely SOAP,
WSDL and UDDI. Despite the early standardization efforts for the core set
of protocols, which facilitate the description, discovery and invocation of
Web services, the supporting tools that are provided by vendors (e.g. IBM,
SUN, Microsoft) have brought up many interoperability problems. WS-I
[8] has tackled these issues with the Basic Profile v1.1 [9], which describes
what web service developers should avoid in order to achieve
interoperability among different web service implementations.

• Peer-to-peer (p2p) services follow the P2P architectural model. Currently
there is neither any widely accepted definition of what constitutes a P2P
service nor any accepted standard for their description and discovery. P2P
services vary from fine-grained ones offering basic functionalities, e.g.
discovery of the nodes and data in a P2P network, message exchange or
network structure, to more coarse-grained ones offering high level business
functionality, e.g. file sharing or instant messaging. Thus, P2P services
offer useful functionality which may also be reused and contribute in
service-oriented development. All protocols used for the discovery and
invocation of P2P services are proprietary, e.g. JXTA, GNUTELLA.

Agents on the other hand may be regarded as autonomous, proactive and adaptive
software systems that are able to collaboratively perform tasks that are assigned to
them. A wide list of platforms exists today that may be used for the development of
agents. FIPA [2] has provided a set of standards that promote the agent-based
technology and the interoperability among heterogeneous agents. With respect to
the aforementioned technologies there are many research efforts trying to integrate
them. Most of these efforts use agents as a mean to facilitate the orchestration,
discovery or mediation of services. Whereas, others use agents as service providers
(e.g Web service providers).

SAMBA employs an approach where services and agents are regarded as
distinct elements that may interoperate so as to achieve some objectives. The same
approach has been applied in SODIUM [6], an EU IST project aiming to provide a
platform that facilitates the unified discovery and composition of heterogeneous
services. SODIUM has established a generic service model (GeSMO) [10], which
incorporates the characteristics of Web, Grid and P2P services, a unified service
query language (USQL) [22], which facilitates the discovery of services over
heterogeneous registries and networks, as well as a unified service composition
language (USCL) [20], which supports the composition of heterogeneous services.

Model Driven Engineering. The current state of the art in Model Driven
Engineering (MDE) is much influenced by the ongoing standardisation activities
around the OMG MDA (Model Driven Architecture) concept [5]. The approach

 SAMBA – An Agent Architecture for Ambient Intelligence Elements Interoperability 11

separates related abstraction models for the CIM (Computational
Independent/Context), PIM (Platform Independent Model) and PSM (Platform
Specific Model) levels. The metamodels that will be supported are supposed to be
specified in the Meta Object Facility (MOF), and transformations between models
will be supported by the Query View Transformation (QVT) standard language
emerging from OMG. Furthermore the transformation from models to code will be
supported by the MOF Model to Text (M2T) transformation language also
emerging from OMG. The MODELWARE IST project is working on the creation
of an environment for this [4], which is being further extended in the open source
project Model Driven Development Integration, MDDI. This project is dedicated to
integrate modelling tools, languages and methodologies to create fully
customizable MDD environments. Lately Microsoft has also started to support the
approach through their toolset for DSL – Domain Specific Languages in Visual
Studio 2006. Support for mappings between different models is typically here also
supported by a transformation and mapping programming, similar to the QVT
standard language emerging from OMG.

The SAMBA architecture extends the model-driven approach to handle the
modelling of AmI elements through a manifestation of the relevant concepts in a
MOF-based meta-model.

8 Conclusions and Future Work

The SAMBA conceptual architecture offers a vision of the AmIE Society where
AmIE are represented as agents and services interacting through a service-oriented
middleware offering both technical and semantic interoperability based on the use
of executable models.

The authors have already provided some parts of the architecture: the SODIUM
infrastructure [6] provides a unified approach for composition, discovery and
execution of heterogeneous services (i.e. Web, P2P, and Grid services), and the
Specification-Carrying code infrastructure [18] allows interaction among
components through the exclusive use of specifications. In addition, the INTEROP
NoE [3] has a number of task groups investigating the model-driven approach to
interoperability, with various studies of technologies for model-driven
interoperability and morphosis/transformation. The INTEROP domain group for
Architecture&Platforms is investigating the possibilities for a platform independent
interaction model across various heterogeneous platforms, including agents, web
services, grids and P2P. A group on NFA, Trust, Policies and Security is looking
into interoperability of non functional aspects. The ATHENA IP [1] is realizing
various model-driven tools for both semantic interoperability and integration of
agents in a SOA platform. The MODELWARE IP project [4] is developing model
driven tools to support an underlying open source toolset.

Upcoming projects, such as SWING [7] and MODELPLEX [4] will extend the
work around semantic services and model-driven interoperability, and we hope to
be in a position to later bring the various solution elements together, for a more
complete realization of the SAMBA vision and architecture.

12 A.-J. Berre et al.

3 References

[1] ATHENA project: www.athena-ip,net
[2] FIPA – Foundation for Intelligent Physical Agents, http://www.fipa.org/
[3] INTEROP project: www.interop-noe.net
[4] MODELWARE and MODELPLEX projects: http://www.modelbased.net
[5] OMG MDA, www.omg.org/mda
[6] SODIUM: http://www.atc.gr/sodium
[7] SWING: http://www.sintef.no/content/page1883.aspx
[8] Web Services Interoperability Organization: http://www.ws-i.org
[9] WS-I Basic Profile v1.1, http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-

24.html
[10] Athanasopoulos G, Tsalgatidou A, Pantazoglou M (2006) Interoperability among

Heterogeneous Services. In: Proc. of IEEE International Conference on Services
Computing (SCC ’06): 174-181.

[11] Dimopoulos Y, Kakas A, Moraitis, P (2005) Argumentation Based Modeling of
Embedded Agent Dialogues. In: Proc. of 2nd International Workshop on
Argumentation in Multi-Agent Systems, (ArgMAS'05).

[12] Georgiadis I, Magee J, Kramer J (2003) Self-organising software architectures for
distributed systems. In: Wolf A, Garlan D, Kramer, J (eds) Proc. of the 1st ACM
SIGSOFT Workshop on Self-Healing Systems (WOSS'02): 33-38.

[13] Kakas A, Moraitis P (2003) Argumentation Based Decision Making for Autonomous
Agents. In: Proc. of 2nd International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS'03): 883-890.

[14] Kakas A, Maudet N, Moraitis, P (2004) Layered strategies and protocols for
argumentation-based agent interaction. In: Proc. of 1st International Workshop on
Argumentation in Multi-Agent Systems (ArgMAS'04).

[15] Kakas A, Maudet N, Moraitis, P (2005) Modular Representation of Agent Interaction
Rules through Argumentation. In: Journal of Autonomous Agents and Multi-Agent
Systems, (JAAMAS), Springer US, 11(2): 189-206.

[16] Kutvonen L, Ruokolainen T, Metso J, Haataja J (2005) Interoperability middleware
for federated enterprise applications in Web-Pilarcos. In: Konstantas D, Bourrières JP,
Léonard M, Boudjlida N (eds) Proc. of 1st International Conference on
Interoperability for Enterprise Software and Applications (I-ESA’05): 185-196.

[17] McBurney P, Parsons S (2002) Games that agents play: a formal framework for
dialogues between autonomous agents. In: Journal of Logic, Language and
Information, 11(3): 315-334.

[18] Oriol M, Di Marzo Serugendo G (2004) A disconnected service architecture for
unanticipated run-time evolution of code. In: IEE Proceedings-Software, 151(2): 95-
108.

[19] Parsons S, McBurney P, Wooldridge M (2003) The mechanics of some formal inter-
agent dialogue. In: Proc. of Workshop on Agent Communication Languages: 329-348.

[20] Pautasso C, Heinis T, Alonso G (2005) D6-SODIUM Unified Service Composition
Language (USCL), SODIUM project IST-FP6-004559 deliverable, June 2005.

[21] Rahwan I, Moraitis P, Reed C (eds.) (2005) Argumentation in Multi-Agent Systems:
Proceedings of the First International Workshop (ArgMAS'04) LNAI, Volume 3366,
Springer-Verlag, Berlin, Germany.

[22] Tsalgatidou A, Pantazoglou M, Athanasopoulos, G (2005) D8-Specification of the
Unified Service Query Language (USQL), SODIUM project IST-FP6-004559
deliverable, June 2005.

[23] Walton DN, Krabbe ECW (1995) Commitment in dialogue: basic concepts of
interpersonal reasoning, State University of New York Press.

