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1 Introduction 

Traditional engineering methods cope well with reducible 
systems (Norman and Kuras, 2004), i.e., those systems 
which can be decomposed without loss and which are made 
of parts or sub-systems which are well known, which 
interact in predefined and well-understood ways and mostly 

stay the same during the system�’s life time. For  
reducible systems, the sum of their parts makes the whole. 
Systems with emergence, at the contrary, are more (or less?) 
than the sum of their parts. For instance, swarming birds 
only follow very simple local rules, but as a whole the 
swarm exhibits sophisticated dynamic formations. In 
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manufacturing, robotic modules may function perfectly in a 
certain arrangement, but not in another one. GPS-based 
mobile services may show good performance at locations 
where difficulties were expected, and bad performance in 
areas of good reception because of the interference of other 
devices. 

An increasing number of modern systems do not 
correspond to the description of a reducible system; their 
composition as well as the user requirements and the 
environment dynamically change, and often, their behaviour 
or some of their characteristics are emergent. 

Complexity is omnipresent (Delic and Dum, 2006), and 
there are two main directions of research: 

1 complexity as an emerging phenomenon (in natural or 
engineered systems) to be understood 

2 complexity as an engineering problem to be tackled, 
mostly by reducing the environmental complexity, or 
by augmenting the system�’s capabilities of coping with 
complexity (Schuh et al., 2006). 

Complexity engineering (Buchli and Santini, 2005) can be 
considered as a third direction, which currently attracts the 
attention of an increasing number of researchers: using 
complexity for engineering �– not fighting against it, but 
using it to the engineer�’s favour. This is the topic of this 
article. Under the name of emergent engineering (Ulieru 
and Doursat, 2010) argues for the same paradigm change as 
we suggest with complexity engineering. 

It is crucial for the advances in complexity engineering 
to clarify concepts which, originally used in chemistry, 
physics, biology or sociology, have been transferred to 
technological systems and engineering. Researchers often 
disagree with each other about the meaning and implications 
of concepts, and this article contributes by discussing and 
clarifying the most important concepts. 

1.1 Scope and organisation 

The topic of this article is engineering, not the sole study of 
complex systems (CS). We therefore do not discuss natural 
CS, but rather consider how to engineer artificial CS, and 
how to use the findings of complexity science. Different 
complexity disciplines are explained in Section 2. 

Researchers such as Lucas (2008), Wolfram (1986), 
Holland (1975, 1992, 1995, 1998), De Wolf (2007) and 
Gershenson (2007) have studied the various definitions for 
CS and their characteristics. We therefore only briefly 
consider complex systems definitions in Section 3 and lay 
the focus on various notions which are important for  
this article, like self-organisation and emergence. The 
controversies between emergence, surprise, unpredictability, 
(non-)determinism and others are discussed as well as  
the differences between distributed and decentralised 
control. 

In Section 4, we reflect on the complexity engineering 
concepts, draw conclusions and give directions for future 
work. 

2 Engineering types 

Complex and unconventional systems require different 
mind-sets than offered by classical engineering. This is why 
general and complexity-related engineering comes in 
various flavours. It is important for the reader to understand 
the different types of engineering, some of which are only 
currently emerging, and have not been established as proper 
disciplines yet. This does, however, not reduce their 
importance and relevance. 

Table 1 gives an overview of the engineering types and 
the systems which they respectively address; these 
engineering types are discussed in Sections 2.2 to 2.5. 

Table 1 System types and engineering types 

 Individual systems Systems of systems 

Reducible 
systems 

Classical engineering Classical systems 
engineering 

Systems with 
emergence 

Complexity 
engineering 

Complex systems 
engineering 

2.1 Preliminary discussion 
This section addresses relevant aspects and notions which 
are required to understand the subsequent classification. 

2.1.1 Systems of systems 
Systems of systems (SoS) are very large and CS (Bjelkemyr 
et al., 2007), composed of complex subsystems. The 
entwined nature of the systems�’ multiple components limits 
the success of a standard divide-and-conquer approach 
(Bullock and Cliff, 2004). Classical methodological 
approaches neglect or are unable to fully capture the sources 
of emergence and evolvability in distributed networks. 

2.1.2 Modularity and its limitations 
Modularity is a well-known way to divide a large system 
into parts which can be individually designed and modified. 
The modules can then be assembled stepwise, and the 
system�’s functionality verified accordingly (Kenger, 2006). 
This works very well for reducible systems. Modularity is 
closely related to reductionism, which reduces the system to 
the sum of its parts, and goes contrary to the principle of 
emergence. Reductionism is only valid if the parts are 
unrelated (which is rarely the case). Nevertheless, analysing 
the parts can be helpful: they are easier to understand, and 
their sum gives an idea of the whole, even if incomplete 
(Auyang, 1998). Also, modules are useful as building 
blocks to create systems which may or may not exhibit 
emergent behaviour. 

However, in the case of CS, it is wrong to assume that 
the behaviour of the whole system could be reduced to the 
sum of its parts (Bar-Yam, 2003). The parts are often 
strongly dependent on each other and interact in multiple 
ways. Therefore, one of the challenges of complexity 
engineering is how to integrate modularity into a framework 
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which can cope with emergent behaviour (if this should be 
possible). The effects of composition arise where many, in 
themselves often simple, entities interact to form a system; 
the resulting behaviour is usually not simply the linear sum 
of the behaviour of the individual components (Gell-Mann, 
1995). 

2.1.3 Trade-off: creative freedom versus specification 
One of the challenges in engineering is the trade-off 
between the system specification1 by the designer and the 
creative freedom of the system (Buchli and Santini, 2005; 
Choi et al., 2001). More freedom means less control over 
the system�’s behaviour. 

Figure 1 Desired, allowed and possible areas (boxes) of system 
behaviour 

 

Engineers need to find ways to delimit the system�’s 
behaviour while still allowing it sufficient creative freedom 
to localise solutions in an adaptive way. Indeed, most 
systems exhibit certain patterns of behaviour, which is 
enough to make predictions about system behaviour. 
Consequently, any state belonging to the delimited patterns 
are acceptable. In other words, to assure that the system will 
not show undesired behaviour, the system can be bound to a 
virtual box.2 Inside this box, the system is free, but it may 
not leave the box [Figure 1, for further discussion see also 
(Di Marzo Serugendo, 2009)]. While the behaviour is inside 
the range specified by the desired box, no actions need to be 
taken. If the system leaves this area and remains inside the 
allowed area, no drastic measures need to be taken, but the 
system should eventually steer itself back towards the 
desired area. In case a system should diverge take states 
which are possible, but not allowed, immediate actions are 
necessary to bring the system back on save grounds. The 
fact that a system even reached this non-allowed area 
already means that the working parameters or policies need 
to be adjusted. The difficulties here are: 

 Finding the box or pattern which corresponds to the 
acceptable system behaviour. This means that the 
designer has to define the limits of what is acceptable, 
and then somehow relate one borderline to another. 

 Describing the box or pattern in a coherent way. 
Besides a description in natural language, in most cases 
also a computer-readable/-understandable version is 
necessary. 

 Agreeing a compromise between the normally 
acceptable system behaviour and the additional 
freedom we can concede to the system. For instance, 
normally a mobile robot may not be allowed to enter a 
certain area of the shopfloor. Nevertheless, allowing it 
to do so under certain circumstances may enable the 
other mobile robots to execute their task in a more 
efficient way, and thus, it may improve the overall 
system performance. This is why the designer must find 
a balance between the benefits and potential dangers of 
crossing the border of acceptable system behaviour. 

 Staying inside the box. 

To conclude, the trade-off between creative freedom and 
specification is an important issue, and further investigation 
is necessary. 

2.1.4 Complexity science versus complexity 
engineering 

Complexity science, the study of CS, has seen an increasing 
interest in the last decades, pioneered by the Santa Fé 
Institute in New Mexico, USA (Waldrop, 1992). Ever since 
characteristics of CS in diverse areas have been thoroughly 
studied. Only few authors, however, take an engineer�’s 
perspective towards using the findings of complexity 
science for designing systems, even though the term 
complexity engineering appeared already in 1986 in the 
context of pattern recognition in cellular automata 
(Wolfram, 1986). 

As we use it today, complexity engineering aims  
at the concrete use of complexity-inspired methods  
for engineering. �“In complexity science, one looks for 
underlying and unifying principles among many systems. In 
complexity engineering, we look into these different 
systems and their underlying principles from the point of 
view of application�” (Buchli and Santini, 2005). 

Complexity engineering has not been established as a 
proper discipline yet. Literature about methods or 
frameworks is still scarce. One of the reasons may be basic 
misunderstandings over common terms such as emergence, 
i.e., The seeming contradiction between engineering and 
emergence may arise because engineers freely move from 
so-called predictive definitions, in which emergence is 
equated to surprise, towards definitions of strong emergence 
where higher-level patterns can be used as design templates 
(Johnson, 2005). To overcome such problems, the broader 
dissemination of clear definitions (see Section 3.4) is 
important. 

The techniques and concepts from complexity science 
need to be formalised in order to be usable in engineering 
(Buchli and Santini, 2005). Most complexity research is still 
in an early stage of development, in the �‘trial and error 
intuitive engineering phase�’. So far, there are almost no 
methodologies, no common language and no common body 
of experience. Only a collection of examples, methods and 
metaphors for modelling complex, self-organising systems 
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exist. Integrated theoretical foundations are still lacking 
(Heylighen, 2008). 

This situation is a strong motivation to our endeavour to 
establish complexity engineering as a broadly known 
discipline, to deliver useful definitions, and to give an 
overview of the existing methods and approaches. 

2.2 Classical engineering 
Classical engineering is what is taught in most common 
engineering courses at universities, and what most scholarly 
books transmit. The engineering sciences have centuries old 
traditions, and in comparison, complexity science is 
relatively recent. It is still mostly considered as somewhat 
alternative, and we therefore refer to the �‘old�’ school as 
classical or traditional. 

Such engineering is essentially applying methods and 
tools to solve problems using a reductionist approach, be it 
top-down or bottom-up. This means that �‘what you see is 
what you get�’, and there is no space to consider concepts 
like emergence. 

Classical engineering, the majority of scientific models 
as well as our intuitive understanding are based on 
reductionism or analysis, predictability and objectivity, 
determinism, correspondence theory of knowledge and 
rationality (Gershenson, 2007). An example could be the 
divide and conquer strategy of software development 
strategies and Newtonian mechanics (Heylighen, 2008): a 
problem is cut into its simplest components, and each of 
them is treated separately. They are described in a complete, 
objective and deterministic manner. Once each of them is 
resolved individually, then they are joined and, voilà, the 
entire problem is solved. Most engineers would indeed 
make the (often reasonable) hypothesis that the parts 
interact in some well-known and predefined ways without 
further influencing each other. Modularity then works at its 
perfection. 

For application examples of classical engineering see 
Table 2. 

Table 2 Application examples of classical engineering 

Engineering area Application example 

Software engineering Planning algorithms 

Mechanical engineering Construction of a crane 

Electrical engineering Hierarchical control of a machine 

Production engineering Dedicated assembly station 

Biotechnology Fruit fly breeding 

2.3 Classical systems engineering 
Systems engineering, as described by the international 
council on systems engineering (INCOSE), is an 
interdisciplinary approach focusing on all aspects of 
systems. It considers all phases of a product, from its 
concept to production, operation and disposal, as well as all 
the involved parties, such as suppliers, manufacturers and 

customers. Although systems engineering attempts to 
consider the entire system instead of only parts of them, it is 
indeed a classical engineering approach because it ignores 
emergence and related concepts. 

Systems engineering emphasises the importance of 
managing the whole as well as its parts, of seeing the 
interconnectedness of decisions, of taking a collective view. 

For application examples of classical systems 
engineering see Table 3. 

Table 3 Application examples of classical systems 
engineering 

Engineering area Application example 

Software engineering Large database systems with several 
subsystems 

Mechanical and 
electrical engineering 

Cars, trains, ships, air planes 

Production engineering Dedicated assembly line 

Biotechnology Production of vaccines 

2.4 Complexity engineering 
Complexity engineering is the creation of systems using 
tools originating from complexity science. The question is 
not so much in which ways complexity engineering would 
be better than classical engineering, but rather, in which 
situations classical engineering comes to its limits and 
complexity engineering can help. This is mostly the case 
with CS (discussed in Section 3.1): systems which are 
composed of many interacting components, where the 
interactions are multiple and changing in time; open 
systems; systems which have to function in a dynamic 
environment and strongly interact with it. CS use 
adaptation, anticipation and robustness to cope with their 
often unpredictable environment (Gershenson, 2007), and 
complexity engineering therefore requires tools which take 
these issues into account. 

Such systems, said to have emergent functionality 
(Steels, 1991), are useful in cases where there is a lot of 
dependence on the environment and it is difficult or 
impossible to foresee all possible circumstances in advance. 
Traditional systems are therefore unlikely to be able to cope 
with such conditions. Systems with emergent functionality 
can be seen as a contrast to reducible systems and usually 
hierarchical functionality; the latter means that a function is 
not achieved directly by a component or a hierarchical 
system of components, but indirectly by the interaction of 
lower-level components among themselves and with the 
world. Careful design at micro level leads to behaviours at 
macro level which are within the desired range. 

Typically, no single entity within the system knows how 
to solve the entire problem. The knowledge for solving local 
problems is distributed across the system (Gershenson, 
2007), and together, the entities achieve an emerging  
global solution. The right interactions need to be  
carefully engineered into the system, so that the systems 



 Concepts in complexity engineering 127 

self-organising capabilities serve our purpose, i.e., they do 
satisfy and support the requirements (Buchli and Santini, 
2005). 

Complexity engineering will not lead to systems which 
are unpredictable, non-deterministic or uncontrolled.  
The output (i.e., certain aspects) may be predicted and 
controlled �– it is how the system arrived to that output that 
can not be known, complex or not computationally 
reproducible (Buchli and Santini, 2005). However, it 
remains an open question if the latter is acceptable for all 
application domains. The system�’s development cannot be 
completely separated from the system�’s operation in the 
case of a CS (Norman and Kuras, 2004). 

For application examples of complexity engineering see 
Table 4. 

Table 4 Application examples of complexity engineering 

Engineering area Application example 

Software engineering Peer to peer systems, grid 
Mechanical and machines 
materials engineering 

Made of intelligent�’ materials, 
which recognise when parts 

undergo too much strain 
Electrical engineering Traffic control 
Production engineering Individual evolvable assembly 

systems 
Biotechnology Tissue engineering, growing 

organs in the test tube 

2.5 CS engineering 
In contrast to classical systems engineering, which treats 
reducible systems, CS engineering will apply the methods 
from complexity engineering to SoS. CS engineering 
(Kuras, 2006) is appropriate to address problems which are 
continually changing or which require concepts at multiple 
scales or levels to be fully understood. The notion of higher 
and lower scales of conceptualisation gives rise to the 
metaphor of a ladder of scales, in contrast to the often-used 
concept of a hierarchy of scales. 

Table 5 Application examples of CS engineering 

Engineering area Application example 

Software engineering Self-organising displays  
(Puviani et al., 2010) 

Electrical engineering Large-scale traffic management 
Production engineering Evolvable assembly systems 

including their supply networks and 
customers 

Biotechnology Man-made biological ecosystems 
Robotics Open mobile robots coalitions 

CS engineering is typical for cases where SoS constantly 
evolve, where different parts integrate or compositions 
dissolve at any instant. There is both internal competition 
and collaboration which stimulates evolution. Specific 
outcomes of complex-system development cannot be 

specified in advance. But they can be shaped (i.e., strongly 
and persistently influenced) (Wolfram, 2002), i.e., by 
guiding policies as used in MetaSelf (Di Marzo Serugendo 
et al., 2010). 

For application examples of CS engineering see Table 5. 

2.6 Inspiration from nature 
Not only CS, but also nature in general inspires many 
researchers and engineers. The following classification 
attempts to structure this broad field. 

Bio-inspiration in technology can take various forms. 
Each of them has particular goals and strategies, and 
researchers should be aware of them. The items 1, 2a and 2b 
on the following list correspond to the three-research phases 
of inspiration by nature described in Frei and Barata (2010). 
The last three-items are additional. Table 6 gives an 
overview of inspirations and applications. 

1 Using technology to understand natural systems: 
Biologists, chemists and physicists have for a long time 
been using technological tools to help them investigate 
natural systems and to verify the established models. 
The palette of such tools includes oscilloscopes, 
gyroscopes as well as compound pendulums. More 
recently, computers allowed researchers to run  
large-scale simulations with thousands of iterations. 
Even more sophisticated, nowadays researchers use 
robots to emulate natural systems, and they even 
succeed in incorporating robotic �‘cockroaches�’ into real 
cockroach swarms (Correll and Mondada, 2007; Halloy 
et al., 2007). 

2a Using ideas from natural systems to make lab 
experiments and find usable mechanisms: This refers to 
the experimental phase of bionics. Researchers 
understood long ago that they can learn from nature and 
use mechanisms discovered in natural systems to solve 
engineering problems. However, most mechanisms 
need to be adapted in order to be usable, and this can 
only happen through an experimentation phase in the 
lab. Different versions are often discovered by 
changing the initial mechanisms, and the researchers 
can let their creativity play. 

2b Using ideas from natural systems to build industrial 
technology: The final goal of most bionic developments 
is using them in real-world applications. This means 
that they have to comply with industrial standards. It 
has been achieved for many technologies, such as 
ultrasound, radar and sonar systems, dolphin-shaped 
boats, ultra-hydrophobic and self-cleaning surfaces 
based on the Lotus effect, and cat-eye reflectors. 
Researchers now increasingly approach distributed and 
autonomous adaptive systems, which are more difficult 
to build than other bionic applications. 

3 Using the �‘engineering toolbox�’3 on natural systems: 
Denominated biotechnology, bio-medical engineering, 
genetic engineering or similar, these disciplines use 
engineering technology on natural substrates such as 
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living cells, bacteria and sometimes higher animals. 
Researchers grow virus cells in tanks to produce 
vaccines, they try reproducing epidermic tissue and 
inner organs or genetically modified animals. Many 
different technologies are being used to diverse 
purposes. As a specific example, when a certain gene is 
implanted and then inherited to future generations, 
cancerigenous cells can become fluorescent, which 
facilitates their identification under the microscope.4 

4 Using biotechnology methods for software engineering: 
Researchers in computer science now often take 
inspiration from methods used in biotechnology, in 
particular in cell engineering. Methods which work for 
living cells supposedly also work for software agents. 

5 Using ideas from engineering to build new models for 
understanding natural systems: Probably the most 
recently initiated discipline considers architectures and 
mechanisms used by engineers to create technological 
systems which have nothing to do with natural systems. 
Natural scientists then use such ideas to build new 
models for understanding natural systems (Reeves and 
Fraser, 2009), in the sense that if engineers have come 
up with ideas, maybe nature has invented them long 
ago. 

 Complexity engineering, as treated in this article, 
belongs to the class 2a/2b in the sense that it uses 
inspiration from nature for engineering. 

Table 6 Engineering and natural systems 

Phase Inspiration/assisting tools Application/goal 

(1) Technological tools Understanding natural 
systems 

(2a) Natural systems Lab experimentation 

(2b) Natural systems Industrial engineering, 
technology 

(3) Engineering methods Biotechnology on living 
substrates 

(4) Biotechnological methods Software engineering 

(5) Software engineering 
methods 

Building artificial 
models to understand 

natural systems 

3 Definitions and terms 

Many of the terms discussed in this article are often used 
with an intuitive understanding in colloquial speech. Also in 
scientific work, they take varying meanings. The following 
subsections discuss the definitions of these terms in 
scientific use. 

 Agents: By agent we refer to an entity which is able to 
act in a fairly autonomous way, according to 
norms/rules/policies and in order to achieve a goal. An 

agent can be something like an ant, a human person, a 
robot or a software agent. It consists of some kind of 
brain or computational power and often also has some 
kind of embodiment. 

 Systems: As a working definition, a system may be 
considered as a set of entities (often agents), which 
interact with each other as well as with the 
environment, and some infrastructure or passive 
components/entities. 

3.1 Introduction to complexity 
Complexity issues have been studied within various 
contexts, i.e., physical phenomena (Nicolis and Prigogine, 
1977), cellular automata (Wolfram, 1986; Langton, 1986), 
ICT systems (Bullock and Cliff, 2004), supply chain 
networks (Choi et al., 2001), management (van Eijnatten, 
2005), networks (Schuh et al., 2006; Mitchell, 2006), 
modelling (Oliver et al., 1997), the laws of diversity 
(Ashby, 1956), natural disasters such as earthquakes (Ball, 
2004) and epidemics (Gladwell, 2000), adaptation in 
Holland (1975, 1992, 1995, 1998), the dynamics of CS 
(Bar-Yam, 1997), chaos theory (Newman, 1996), and 
engineering aspects (Rzevski, 2004; Rzevski and Skobelev, 
2007; Rouse, 2003; Abbott, 2006; Bar-Yam, 2003, 2005; 
Woodard, 2006; Zapf and Weise, 2007). The search of the 
mechanisms behind emergence and self-organisation has 
also been approached by many complexity researchers, such 
as Kauffmann (1995), Heylighen (2003), Camazine et al. 
(2001) and Steels (1991). 

In some way, many open questions are related to each 
other, and common characteristics can be identified when 
investigating, i.e., how often earthquakes of a certain 
strength happen, why certain neighbourhoods become 
dangerous, how and why epidemics spread, through how 
many degrees of separation we are linked to any other 
person in the world, etc. The study of non-linear systems, 
dynamic systems, differential equations, non-determinism is 
intimately related to the nature of intelligence, the  
creation of structure and organisation, the creation of  
life, emergence, self-organisation, the micro- and the 
macroscale, etc. Table 7 places complexity between 
deterministic and statistical science, in terms of the scope in 
time and numbers of entities considered. 

CALResCo (Lucas, 2008) is a valuable source  
for all kinds of question concerning complexity  
science, which searches the laws that apply at all scales,  
the inherent constraints on visible order. Typical systems 
may be described as: �“Critically interacting components 
self-organise to form potentially evolving structures 
exhibiting a hierarchy of emergent system properties�”. This 
is a confirmation that the study of complexity science may 
prove to be useful for agile manufacturing. 

The study of CS requires a conceptual framework which 
should include three different perspectives (Amaral and 
Ottino, 2004): non-linear dynamics and chaos theory, 
statistical physics including discrete modelling, and network 
theory, which is especially useful for understanding the 
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internet and other communication networks, the structure  
of natural ecosystems, the spread of diseases and 
information, the structure of cellular signalling networks, 
and infrastructure robustness. 

Some authors�’ strategy is to avoid complexity as far as 
possible, and they use metrics to determine the degree of 
complexity of a given configuration (Kuzgunkaya and 
ElMaraghy, 2006). Most researchers, however, aim at 
gaining a better understanding of complexity before 
dismissing it as assumingly being disturbing or useless. 

The assumption that principles and mechanisms  
which are successful in nature will also work in 
technology/engineering is not undoubted. Besides the 
numerous similarities they share (Frei and Barata, 2010), 
there are also important differences between nature and 
engineering (Spilker, 2007). Namely: 

 In nature, there is time and space for failures. In 
engineering, we must get it right the first time (or at 
least very soon after a test phase), and we must avoid 
failures. 

 The main goal is (supposedly) only survival of the 
species. In technology, we have very specific goals. 

Taking these differences into consideration is certainly 
sensible. 

3.1.1 Complexity definitions 
For instance, industrial assembly systems are complex; there 
is a plentitude of often conflicting interests and objectives 
being pursued, and the overall behaviour of the system 
results from the behaviour of many individual components 
which mutually and multi-laterally5 influence each other. 
Complexity science is an area of research which studies 
exactly this kind of systems, and is therefore potentially a 
useful tool for assembly engineers. To understand how 
complexity might help, it is necessary to understand 
complexity itself �– which is not evident, especially as it 
comes in many different flavours, depending on both the 
field of research and the researcher. 

Complexity can be defined as �“the name given to the 
emerging field of research that explores systems in which a 
great many independent agents are interacting with each 
other in many ways�” (Waldrop, 1992). Examples of such 
systems (Auyang, 1998) could be electrons and molecules, 
which require cohesive and disruptive forces to work  
the way they do. Instantiations of this principle are  
ordering and disordering forces, kinetic energy and binding 
energy, coherence and disruption, transaction cost and 
administrative cost, etc. 

Quite different sounds this definition: 
[Complexity is] �“that property of a language 
expression which makes it difficult to 
formulate its overall behaviour, even when 
given almost complete information about its 
atomic components and their interrelations.�” 
(Edmonds, 1999) 

Various researchers have tried to classify complexity types: 

1 Random complexity, probabilistic complexity, 
deterministic chaos, emergent complexity and 
Newtonian dissipative structures (Maguire and 
McKelvey, 1999). 

2 Effective complexity versus underlying simplicity with a 
certain amount of logical depth, which may also seem 
complex (Gell-Mann, 1995). 

3 Complexity can also be classified by the following 
characteristics (Philipp et al., 2006): 

 Time-related: static or dynamic. 

 Organisational: process-related or structural. 

 Systemic: internal or external. 

4 The external complexity (Jost, 2004) is the amount of 
input, information, or energy obtained from the 
environment which the system is capable of handling. 
The internal complexity is the complexity of the input 
representation which the system receives. CS often 
increase their external complexity to reduce their 
internal complexity. 

Complexity is characterised by non-linear relationships 
between parts, openness, feedback loops, emergence, 
pattern formation, and self-organisation (Grobbelaar and 
Ulieru, 2007). In linear systems, effect is directly 
proportional to cause, whereas in non-linear systems, the 
effect may be any. Non-linearity comes in many flavours, 
tending to occur when a system�’s interactions are  
multiple, ecologically embedded, non-additive, inseparable, 
heterogeneous, interactive, asynchronous, lagged, or 
delayed (Bullock and Cliff, 2004). 

3.1.2 Complex systems 
CS can be defined in various ways. Most scientists consider 
CS as being composed of a large number of relatively 
simple heterogeneous components, which interact multi-
laterally and in changing ways; collective behaviour 
emerges. The interactions sometimes result in non-linear 
behaviour, and there are multiple feedback loops. CS often 
evolve, adapt, and exhibit learning behaviours. They 
typically exhibit emergence and are often self-organised. 

The original Latin word complexus signifies entwined or 
twisted together (Heylighen, 1996). A CS is thus made of 
more than one part, and the parts are at the same time 
distinct and connected. It is therefore inherently difficult to 
model them. Often, there are circular causal relationships: 
one part influences the other, which in turn influences the 
first, and so on. 

CS refer to �‘a set of systems which share some common 
behavioural and structural properties�’, where the meaning of 
structure can be spatial, temporal or functional (Grobbelaar 
and and Ulieru, 2007). 
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The micro level interactions between parts of the system 
may either be independent or coherent, resulting in different 
collective behaviours (Grobbelaar and and Ulieru, 2007): 

 coherent interactions: coordination at microscale only 

 independent interactions: random behaviour at 
microscale, coordination at macroscale 

 correlated behaviours: coordination at micro and 
macroscale. 

3.1.3 Complex adaptive systems 

Systems which emerge over time into a coherent form, and 
adapt and organise themselves without any singular entity 
deliberately managing or controlling it, belong to the class 
of complex adaptive systems (CAS) (Holland, 1995). CAS 
are many body systems, composed of numerous elements of 
varying sophistication, which interact in a multi-directional 
way to give rise to the systems global behaviour. The 
system is embedded in a changing environment, with which 
it exchanges energy and information. Variables mostly 
change at the same time with others and in non-linear 
manner, which is the reason why it is so difficult to 
characterise the system�’s dynamical behaviour. 

CAS often generate �‘more of their kind�’ (Gell-Mann, 
1995), which means that one CAS may generate another. To 
characterise them, researchers describe their components, 
environment, internal interactions and interactions with the 
environment. 

It remains open if there are CS which are not adaptive. 
Some researchers agree, as, depending on its definition, 
adaptivity may require diversity and natural selection, as 
shown in ecosystems (Grobbelaar and and Ulieru, 2007). 

3.2 Self-organisation 

A well-known definition was suggested by Camazine et al. 
(2001): 

�“Self-organisation is a process in which 
patterns at the global system emerges solely 
from numerous interactions among the lower-
level components. Moreover the rules 
specifying interactions among the system�’s 
components are executed using only local 
information without reference to the global 
pattern.�” 

The following definition is a few years more recent: 
�“Self-organisation is the dynamical and 
adaptive mechanism or process enabling a 
system to acquire, maintain and change its 
organisation without explicit external 
command during its execution time; there is no 
centralised or hierarchical control. It is 
essentially a spontaneous, dynamical (re-) 
organisation of the system structure or 
composition.�” (Di Marzo Serugendo et al., 
2006a, 2006b) 

The identification of a boundary of the system is extremely 
important when deciding if a system is self-organising or 
not: defining an entity with controlling influence as external 
disqualifies a system from being self-organised, whereas the 
situation is different if the entity is considered as being 
internal. 

By some researchers, self-organisation may also be seen 
as the spontaneous creation of globally coherent pattern out 
of local interactions (Heylighen, 2003) (although this is 
usually considered as the definition of emergence, see 
Section 3.4). 

This shows how controversial the research area still is. 
Preconditions for having self-organisation in engineered 
systems, based on characteristics discussed in Correia 
(2006), De Wolf and Holvoet (2005), Di Marzo Serugendo 
et al. (2006b) and Heylighen (2003), are: 

 Autonomous and interacting units. 

 No external control; the question of corresponding 
system boundary definition arises. 

 Positive and negative feedback. For instance, monetary 
rewards/punishments for successful collaboration and 
achievement of tasks respectively contract breaching or 
failures. 

 Fluctuations/variations which lead to the typical  
far-from-equilibrium state, which is in manufacturing 
systems given by disturbances and changing production 
requirements, such as changing volumes and fluctuating 
part deliveries or equipment down-times. 

 Safety measures in case the system should drift towards 
undesired or harmful behaviour. 

 A flat internal architecture, as opposed to a hierarchical 
one, with dynamically changeable organisation of the 
interacting agents. 

Adaptation means achieving a fit between system and 
environment; thus, every self-organising system adapts to its 
environment (Heylighen, 2003). 

Mechanisms which lead to self-organisation in 
engineered systems include stigmergy (known from  
social insects, such as ants releasing pheromones in the 
environment), gossip, trust, collaboration/competition, 
swarms (as seen in schools of fish or flocks of birds), and 
chemical reactions. Most of these mechanisms happen 
according to a set of rules which can be identified. For 
instance, the entities in swarms respect three-principles, 
such as: 

1 advance 

2 stay close to your peers 

3 avoid collisions. 

Depending on the case and the mechanism, the rules can be 
more numerous, more complicated, and more complex. For 
engineering purposes, they may be adapted and extended. 

A working definition for self-organisation seen from an 
engineering perspective is given in Section 3.2.2. 
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3.2.1 Weak and strong self-organisation 
When it comes to concrete applications, it makes  
often sense to differentiate between weak and strong  
self-organisation. Not all cases do fully comply with the 
rules�’ of strong self-organisation, but still, there is some 
form of self-organisation. 

In the strong case, the self-organisation happens without 
any centralised control, whereas in the weak case, there may 
be some internal (centralised) control or planning (Di Marzo 
Serugendo et al., 2005). 

3.2.2 Working definition of self-organisation 
After studying the existing definitions in literature as well as 
an engineering perspective on complexity concepts, we 
suggest the following working definition, based on the 
research done and experience gained in the scope of our 
work (Frei, 2010): 

 Self-organisation: Systems which self-organise are 
typically composed of many, at least partially 
autonomous components. These components have 
certain characteristics and skills, and have at least one 
way of communicating with their peers and the 
environment. The environment dynamically changes 
and influences the system. The components engage in 
interactions with their peers; they may collaborate, 
compete, negotiate, gossip, and establish varying levels 
of trust between each other. This depends on the 
mechanism which leads to self-organisation. The 
components may have individual goals, but also shared 
or global goals. The system is not under any type of 
external or central control, although in engineered 
systems, the self-organisation process happens 
according to certain rules which were defined by the 
system designer. These rules may be dynamically 
changed, even at run-time, and thus allow the designer 
to influence the system at any time. Self-organisation is 
scalable, robust, and fault-tolerant, i.e., insensitive to 
small perturbations and local errors as well as 
component failure, thanks to redundancy.  
Self-organising systems exhibit graceful degradation, 
meaning that there is no total break-down because of 
minor local errors. Self-organisation is a dynamic 
process in many-body systems and may occur with or 
without emergence. 

3.3 Self-* properties 
In literature, diverse interpretations of self-organisation, 
self-adaptation, self-management, self-(re)configuration, 
self-healing and emergence can be found. Many of them 
focus on one single term; only few mention the links 
between the concepts. For instance, self-adaptation is 
included in self-managed systems, and self-management is 
included in self-organisation, according to the classification 
in Muehl et al. (2007). 

One important differentiation to be made is the  
direction of the property: self-organisation and self-healing 

is bottom-up, whereas, self-adaptation, self-management 
and self-healing are top-down, as illustrated in Figure 2. 

Besides the differences in the orientation (bottom-up or 
top-down), most often the name given to the property is a 
question of the focus: the behaviours can sometimes not 
even be clearly classified as �‘pure organisation�’ or �‘pure 
healing�’ etc., and most often self-* properties have an 
emergent character. As an example, when a system  
re-organises its internal structure to recover from a failure, 
is this self-organisation or self-healing? Is self-organisation 
used for self-healing? Or is it emergence, because the 
process is based on local rules and produces a new, global 
result? It depends on the rules which define the behaviour, 
but an observer may not know them. 

Figure 2 Bottom-up and top-down self-* properties 

 

De Wolf suggested a taxonomy of self-* properties  
(De Wolf and Holvoet, 2007) which focuses on 
decentralised autonomic computing and discusses 
characteristics of self-* properties and implications for their 
engineering. Among other criteria, the taxonomy considers 
if a self-* property is achieved on macroscopic or 
microscopic level, if it is on-going or one-shot, if it is 
time/history dependent or independent, if it evolves in a 
continuous or abrupt way, and it is adaptation-related or not. 
The taxonomy gives examples of mechanisms leading to 
self-* properties and classifies application examples 
according to the considered characteristics, but it does not 
indicate to which kind of self-* property a mechanism or 
application belongs. 

Even though the following classification is general, the 
following non-exhaustive list of working definitions is 
influenced by the domain of robotics and artificial 
intelligence. These working definitions (Frei and Barata, 
2010) are not conclusive, but they give indications and 
contribute to a base for further research: they intend to 
trigger other researchers to reflect about them. The term self 
generally refers to the absence of external control. After a 
general description, an application to assembly systems 
follows. 

 Self-adaptation: a system adjusts itself to changing 
conditions without major physical modifications.  
For instance, in the case of an industrial assembly 
system (Frei, 2010), when more urgent orders arrive, a 
robot can increase its working speed. 
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 Self-configuration: a system prepares itself for 
functioning, including the adjustment of parameters and 
calibration.  A robot adjusts its movement accuracy 
to the desired value. 

 Self-reconfiguration: mostly encompasses  
self-adaptation and self-configuration, but also some 
physical change (including software and hardware).  
When a conveyor module fails, and there is an 
alternative conveyor path to reach the affected 
destination, the modules adapt their behaviour and use 
the alternative path until the module has recovered from 
the failure. Alternatively, a new conveyor module is 
requested from the user and integrated into the existing 
system. 

 Self-organisation: a system creates or adapts its own 
structure to reach a goal.  Modules form coalitions to 
provide the requested skills. 

 Self-assembly: sub-systems or modules connect  
with each other to form the whole.  A robot  
self-assembles with a gripper which it can 
autonomously pick up from its toolwarehouse. 

 Self-disassembly: a system decomposes itself into 
subsystems or modules.  A coalition which is not 
necessary any more disassembles. For instance, a robot 
will place its gripper back in the toolwarehouse. 

 Self-diagnosis: modules can find out and state what is 
wrong with themselves.  A feeder which cannot 
provide parts will check if there are no ready parts 
inside, or if there is a blockage, or if there is any other 
problem preventing normal functioning. 

 Self-repair/self-healing: a system can treat its problems 
and maintain or re-establish functionality.  A 
blocked feeder will restart its software, execute 
calibration movements, and if still blocked, ask the user 
for help. 

 Self-reproduction/self-replication: a system can create a 
copy of itself.  A module coalition incentivises 
suitable modules to form the same type of coalition. 

 Self-protection: a system can protect itself from 
intruders or attacks.  In case an assembly system was 
open enough for strangers to gain access to it, i.e., over 
the internet, it would need to protect itself from harm. 

 Self-control: the system steers itself.  The modules 
control their own behaviour, i.e., guided by policies. 

 Self-management: a system can take care of itself. This 
may include self-protection, self-healing, self-
configuration, self-optimisation, self-adaptation etc.  
At production time, the modules maintain themselves 
as well as their neighbours in good conditions. They 
manage their multi-lateral interactions, provide the 
requested services, schedule maintenance etc. 

3.4 Emergence 
Emergence describes how order appears out of chaos 
(Holland, 1998). Both emergence and self-organisation 
(Section 3.2) are concepts which first appeared in physics 
(phase transitions) and chemistry (molecules and material 
properties), and were then also observed in other domains, 
including biology (cells, DNA, brain, etc.), game theory, 
social science, economics and engineering. A general theory 
of emergence is still missing (Brueckner, 2000). 

Most systems which exhibit emergence can be modelled 
in terms of the interaction of agents. Building blocks  
are combined to form a higher level system. Emergent 
phenomena are often hierarchical: complex ones are 
composed of simpler ones (Holland, 1995). 

Definitions found in literature include: 
Emergence is a bottom-up effect, which generates order 

from randomness (Mueller-Schloer, 2004). It results in a 
self-organised increase of order, in space or time. A global 
behaviour arises from the interactions of its local parts; 
cannot be traced back to the individual parts (De Wolf and 
Holvoet, 2005). Desirable and undesirable emergent 
behaviour in distributed systems results from the non-linear 
interaction of completely deterministic processes (Parunak 
and VanderBok, 1997). None of the entities composing the 
system knows how to achieve the emergent phenomenon 
(Di Marzo Serugendo et al., 2006b). 

Although controversial, emergence does not only exist 
in the eye of the observer; it is intrinsic to the system 
(Holland, 1998). Novelty does not depend on the experience 
of the observer, neither. It refers to the new class of words 
used to describe the global phenomenon, new in the sense of 
different from those used for the local level description. 
However, novelty is not the same as surprise, as surprise is 
related to the preparation of the observer, and novelty is not. 

According to Holland (1998), for engineered systems, 
emergence happens according to rules. The designers have 
to find the level of detail where they can set the rules and 
therefore control emergence. Notice that also this is a very 
controversial statement, as for most other researchers, this 
describes self-organisation, and not emergence. 

It is mostly agreed that an emergent property (Auyang, 
1998): 

1 of a whole is not the sum of the characters of its parts. 

2 is of a type which is totally different from the character 
types of its constituents. 

3 is not deducible or predictable from the behaviours of 
the constituents investigated separately. 

A resultant is different from an emergent (Auyang, 1998): 
A resultant is closely tied to the material content of the 
constituents. Linear systems have resultant behaviours and 
are traceable. The principles of superposition, aggregation 
and additivity apply. An emergent has a structural  
aspect, there is novelty and non-additivity. For instance, 
conductivity is resultant, whereas, superconductivity is 
emergent. Nevertheless, both properties involve the same 
�‘ingredients�’. Emergent properties can in principle be 
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predicted by analysing the lower levels; in practice, we are 
not always capable of doing it (Lucas, 2008). 

Different forms of emergence (Castelfranchi, 2001) 
exist: Diachronic: develops in time. This may happen when 
new technologies are introduced and they combine with 
previously existing modules. Synchronic: different ways of 
looking at a given info from one level to another, e.g., 
emergence of a significant pattern, structure or form from 
the point of view of a given observer. Descriptive: 
synchronic, but not related just to the observer�’s 
conceptualisation and description; objective emergence if 
causal effect on environment. May occur when new system 
behaviours cause the user to take previously not necessary 
actions. Cognitive: becoming aware of previously ignored 
knowledge. A system designer or user may experience this. 

Some authors consider that not only system 
characteristics may emerge, but also goals (Louzoun and 
Atlan, 2007) and functionalities (Capera et al., 2004; Steels, 
1991). In the context of engineering, this may be interpreted 
as systems which can do things they were not made for. 

A working definition for emergence seen from an 
engineering perspective is given in Section 3.4.2. 

3.4.1 Weak and strong emergence 
To bring the classical notions of emergence, discussed 
before, closer to the reality of engineered systems,  
two-classes of emergence are proposed (De Wolf, 2007; 
Fromm, 2005): 

For strong emergence, the global level must show 
further development. There is non-linear dependence of  
the global functionality on the components and their 
interactions between themselves and the environment. 

Weak emergence means that the local-to-global 
dependence may be quasi-linear �– but still, the appearance 
of the global phenomenon is not self-evident and needs 
some kind of inspiration. 

�“A macrostate is weakly emergent if it can be 
derived from micro-states and micro-dynamics 
but only by simulation.�” (Bedau, 1997) 

3.4.2 Working definition of emergence 
After studying the existing definitions in literature as well as 
an engineering perspective on complexity concepts, we 
suggest the following working definition, based on the 
research done and experience gained in the scope of our 
work (Frei, 2010): 

 Emergence: Systems exhibiting emergence most often 
consist of at least two different levels: the macro level, 
considering the system as a whole, and the micro level, 
considering the system from the point of view of the 
local components. Local components behave according 
to local rules and based on local knowledge; a 
representation of the entire system or knowledge about 
the global system functionality is neither provided by a 
central authority nor reachable for the components 
themselves. They communicate, locally interact with 

each other and exchange information with the 
environment. From the interaction in this local world 
emerge global phenomena, which are more than a 
straight-forward composition of the local components�’ 
behaviours and capabilities. Typically, there is a  
two-way interdependence: not only is the global 
behaviour dependent on the local parts, but their 
behaviour is also influenced by the system as a whole. 
Nobody in the system knows how to achieve the 
emergent phenomenon, and nobody has complete 
knowledge of the system or a global observer�’s 
perspective. An emergent phenomenon is a structure or 
pattern, visible at global level. 

3.5 Chaos 
A system may be viewed as deterministic if the current 
state(s) of the system determine its future state(s) in the 
presence of random noise, environmental inputs and 
unknown initial conditions; a deterministic dynamic system 
whose behaviour is hard to predict is called a chaotic system 
(Grobbelaar and Ulieru, 2007). 

Chaos in common language means confusion or the lack 
of fixed principles, whereas chaos in mathematics is 
behaviour according to certain rules (Auyang, 1998). The 
methods for mathematically describing chaotic behaviour 
founded by Poincaré and Lorentz bring structure into 
seemingly random behaviour (Waldrop, 1992). 

Chaos is different from randomness: chaotic systems 
behave according to strange attractors. This means that 
under a set of conditions (i.e., within the attractor basin), a 
system will always move towards a certain state or set of 
states. To leave them, the system requires a certain energy 
input (disturbance). In mathematical terms, chaotic systems 
are deterministic, whereas randomness has no structure at 
all. 

In complexity terms, entropy is the tendency of systems 
to create chaos from order, while extropy is the tendency of 
systems to create order from chaos (that is, emergence) 
(Lucas, 2008). 

Chaotic systems have been discovered in domains as 
diverse as mathematics, physics, biology, chemistry, 
meteorology, fluid dynamics, astronomy and statistical 
mechanics and logistics (Ranjan et al., 2003). Also 
industrial assembly systems exhibit chaotic behaviour: 

 cause and effect are not always in a linear relation, as a 
small perturbation may cause a total system breakdown 

 a successful assembly system will tend towards an 
attractor which stands for the correctly assembled 
product, although it may assume different states on the 
way there 

 assembly system behaviour is bound to certain limits 
(robots cannot suddenly start doing crazy things), 
although within the given boundaries, the behaviours 
may vary (different robots may dynamically take over 
the insertion of a bolt, according to their availability 
and performance). 
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3.5.1 Sensitivity to initial conditions 
The butterfly effect stands for sensitive dependence on 
initial conditions. Little causes do not necessarily lead to 
little effects, and big causes to big effects. Future outcomes 
are arbitrarily sensitive to tiny changes in conditions  
(Gell-Mann, 1995). Simple mechanisms may cause 
considerable complexity, as well as complex sources may 
lead to simple phenomena. In the same sense, CS can give 
rise to turbulence and coherence at the same time. Brought 
to a simple formula, we may say: �“In the middle of chaos, 
there is order. In the middle of order, there is chaos�” 
(Gleick, 1987). 

Manufacturing systems often exhibit sensitivity to 
specific conditions and to disturbances. Certain factors, like 
energy disruptions or an abnormal increase of temperature 
and humidity may lead to system breakdown, while others 
have no significant effect (i.e., the occurrence of extreme 
noise would disturb human operators, but not bother robots). 
Some disturbances may have consequences in some cases, 
but lack any effect in others. For example, a robot using 
optical sensors reacts sensitively to changing light 
conditions, whereas a robot working with tactile sensors 
remains unaffected. 

3.5.2 Edge-of-chaos 
Various terms are being used for the state somewhere 
between stable order and chaos (see Figure 3),  
among others: dynamic order, instability in order, and  
self-organised criticality (Ball, 2004; Gladwell, 2000). 

Figure 3 Somewhere between order and chaos 

 

Constantly stable equilibrium states would block evolution. 
Dynamic systems get again and again into states where a 
little stimulus can trigger a major reaction. This gives the 
systems energy to evolve and makes new phenomena 
emerge. �“The edge of chaos is a point between chaos and 
order when creativity and stability fuse, where living 
systems are at their most inventive, where there is the 
highest chance that something distinct and unique will 
emerge�” (Webb and Lettice, 2005). 

Analogies may be drawn between sand piles, earth 
quakes, wars, extinctions of species and revolutions 
(Buchanan, 2000). Figure 3, somewhere between order and 
chaos. The world organises itself into a critical state at the 
edge-of-chaos: small events can stay small or grow to 
enormous importance and have heavy consequences. The 
power law describes such phenomena. It expresses that if 
we double the energy (or any other quantity being studied), 
the probability of the phenomenon to appear is half, a 
quarter, etc. For instance, if the probability of an earthquake 
of strength x to happen is y, the probability of an earthquake 
of 2x to appear is 2 .y  All events can have the same kind of 

trigger. There is no fundamental difference between small 
and big events. No-one knows if the next event falls onto a 
finger of instability, which leads to its propagation, or if it 
will stay small and not propagate. When building models of 
such events, it is often possible to greatly simplify. 
Researchers will find the same power laws in their models 
as in reality, if the fundamentals of the models are correct. It 
is at the edge-of-chaos that epidemics do or do not spread 
(Gladwell, 2000). 

Failures and perturbations in manufacturing systems 
often follow power laws as well. This is why the systems 
must be able to cope with frequent small failures as well as 
with big rare ones. 

3.5.3 Phase space/state space 
Phase space or state space diagrams are used to represent 
the behaviour of systems, with all the states which are 
reachable for a system, and the transitions in-between, as a 
function of system parameters. The bifurcation diagram 
shows where the previously uniform behaviour of a system 
separates into different directions, and possibly diffuses into 
an unlimited number of different behaviours. 

An attractor is a state towards which a system will 
always tend, as long as it is under a set of initial conditions. 
The Lorentz attractor and other strange attractors describe 
systems which never quite settle into a state, but eternally 
oscillate within a certain range of states, never taking the 
same state twice (Hongler, 1994). If we know a system�’s 
strange attractor and its dimensionality (the number of 
dimensions of the corresponding state space), we can make 
predictions about the systems behaviour, i.e., the 
performance of an automated production line (Hongler, 
1994). 

3.5.4 Noise, perturbations and local maxima 
Perturbations are a challenge and a chance at the same time. 
Systems must cope with perturbations and not let 
themselves drift away from their normal functioning. 
However, perturbations can also be helpful: systems which 
require some kind of optimisation may tend to be stuck in 
local minima and thus not be able to evolve towards better 
solutions without the system being disturbed or otherwise 
stimulated. 

The cybernetic law of requisite variety by Ashby (1956) 
teaches that the greater the variety of possible perturbations, 
the greater the variety of controlling actions it needs. This 
means that a system which is always perturbed in the same 
way will always require the same corrective measures. 
However, if there is a plenitude of different influences on 
the system, it will need a correspondingly varied set of ways 
of reacting. 

Complexity engineers should try to use perturbations to 
their benefit. For instance, when a robot fails and other 
robots resolve to collaborate in an unusual way to cope with 
the failure of their peer, this new collaboration may be 
discovered as an efficient way of executing the task, and 
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thus be retained for further use even after the peer�’s 
reparation. 

3.5.5 Further concepts 
The concepts described in this subsection have not been 
explained yet but are important for the general 
understanding of complexity science and chaos theory. 

 Fractals: Inspiration for fractal manufacturing systems 
(Ryu et al., 2006). Fractals have a self-similar structure 
at arbitrarily small scale, meaning that new similar 
structures appear when zooming in; self-similarity may 
also be stochastic or approximate. 

 Attractors basin: Like a river has a watershed basin that 
drains to it, every attractor has a basin. Of particular 
interest are the basin boundaries, which are often 
fractal. 

 Fitness function/landscape: Organisms must be fit for 
survival and thus react to the requirements of the  
ever-changing environment. These requirements can be 
described by a fitness function. The closer an organism 
matches the fitness function, the better adapted it is to 
the current life condition. The criteria for endurance or 
elimination of new characteristics are most often 
multiple and form a fitness landscape. 

 Spontaneous order: CS can spontaneously organise 
themselves into coherent patterns. Conflicting 
constraints lead to a rugged fitness landscape, which 
means that the fitness parameters do not evolve 
linearly/smoothly. The ruggedness is determined by the 
internal organisation of the organism. 

 Convergence: Happens when a system tends towards 
the desired state/solution. If the system cannot reach it, 
no matter how long it runs (it may oscillate endlessly, 
or tend towards an undesired state, such as a chaotic 
attractor), the system does not converge. The speed of 
convergence (Di Marzo Serugendo, 2009) describes 
how quickly a system reaches the desired state. 

 Downward causation: Influence of the global/macro 
system on its components/the micro elements, derived 
from the constituents�’ self-organisation. Also an 
emergent phenomenon can exhibit downward 
causation, that is, the emergent phenomenon influences 
the elements which lead to the emergence. 

 Equilibrium: Self-maintained state of a (partially) 
isolated system. Equilibria can be stable, meta-stable, 
unstable quasi-stable, local/relative or global/absolute. 

3.6 Dependability, robustness and similar terms 
The terms robustness, dependability, resilience, redundancy, 
degeneracy and graceful degradation are often used in the 
same context: they all refer to how a system copes with 
failures and perturbations. 

 Dependability is the ability of a system to deliver a 
service that can justifiably be trusted (Avizienis et al., 
2004). For instance, a cash machine must always 
provide the same service, and we must be sure that 
nothing else happens when we are requesting a certain 
amount of cash. Central to this definition is the notion 
that it is possible to provide a justification for placing 
trust in a system. In practice this justification often 
takes the form of a dependability case which may 
include test evidence, development process arguments 
and mathematical or formal proof. 

 The original meaning of resilience refers to the 
maximal elastic deformation of a material. In the 
context of computer science and robotics (Bongard  
et al., 2006; Di Marzo Serugendo et al., 2007), 
resilience means dependability when facing changes, or 
in other words, its ability to maintain dependability 
while assimilating change without dysfunction. In the 
case of MetaSelf (Di Marzo Serugendo et al., 2010), a 
key feature for dynamic resilience is the availability of 
dependability metadata at runtime. For instance, for 
dynamically attributing a new server, it is necessary to 
know the dependability values of the servers in 
question. 

 Dynamic resilience is a system�’s capacity to respond 
dynamically by adaptation in order to maintain an 
acceptable level of service in the presence of 
impairments�’ (Di Marzo Serugendo et al., 2007), 
whereas predictable dynamic resilience refers to the 
capacity to deliver dynamic resilience within bounds 
that can be predicted at design time. Accordingly, for 
MetaSelf, resilience metadata is information about 
system components, sufficient to govern decision-
making about dynamic reconfiguration. Resilience 
policies serve as guidelines for reconfiguration. 

 Stability means in manufacturing that a process always 
delivers the same result, as long as the conditions are 
within a certain specified range. A system must 
continuously deliver correctly assembled products and 
cope with perturbations or failures. 

 Robustness means that a system does not easily get 
disturbed in its normal functioning. It can cope with 
failures, changing conditions and is able to remain 
usable. 

 Redundancy means that there are more than one 
elements with the same functionalities in a system. It is 
the standard solution of engineers to cope with failures, 
and it involves structurally identical elements. 
Redundancy is costly, because the redundant resources 
remain unused, and therefore redundancy is often 
avoided as far as possible. Self-organising systems have 
typically a lot of redundancy, which leads to an 
inherent robustness against many failures. 
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 Degeneracy (Sole et al., 2002) is an alternative which 
can be observed in natural systems such as the brain. In 
case of a lesion, structurally different brain regions can 
adapt to take over the tasks of the damaged area. The 
same can also be achieved in technological systems: 
i.e., a robot may request new coalition partners to form 
composite skills, which allow them to take over the task 
of a failing original robot. 

 With graceful degradation, a damaged or perturbed 
system does not totally break down. It maintains at least 
part of its functionality, even if with reduced 
performance. 

4 Discussion, conclusions and directions 

After reviewing the most important concepts in complexity 
engineering, we now analyse the general situation. The role 
of the observer is addressed in Section 4.0.1, and challenges 
as well as limitations of self* systems in 4.0.2. At the end, 
we draw conclusions (Section 4.1). 

4.1 The role of the observer 
The role of the observer in determining whether or not a 
system exhibits emergence was treated in Section 3.4. The 
discussion here is more general, not limited to emergence. 

What we perceive as an observer (or as many different 
observers) is often different from what really exists 
(Gershenson, 2007). The observer mostly has a very limited 
perspective. Not everything happening in a system is 
visible; the fact that something cannot be seen does not 
mean that it does not exist. 

From the perspective of the observing designer, there is 
always a temptation to suppose that the created interactions 
do indeed take place, even if they are not visible. The 
designer should therefore try not to jump to conclusions 
which may not be well-founded. Similarly, an observer who 
is not the designer is always tempted to make interpretations 
of the observed and find explanations which may not 
correspond to reality. Also here, caution is appropriate. 

According to discussions at the 4th Technical Forum 
Group on Self-Organisation (TF4), some researchers think 
that an emergent phenomenon is meaningful to the observer 
(only?), and only if the observer is also the designer. Only 
the observer-designer determines if a phenomenon is indeed 
emergent because this person knows how the system works. 
This means that somebody who does not understand how a 
system works cannot correctly judge what is happening, i.e., 
cannot say if a phenomenon is a self-* property, or if it is 
under centralised control. In many situations, a system will, 
however, perform differently when under centralised control 
than when acting in a distributed-autonomous way. A 
careful observer may be able to determine the differences 
and come to the right conclusions. 

As a matter of fact, a system which is made to run 
independently from a human observer (i.e., literally all 
systems we are considering here), will function while being 

observed or not. We therefore argue that observation can 
only help the observer to understand the system, but it does 
not change anything at the level of the system. 

4.2 Challenges and limitations with self-* systems 
Self-* properties (addressed in Sections 3.2 and 3.3) are an 
important part of complexity engineering. They allow 
systems to play active and increasingly autonomous roles in 
accomplishing their tasks, but there are also challenges and 
limitations to the possibilities of self-* properties: 

 Sensitivity to initial conditions: Systems may efficiently 
find a way to accomplish their task under certain initial 
conditions, but not be able to do so when the conditions 
are slightly different. Autonomous guided vehicles 
(AGVs) may serve as an example: we suppose that their 
task is to pick up a variety of finished products from 
assembly stations and deliver them to boxes according 
to customer orders. If the AGVs start from distributed 
locations, they may very quickly settle into an efficient 
rhythm of picking up and delivering products. But 
when the AGVs start from a single point, it may take 
them much longer to coordinate the tasks between 
them, and thus their performance is affected. Engineers 
thus have to consider their system�’s sensitivity to initial 
conditions, and attempt to find solutions to mitigate the 
effects. 

 Parameter tuning: Many applications depend on 
diverse parameters which have to be tuned in order for 
the system to run smoothly. Human operators often 
supervise the tuning, or do it manually by trial-and-
error. Suitable strategies need to be developed if the 
system is to do is autonomously. 

 Latency to find new stable states: Most self-* systems 
can eventually find stable states or stable solutions to 
achieve their tasks, but it takes time. This means that 
the designer and user of self-* systems must be able to 
accept delays. 

 No solution found/no convergence: In certain cases, a 
self-* system may not be able to solve the task given, or 
its calculations may never converge. The designer has 
to preview this and arrange for a way out, such as 
alerting the user and/or settling for a solution which 
requires the relaxation of certain constraints. 

 Analysis of self-* properties: It is inherently difficult to 
analyse self-* properties. The system may find ways to 
fulfil tasks which the designer did not plan or preview. 
The other way round, the designer may intend the 
system to act in a certain way, and in reality, it is all 
different. Also, the interplay between various self-* 
properties is difficult to analyse. Further research 
efforts are certainly necessary. 

 Dependability/resilience: it must be assured that the 
system does what it is supposed to do, independent 
from the actual situation and circumstances, and this is 
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challenging, especially for the type of system 
considered here. Thanks to their redundancy, these 
systems are often inherently robust to certain types of 
failures, and this robustness comes for free. They may, 
however, be fragile when facing other faults. For 
further discussion see Di Marzo Serugendo (2009). 

4.3 Conclusions 
Although this article is directed at promoting complexity 
engineering, the authors are aware of the fact that 
complexity engineering is not always the most adequate 
solution. They should be chosen when classical engineering 
comes to its limits (compare Section 2.2), or when 
alternative ways of solving a problem are desired. 

We have positioned complexity engineering within other 
engineering domains, such as systems engineering and 
classical engineering. We reviewed the definitions of 
important notions such as self-organisation and emergence, 
and explained the controversies between unpredictability, 
complexity and other related terms. 

The second part of this set of two-articles on complexity 
engineering reviews existing methods. Please refer to  
Frei and Di Marzo Serugendo (2011). 
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Notes 

1 In this section, the term specification is not used with its 
meaning in computer science, but rather its meaning in 
manufacturing engineering; a specification is a description of 
the identified requirements. 

2 Another way of expressing this is: �“The behaviour of a 
complex system will be a combination of pre-set objectives 
and constraints as defined by the system developer, and 
adaptive islands where the system is allowed to make its own 
decisions�” (Mueller-Schloer and Sick, 2008). 

3 Safe synthetic biology, see http://www.synbiosafe.eu 
4 Explanations from the Biotechnology lectures (academic year 

2004�–2005) by Prof. Florian Wurm at the Swiss Federal 
Institute in Lausanne, Switzerland 

5 Multi-lateral describes a relationship with several peers at the 
same time. 


