
Int. J. Bio-Inspired Computation, Vol. 3, No. 2, 2011 123

Copyright © 2011 Inderscience Enterprises Ltd.

Concepts in complexity engineering

R. Frei*
Intelligent Systems and Networks Group,
Department of Electrical and Electronic Engineering,
Imperial College,
London SW7 2BT, UK
E-mail: work@reginafrei.ch
*Corresponding author

Giovanna Di Marzo Serugendo
CUI �– Université Genève,
Battelle �– Bâtiment A, Rte de Drize 7,
CH-1227 Carouge, Switzerland
E-mail: giovanna.dimarzo@unige.ch

Abstract: Complexity science has seen increasing interest in the recent years. Many engineers
have discovered that traditional methods come to their limits when coping with complex adaptive
systems or autonomous agents. To find alternatives, complexity science can be applied to
engineering, resulting in a quickly growing field, referred to as complexity engineering. Most
current efforts come either from scientists who are interested in bio-inspired methods and
working in computer science or mobile robots, or they come from the area of systems
engineering. This article reviews the definitions of the most important concepts such as
emergence and self-organisation from an engineer�’s perspective, and analyses different types of
nature-inspired technology. This is the first part of a set of two-articles on this topic; the second
one provides a survey of currently existing approaches to complexity engineering, identifies
challenges and gives directions for further research.

Keywords: complex adaptive systems; complexity science; bio-inspired; nature-inspired;
engineering; multi-agent systems; self-organisation; emergence; self-* properties; autonomy;
robotics.

Reference to this paper should be made as follows: Frei, R. and Di Marzo Serugendo, G. (2011)
�‘Concepts in complexity engineering�’, Int. J. Bio-Inspired Computation, Vol. 3, No. 2,
pp.123�–139.

Biographical notes: Regina Frei is currently a Postdoctoral Researcher at the Intelligent Systems
and Networks Group, Department of Electrical and Electronic Engineering, Imperial College
London, UK. She received her PhD from the Electrical Engineering Department, Faculty of
Sciences and Technology, New University of Lisbon, Portugal, and MSc in Micro-Engineering
from the Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland. Her research
interests are self-organising assembly systems, self-* properties and complexity engineering.

Giovanna Di Marzo Serugendo is a Full Professor at the University of Geneva, Switzerland.
From 2005 to 2010, she was a Lecturer at Birkbeck College, London, UK. She received her MSc
in Computer Science and in Mathematics from the University of Geneva, Switzerland, and PhD
in Software Engineering from the Swiss Federal Institute of Technology in Lausanne (EPFL),
Switzerland. Her research interests are related to the engineering of self-* systems. She
co-founded the IEEE International Conference on Self-Adaptive and Self-organising Systems and
the Editor-in-Chief of the Association for Computing Machinery�’s Transactions on Autonomous
and Adaptive Systems.

1 Introduction

Traditional engineering methods cope well with reducible
systems (Norman and Kuras, 2004), i.e., those systems
which can be decomposed without loss and which are made
of parts or sub-systems which are well known, which
interact in predefined and well-understood ways and mostly

stay the same during the system�’s life time. For
reducible systems, the sum of their parts makes the whole.
Systems with emergence, at the contrary, are more (or less?)
than the sum of their parts. For instance, swarming birds
only follow very simple local rules, but as a whole the
swarm exhibits sophisticated dynamic formations. In

124 R. Frei and G. Di Marzo Serugendo

manufacturing, robotic modules may function perfectly in a
certain arrangement, but not in another one. GPS-based
mobile services may show good performance at locations
where difficulties were expected, and bad performance in
areas of good reception because of the interference of other
devices.

An increasing number of modern systems do not
correspond to the description of a reducible system; their
composition as well as the user requirements and the
environment dynamically change, and often, their behaviour
or some of their characteristics are emergent.

Complexity is omnipresent (Delic and Dum, 2006), and
there are two main directions of research:

1 complexity as an emerging phenomenon (in natural or
engineered systems) to be understood

2 complexity as an engineering problem to be tackled,
mostly by reducing the environmental complexity, or
by augmenting the system�’s capabilities of coping with
complexity (Schuh et al., 2006).

Complexity engineering (Buchli and Santini, 2005) can be
considered as a third direction, which currently attracts the
attention of an increasing number of researchers: using
complexity for engineering �– not fighting against it, but
using it to the engineer�’s favour. This is the topic of this
article. Under the name of emergent engineering (Ulieru
and Doursat, 2010) argues for the same paradigm change as
we suggest with complexity engineering.

It is crucial for the advances in complexity engineering
to clarify concepts which, originally used in chemistry,
physics, biology or sociology, have been transferred to
technological systems and engineering. Researchers often
disagree with each other about the meaning and implications
of concepts, and this article contributes by discussing and
clarifying the most important concepts.

1.1 Scope and organisation

The topic of this article is engineering, not the sole study of
complex systems (CS). We therefore do not discuss natural
CS, but rather consider how to engineer artificial CS, and
how to use the findings of complexity science. Different
complexity disciplines are explained in Section 2.

Researchers such as Lucas (2008), Wolfram (1986),
Holland (1975, 1992, 1995, 1998), De Wolf (2007) and
Gershenson (2007) have studied the various definitions for
CS and their characteristics. We therefore only briefly
consider complex systems definitions in Section 3 and lay
the focus on various notions which are important for
this article, like self-organisation and emergence. The
controversies between emergence, surprise, unpredictability,
(non-)determinism and others are discussed as well as
the differences between distributed and decentralised
control.

In Section 4, we reflect on the complexity engineering
concepts, draw conclusions and give directions for future
work.

2 Engineering types

Complex and unconventional systems require different
mind-sets than offered by classical engineering. This is why
general and complexity-related engineering comes in
various flavours. It is important for the reader to understand
the different types of engineering, some of which are only
currently emerging, and have not been established as proper
disciplines yet. This does, however, not reduce their
importance and relevance.

Table 1 gives an overview of the engineering types and
the systems which they respectively address; these
engineering types are discussed in Sections 2.2 to 2.5.

Table 1 System types and engineering types

 Individual systems Systems of systems

Reducible
systems

Classical engineering Classical systems
engineering

Systems with
emergence

Complexity
engineering

Complex systems
engineering

2.1 Preliminary discussion
This section addresses relevant aspects and notions which
are required to understand the subsequent classification.

2.1.1 Systems of systems
Systems of systems (SoS) are very large and CS (Bjelkemyr
et al., 2007), composed of complex subsystems. The
entwined nature of the systems�’ multiple components limits
the success of a standard divide-and-conquer approach
(Bullock and Cliff, 2004). Classical methodological
approaches neglect or are unable to fully capture the sources
of emergence and evolvability in distributed networks.

2.1.2 Modularity and its limitations
Modularity is a well-known way to divide a large system
into parts which can be individually designed and modified.
The modules can then be assembled stepwise, and the
system�’s functionality verified accordingly (Kenger, 2006).
This works very well for reducible systems. Modularity is
closely related to reductionism, which reduces the system to
the sum of its parts, and goes contrary to the principle of
emergence. Reductionism is only valid if the parts are
unrelated (which is rarely the case). Nevertheless, analysing
the parts can be helpful: they are easier to understand, and
their sum gives an idea of the whole, even if incomplete
(Auyang, 1998). Also, modules are useful as building
blocks to create systems which may or may not exhibit
emergent behaviour.

However, in the case of CS, it is wrong to assume that
the behaviour of the whole system could be reduced to the
sum of its parts (Bar-Yam, 2003). The parts are often
strongly dependent on each other and interact in multiple
ways. Therefore, one of the challenges of complexity
engineering is how to integrate modularity into a framework

 Concepts in complexity engineering 125

which can cope with emergent behaviour (if this should be
possible). The effects of composition arise where many, in
themselves often simple, entities interact to form a system;
the resulting behaviour is usually not simply the linear sum
of the behaviour of the individual components (Gell-Mann,
1995).

2.1.3 Trade-off: creative freedom versus specification
One of the challenges in engineering is the trade-off
between the system specification1 by the designer and the
creative freedom of the system (Buchli and Santini, 2005;
Choi et al., 2001). More freedom means less control over
the system�’s behaviour.

Figure 1 Desired, allowed and possible areas (boxes) of system
behaviour

Engineers need to find ways to delimit the system�’s
behaviour while still allowing it sufficient creative freedom
to localise solutions in an adaptive way. Indeed, most
systems exhibit certain patterns of behaviour, which is
enough to make predictions about system behaviour.
Consequently, any state belonging to the delimited patterns
are acceptable. In other words, to assure that the system will
not show undesired behaviour, the system can be bound to a
virtual box.2 Inside this box, the system is free, but it may
not leave the box [Figure 1, for further discussion see also
(Di Marzo Serugendo, 2009)]. While the behaviour is inside
the range specified by the desired box, no actions need to be
taken. If the system leaves this area and remains inside the
allowed area, no drastic measures need to be taken, but the
system should eventually steer itself back towards the
desired area. In case a system should diverge take states
which are possible, but not allowed, immediate actions are
necessary to bring the system back on save grounds. The
fact that a system even reached this non-allowed area
already means that the working parameters or policies need
to be adjusted. The difficulties here are:

 Finding the box or pattern which corresponds to the
acceptable system behaviour. This means that the
designer has to define the limits of what is acceptable,
and then somehow relate one borderline to another.

 Describing the box or pattern in a coherent way.
Besides a description in natural language, in most cases
also a computer-readable/-understandable version is
necessary.

 Agreeing a compromise between the normally
acceptable system behaviour and the additional
freedom we can concede to the system. For instance,
normally a mobile robot may not be allowed to enter a
certain area of the shopfloor. Nevertheless, allowing it
to do so under certain circumstances may enable the
other mobile robots to execute their task in a more
efficient way, and thus, it may improve the overall
system performance. This is why the designer must find
a balance between the benefits and potential dangers of
crossing the border of acceptable system behaviour.

 Staying inside the box.

To conclude, the trade-off between creative freedom and
specification is an important issue, and further investigation
is necessary.

2.1.4 Complexity science versus complexity
engineering

Complexity science, the study of CS, has seen an increasing
interest in the last decades, pioneered by the Santa Fé
Institute in New Mexico, USA (Waldrop, 1992). Ever since
characteristics of CS in diverse areas have been thoroughly
studied. Only few authors, however, take an engineer�’s
perspective towards using the findings of complexity
science for designing systems, even though the term
complexity engineering appeared already in 1986 in the
context of pattern recognition in cellular automata
(Wolfram, 1986).

As we use it today, complexity engineering aims
at the concrete use of complexity-inspired methods
for engineering. �“In complexity science, one looks for
underlying and unifying principles among many systems. In
complexity engineering, we look into these different
systems and their underlying principles from the point of
view of application�” (Buchli and Santini, 2005).

Complexity engineering has not been established as a
proper discipline yet. Literature about methods or
frameworks is still scarce. One of the reasons may be basic
misunderstandings over common terms such as emergence,
i.e., The seeming contradiction between engineering and
emergence may arise because engineers freely move from
so-called predictive definitions, in which emergence is
equated to surprise, towards definitions of strong emergence
where higher-level patterns can be used as design templates
(Johnson, 2005). To overcome such problems, the broader
dissemination of clear definitions (see Section 3.4) is
important.

The techniques and concepts from complexity science
need to be formalised in order to be usable in engineering
(Buchli and Santini, 2005). Most complexity research is still
in an early stage of development, in the �‘trial and error
intuitive engineering phase�’. So far, there are almost no
methodologies, no common language and no common body
of experience. Only a collection of examples, methods and
metaphors for modelling complex, self-organising systems

126 R. Frei and G. Di Marzo Serugendo

exist. Integrated theoretical foundations are still lacking
(Heylighen, 2008).

This situation is a strong motivation to our endeavour to
establish complexity engineering as a broadly known
discipline, to deliver useful definitions, and to give an
overview of the existing methods and approaches.

2.2 Classical engineering
Classical engineering is what is taught in most common
engineering courses at universities, and what most scholarly
books transmit. The engineering sciences have centuries old
traditions, and in comparison, complexity science is
relatively recent. It is still mostly considered as somewhat
alternative, and we therefore refer to the �‘old�’ school as
classical or traditional.

Such engineering is essentially applying methods and
tools to solve problems using a reductionist approach, be it
top-down or bottom-up. This means that �‘what you see is
what you get�’, and there is no space to consider concepts
like emergence.

Classical engineering, the majority of scientific models
as well as our intuitive understanding are based on
reductionism or analysis, predictability and objectivity,
determinism, correspondence theory of knowledge and
rationality (Gershenson, 2007). An example could be the
divide and conquer strategy of software development
strategies and Newtonian mechanics (Heylighen, 2008): a
problem is cut into its simplest components, and each of
them is treated separately. They are described in a complete,
objective and deterministic manner. Once each of them is
resolved individually, then they are joined and, voilà, the
entire problem is solved. Most engineers would indeed
make the (often reasonable) hypothesis that the parts
interact in some well-known and predefined ways without
further influencing each other. Modularity then works at its
perfection.

For application examples of classical engineering see
Table 2.

Table 2 Application examples of classical engineering

Engineering area Application example

Software engineering Planning algorithms

Mechanical engineering Construction of a crane

Electrical engineering Hierarchical control of a machine

Production engineering Dedicated assembly station

Biotechnology Fruit fly breeding

2.3 Classical systems engineering
Systems engineering, as described by the international
council on systems engineering (INCOSE), is an
interdisciplinary approach focusing on all aspects of
systems. It considers all phases of a product, from its
concept to production, operation and disposal, as well as all
the involved parties, such as suppliers, manufacturers and

customers. Although systems engineering attempts to
consider the entire system instead of only parts of them, it is
indeed a classical engineering approach because it ignores
emergence and related concepts.

Systems engineering emphasises the importance of
managing the whole as well as its parts, of seeing the
interconnectedness of decisions, of taking a collective view.

For application examples of classical systems
engineering see Table 3.

Table 3 Application examples of classical systems
engineering

Engineering area Application example

Software engineering Large database systems with several
subsystems

Mechanical and
electrical engineering

Cars, trains, ships, air planes

Production engineering Dedicated assembly line

Biotechnology Production of vaccines

2.4 Complexity engineering
Complexity engineering is the creation of systems using
tools originating from complexity science. The question is
not so much in which ways complexity engineering would
be better than classical engineering, but rather, in which
situations classical engineering comes to its limits and
complexity engineering can help. This is mostly the case
with CS (discussed in Section 3.1): systems which are
composed of many interacting components, where the
interactions are multiple and changing in time; open
systems; systems which have to function in a dynamic
environment and strongly interact with it. CS use
adaptation, anticipation and robustness to cope with their
often unpredictable environment (Gershenson, 2007), and
complexity engineering therefore requires tools which take
these issues into account.

Such systems, said to have emergent functionality
(Steels, 1991), are useful in cases where there is a lot of
dependence on the environment and it is difficult or
impossible to foresee all possible circumstances in advance.
Traditional systems are therefore unlikely to be able to cope
with such conditions. Systems with emergent functionality
can be seen as a contrast to reducible systems and usually
hierarchical functionality; the latter means that a function is
not achieved directly by a component or a hierarchical
system of components, but indirectly by the interaction of
lower-level components among themselves and with the
world. Careful design at micro level leads to behaviours at
macro level which are within the desired range.

Typically, no single entity within the system knows how
to solve the entire problem. The knowledge for solving local
problems is distributed across the system (Gershenson,
2007), and together, the entities achieve an emerging
global solution. The right interactions need to be
carefully engineered into the system, so that the systems

 Concepts in complexity engineering 127

self-organising capabilities serve our purpose, i.e., they do
satisfy and support the requirements (Buchli and Santini,
2005).

Complexity engineering will not lead to systems which
are unpredictable, non-deterministic or uncontrolled.
The output (i.e., certain aspects) may be predicted and
controlled �– it is how the system arrived to that output that
can not be known, complex or not computationally
reproducible (Buchli and Santini, 2005). However, it
remains an open question if the latter is acceptable for all
application domains. The system�’s development cannot be
completely separated from the system�’s operation in the
case of a CS (Norman and Kuras, 2004).

For application examples of complexity engineering see
Table 4.

Table 4 Application examples of complexity engineering

Engineering area Application example

Software engineering Peer to peer systems, grid
Mechanical and machines
materials engineering

Made of intelligent�’ materials,
which recognise when parts

undergo too much strain
Electrical engineering Traffic control
Production engineering Individual evolvable assembly

systems
Biotechnology Tissue engineering, growing

organs in the test tube

2.5 CS engineering
In contrast to classical systems engineering, which treats
reducible systems, CS engineering will apply the methods
from complexity engineering to SoS. CS engineering
(Kuras, 2006) is appropriate to address problems which are
continually changing or which require concepts at multiple
scales or levels to be fully understood. The notion of higher
and lower scales of conceptualisation gives rise to the
metaphor of a ladder of scales, in contrast to the often-used
concept of a hierarchy of scales.

Table 5 Application examples of CS engineering

Engineering area Application example

Software engineering Self-organising displays
(Puviani et al., 2010)

Electrical engineering Large-scale traffic management
Production engineering Evolvable assembly systems

including their supply networks and
customers

Biotechnology Man-made biological ecosystems
Robotics Open mobile robots coalitions

CS engineering is typical for cases where SoS constantly
evolve, where different parts integrate or compositions
dissolve at any instant. There is both internal competition
and collaboration which stimulates evolution. Specific
outcomes of complex-system development cannot be

specified in advance. But they can be shaped (i.e., strongly
and persistently influenced) (Wolfram, 2002), i.e., by
guiding policies as used in MetaSelf (Di Marzo Serugendo
et al., 2010).

For application examples of CS engineering see Table 5.

2.6 Inspiration from nature
Not only CS, but also nature in general inspires many
researchers and engineers. The following classification
attempts to structure this broad field.

Bio-inspiration in technology can take various forms.
Each of them has particular goals and strategies, and
researchers should be aware of them. The items 1, 2a and 2b
on the following list correspond to the three-research phases
of inspiration by nature described in Frei and Barata (2010).
The last three-items are additional. Table 6 gives an
overview of inspirations and applications.

1 Using technology to understand natural systems:
Biologists, chemists and physicists have for a long time
been using technological tools to help them investigate
natural systems and to verify the established models.
The palette of such tools includes oscilloscopes,
gyroscopes as well as compound pendulums. More
recently, computers allowed researchers to run
large-scale simulations with thousands of iterations.
Even more sophisticated, nowadays researchers use
robots to emulate natural systems, and they even
succeed in incorporating robotic �‘cockroaches�’ into real
cockroach swarms (Correll and Mondada, 2007; Halloy
et al., 2007).

2a Using ideas from natural systems to make lab
experiments and find usable mechanisms: This refers to
the experimental phase of bionics. Researchers
understood long ago that they can learn from nature and
use mechanisms discovered in natural systems to solve
engineering problems. However, most mechanisms
need to be adapted in order to be usable, and this can
only happen through an experimentation phase in the
lab. Different versions are often discovered by
changing the initial mechanisms, and the researchers
can let their creativity play.

2b Using ideas from natural systems to build industrial
technology: The final goal of most bionic developments
is using them in real-world applications. This means
that they have to comply with industrial standards. It
has been achieved for many technologies, such as
ultrasound, radar and sonar systems, dolphin-shaped
boats, ultra-hydrophobic and self-cleaning surfaces
based on the Lotus effect, and cat-eye reflectors.
Researchers now increasingly approach distributed and
autonomous adaptive systems, which are more difficult
to build than other bionic applications.

3 Using the �‘engineering toolbox�’3 on natural systems:
Denominated biotechnology, bio-medical engineering,
genetic engineering or similar, these disciplines use
engineering technology on natural substrates such as

128 R. Frei and G. Di Marzo Serugendo

living cells, bacteria and sometimes higher animals.
Researchers grow virus cells in tanks to produce
vaccines, they try reproducing epidermic tissue and
inner organs or genetically modified animals. Many
different technologies are being used to diverse
purposes. As a specific example, when a certain gene is
implanted and then inherited to future generations,
cancerigenous cells can become fluorescent, which
facilitates their identification under the microscope.4

4 Using biotechnology methods for software engineering:
Researchers in computer science now often take
inspiration from methods used in biotechnology, in
particular in cell engineering. Methods which work for
living cells supposedly also work for software agents.

5 Using ideas from engineering to build new models for
understanding natural systems: Probably the most
recently initiated discipline considers architectures and
mechanisms used by engineers to create technological
systems which have nothing to do with natural systems.
Natural scientists then use such ideas to build new
models for understanding natural systems (Reeves and
Fraser, 2009), in the sense that if engineers have come
up with ideas, maybe nature has invented them long
ago.

 Complexity engineering, as treated in this article,
belongs to the class 2a/2b in the sense that it uses
inspiration from nature for engineering.

Table 6 Engineering and natural systems

Phase Inspiration/assisting tools Application/goal

(1) Technological tools Understanding natural
systems

(2a) Natural systems Lab experimentation

(2b) Natural systems Industrial engineering,
technology

(3) Engineering methods Biotechnology on living
substrates

(4) Biotechnological methods Software engineering

(5) Software engineering
methods

Building artificial
models to understand

natural systems

3 Definitions and terms

Many of the terms discussed in this article are often used
with an intuitive understanding in colloquial speech. Also in
scientific work, they take varying meanings. The following
subsections discuss the definitions of these terms in
scientific use.

 Agents: By agent we refer to an entity which is able to
act in a fairly autonomous way, according to
norms/rules/policies and in order to achieve a goal. An

agent can be something like an ant, a human person, a
robot or a software agent. It consists of some kind of
brain or computational power and often also has some
kind of embodiment.

 Systems: As a working definition, a system may be
considered as a set of entities (often agents), which
interact with each other as well as with the
environment, and some infrastructure or passive
components/entities.

3.1 Introduction to complexity
Complexity issues have been studied within various
contexts, i.e., physical phenomena (Nicolis and Prigogine,
1977), cellular automata (Wolfram, 1986; Langton, 1986),
ICT systems (Bullock and Cliff, 2004), supply chain
networks (Choi et al., 2001), management (van Eijnatten,
2005), networks (Schuh et al., 2006; Mitchell, 2006),
modelling (Oliver et al., 1997), the laws of diversity
(Ashby, 1956), natural disasters such as earthquakes (Ball,
2004) and epidemics (Gladwell, 2000), adaptation in
Holland (1975, 1992, 1995, 1998), the dynamics of CS
(Bar-Yam, 1997), chaos theory (Newman, 1996), and
engineering aspects (Rzevski, 2004; Rzevski and Skobelev,
2007; Rouse, 2003; Abbott, 2006; Bar-Yam, 2003, 2005;
Woodard, 2006; Zapf and Weise, 2007). The search of the
mechanisms behind emergence and self-organisation has
also been approached by many complexity researchers, such
as Kauffmann (1995), Heylighen (2003), Camazine et al.
(2001) and Steels (1991).

In some way, many open questions are related to each
other, and common characteristics can be identified when
investigating, i.e., how often earthquakes of a certain
strength happen, why certain neighbourhoods become
dangerous, how and why epidemics spread, through how
many degrees of separation we are linked to any other
person in the world, etc. The study of non-linear systems,
dynamic systems, differential equations, non-determinism is
intimately related to the nature of intelligence, the
creation of structure and organisation, the creation of
life, emergence, self-organisation, the micro- and the
macroscale, etc. Table 7 places complexity between
deterministic and statistical science, in terms of the scope in
time and numbers of entities considered.

CALResCo (Lucas, 2008) is a valuable source
for all kinds of question concerning complexity
science, which searches the laws that apply at all scales,
the inherent constraints on visible order. Typical systems
may be described as: �“Critically interacting components
self-organise to form potentially evolving structures
exhibiting a hierarchy of emergent system properties�”. This
is a confirmation that the study of complexity science may
prove to be useful for agile manufacturing.

The study of CS requires a conceptual framework which
should include three different perspectives (Amaral and
Ottino, 2004): non-linear dynamics and chaos theory,
statistical physics including discrete modelling, and network
theory, which is especially useful for understanding the

 Concepts in complexity engineering 129

internet and other communication networks, the structure
of natural ecosystems, the spread of diseases and
information, the structure of cellular signalling networks,
and infrastructure robustness.

Some authors�’ strategy is to avoid complexity as far as
possible, and they use metrics to determine the degree of
complexity of a given configuration (Kuzgunkaya and
ElMaraghy, 2006). Most researchers, however, aim at
gaining a better understanding of complexity before
dismissing it as assumingly being disturbing or useless.

The assumption that principles and mechanisms
which are successful in nature will also work in
technology/engineering is not undoubted. Besides the
numerous similarities they share (Frei and Barata, 2010),
there are also important differences between nature and
engineering (Spilker, 2007). Namely:

 In nature, there is time and space for failures. In
engineering, we must get it right the first time (or at
least very soon after a test phase), and we must avoid
failures.

 The main goal is (supposedly) only survival of the
species. In technology, we have very specific goals.

Taking these differences into consideration is certainly
sensible.

3.1.1 Complexity definitions
For instance, industrial assembly systems are complex; there
is a plentitude of often conflicting interests and objectives
being pursued, and the overall behaviour of the system
results from the behaviour of many individual components
which mutually and multi-laterally5 influence each other.
Complexity science is an area of research which studies
exactly this kind of systems, and is therefore potentially a
useful tool for assembly engineers. To understand how
complexity might help, it is necessary to understand
complexity itself �– which is not evident, especially as it
comes in many different flavours, depending on both the
field of research and the researcher.

Complexity can be defined as �“the name given to the
emerging field of research that explores systems in which a
great many independent agents are interacting with each
other in many ways�” (Waldrop, 1992). Examples of such
systems (Auyang, 1998) could be electrons and molecules,
which require cohesive and disruptive forces to work
the way they do. Instantiations of this principle are
ordering and disordering forces, kinetic energy and binding
energy, coherence and disruption, transaction cost and
administrative cost, etc.

Quite different sounds this definition:
[Complexity is] �“that property of a language
expression which makes it difficult to
formulate its overall behaviour, even when
given almost complete information about its
atomic components and their interrelations.�”
(Edmonds, 1999)

Various researchers have tried to classify complexity types:

1 Random complexity, probabilistic complexity,
deterministic chaos, emergent complexity and
Newtonian dissipative structures (Maguire and
McKelvey, 1999).

2 Effective complexity versus underlying simplicity with a
certain amount of logical depth, which may also seem
complex (Gell-Mann, 1995).

3 Complexity can also be classified by the following
characteristics (Philipp et al., 2006):

 Time-related: static or dynamic.

 Organisational: process-related or structural.

 Systemic: internal or external.

4 The external complexity (Jost, 2004) is the amount of
input, information, or energy obtained from the
environment which the system is capable of handling.
The internal complexity is the complexity of the input
representation which the system receives. CS often
increase their external complexity to reduce their
internal complexity.

Complexity is characterised by non-linear relationships
between parts, openness, feedback loops, emergence,
pattern formation, and self-organisation (Grobbelaar and
Ulieru, 2007). In linear systems, effect is directly
proportional to cause, whereas in non-linear systems, the
effect may be any. Non-linearity comes in many flavours,
tending to occur when a system�’s interactions are
multiple, ecologically embedded, non-additive, inseparable,
heterogeneous, interactive, asynchronous, lagged, or
delayed (Bullock and Cliff, 2004).

3.1.2 Complex systems
CS can be defined in various ways. Most scientists consider
CS as being composed of a large number of relatively
simple heterogeneous components, which interact multi-
laterally and in changing ways; collective behaviour
emerges. The interactions sometimes result in non-linear
behaviour, and there are multiple feedback loops. CS often
evolve, adapt, and exhibit learning behaviours. They
typically exhibit emergence and are often self-organised.

The original Latin word complexus signifies entwined or
twisted together (Heylighen, 1996). A CS is thus made of
more than one part, and the parts are at the same time
distinct and connected. It is therefore inherently difficult to
model them. Often, there are circular causal relationships:
one part influences the other, which in turn influences the
first, and so on.

CS refer to �‘a set of systems which share some common
behavioural and structural properties�’, where the meaning of
structure can be spatial, temporal or functional (Grobbelaar
and and Ulieru, 2007).

130 R. Frei and G. Di Marzo Serugendo

The micro level interactions between parts of the system
may either be independent or coherent, resulting in different
collective behaviours (Grobbelaar and and Ulieru, 2007):

 coherent interactions: coordination at microscale only

 independent interactions: random behaviour at
microscale, coordination at macroscale

 correlated behaviours: coordination at micro and
macroscale.

3.1.3 Complex adaptive systems

Systems which emerge over time into a coherent form, and
adapt and organise themselves without any singular entity
deliberately managing or controlling it, belong to the class
of complex adaptive systems (CAS) (Holland, 1995). CAS
are many body systems, composed of numerous elements of
varying sophistication, which interact in a multi-directional
way to give rise to the systems global behaviour. The
system is embedded in a changing environment, with which
it exchanges energy and information. Variables mostly
change at the same time with others and in non-linear
manner, which is the reason why it is so difficult to
characterise the system�’s dynamical behaviour.

CAS often generate �‘more of their kind�’ (Gell-Mann,
1995), which means that one CAS may generate another. To
characterise them, researchers describe their components,
environment, internal interactions and interactions with the
environment.

It remains open if there are CS which are not adaptive.
Some researchers agree, as, depending on its definition,
adaptivity may require diversity and natural selection, as
shown in ecosystems (Grobbelaar and and Ulieru, 2007).

3.2 Self-organisation

A well-known definition was suggested by Camazine et al.
(2001):

�“Self-organisation is a process in which
patterns at the global system emerges solely
from numerous interactions among the lower-
level components. Moreover the rules
specifying interactions among the system�’s
components are executed using only local
information without reference to the global
pattern.�”

The following definition is a few years more recent:
�“Self-organisation is the dynamical and
adaptive mechanism or process enabling a
system to acquire, maintain and change its
organisation without explicit external
command during its execution time; there is no
centralised or hierarchical control. It is
essentially a spontaneous, dynamical (re-)
organisation of the system structure or
composition.�” (Di Marzo Serugendo et al.,
2006a, 2006b)

The identification of a boundary of the system is extremely
important when deciding if a system is self-organising or
not: defining an entity with controlling influence as external
disqualifies a system from being self-organised, whereas the
situation is different if the entity is considered as being
internal.

By some researchers, self-organisation may also be seen
as the spontaneous creation of globally coherent pattern out
of local interactions (Heylighen, 2003) (although this is
usually considered as the definition of emergence, see
Section 3.4).

This shows how controversial the research area still is.
Preconditions for having self-organisation in engineered
systems, based on characteristics discussed in Correia
(2006), De Wolf and Holvoet (2005), Di Marzo Serugendo
et al. (2006b) and Heylighen (2003), are:

 Autonomous and interacting units.

 No external control; the question of corresponding
system boundary definition arises.

 Positive and negative feedback. For instance, monetary
rewards/punishments for successful collaboration and
achievement of tasks respectively contract breaching or
failures.

 Fluctuations/variations which lead to the typical
far-from-equilibrium state, which is in manufacturing
systems given by disturbances and changing production
requirements, such as changing volumes and fluctuating
part deliveries or equipment down-times.

 Safety measures in case the system should drift towards
undesired or harmful behaviour.

 A flat internal architecture, as opposed to a hierarchical
one, with dynamically changeable organisation of the
interacting agents.

Adaptation means achieving a fit between system and
environment; thus, every self-organising system adapts to its
environment (Heylighen, 2003).

Mechanisms which lead to self-organisation in
engineered systems include stigmergy (known from
social insects, such as ants releasing pheromones in the
environment), gossip, trust, collaboration/competition,
swarms (as seen in schools of fish or flocks of birds), and
chemical reactions. Most of these mechanisms happen
according to a set of rules which can be identified. For
instance, the entities in swarms respect three-principles,
such as:

1 advance

2 stay close to your peers

3 avoid collisions.

Depending on the case and the mechanism, the rules can be
more numerous, more complicated, and more complex. For
engineering purposes, they may be adapted and extended.

A working definition for self-organisation seen from an
engineering perspective is given in Section 3.2.2.

 Concepts in complexity engineering 131

3.2.1 Weak and strong self-organisation
When it comes to concrete applications, it makes
often sense to differentiate between weak and strong
self-organisation. Not all cases do fully comply with the
rules�’ of strong self-organisation, but still, there is some
form of self-organisation.

In the strong case, the self-organisation happens without
any centralised control, whereas in the weak case, there may
be some internal (centralised) control or planning (Di Marzo
Serugendo et al., 2005).

3.2.2 Working definition of self-organisation
After studying the existing definitions in literature as well as
an engineering perspective on complexity concepts, we
suggest the following working definition, based on the
research done and experience gained in the scope of our
work (Frei, 2010):

 Self-organisation: Systems which self-organise are
typically composed of many, at least partially
autonomous components. These components have
certain characteristics and skills, and have at least one
way of communicating with their peers and the
environment. The environment dynamically changes
and influences the system. The components engage in
interactions with their peers; they may collaborate,
compete, negotiate, gossip, and establish varying levels
of trust between each other. This depends on the
mechanism which leads to self-organisation. The
components may have individual goals, but also shared
or global goals. The system is not under any type of
external or central control, although in engineered
systems, the self-organisation process happens
according to certain rules which were defined by the
system designer. These rules may be dynamically
changed, even at run-time, and thus allow the designer
to influence the system at any time. Self-organisation is
scalable, robust, and fault-tolerant, i.e., insensitive to
small perturbations and local errors as well as
component failure, thanks to redundancy.
Self-organising systems exhibit graceful degradation,
meaning that there is no total break-down because of
minor local errors. Self-organisation is a dynamic
process in many-body systems and may occur with or
without emergence.

3.3 Self-* properties
In literature, diverse interpretations of self-organisation,
self-adaptation, self-management, self-(re)configuration,
self-healing and emergence can be found. Many of them
focus on one single term; only few mention the links
between the concepts. For instance, self-adaptation is
included in self-managed systems, and self-management is
included in self-organisation, according to the classification
in Muehl et al. (2007).

One important differentiation to be made is the
direction of the property: self-organisation and self-healing

is bottom-up, whereas, self-adaptation, self-management
and self-healing are top-down, as illustrated in Figure 2.

Besides the differences in the orientation (bottom-up or
top-down), most often the name given to the property is a
question of the focus: the behaviours can sometimes not
even be clearly classified as �‘pure organisation�’ or �‘pure
healing�’ etc., and most often self-* properties have an
emergent character. As an example, when a system
re-organises its internal structure to recover from a failure,
is this self-organisation or self-healing? Is self-organisation
used for self-healing? Or is it emergence, because the
process is based on local rules and produces a new, global
result? It depends on the rules which define the behaviour,
but an observer may not know them.

Figure 2 Bottom-up and top-down self-* properties

De Wolf suggested a taxonomy of self-* properties
(De Wolf and Holvoet, 2007) which focuses on
decentralised autonomic computing and discusses
characteristics of self-* properties and implications for their
engineering. Among other criteria, the taxonomy considers
if a self-* property is achieved on macroscopic or
microscopic level, if it is on-going or one-shot, if it is
time/history dependent or independent, if it evolves in a
continuous or abrupt way, and it is adaptation-related or not.
The taxonomy gives examples of mechanisms leading to
self-* properties and classifies application examples
according to the considered characteristics, but it does not
indicate to which kind of self-* property a mechanism or
application belongs.

Even though the following classification is general, the
following non-exhaustive list of working definitions is
influenced by the domain of robotics and artificial
intelligence. These working definitions (Frei and Barata,
2010) are not conclusive, but they give indications and
contribute to a base for further research: they intend to
trigger other researchers to reflect about them. The term self
generally refers to the absence of external control. After a
general description, an application to assembly systems
follows.

 Self-adaptation: a system adjusts itself to changing
conditions without major physical modifications.
For instance, in the case of an industrial assembly
system (Frei, 2010), when more urgent orders arrive, a
robot can increase its working speed.

132 R. Frei and G. Di Marzo Serugendo

 Self-configuration: a system prepares itself for
functioning, including the adjustment of parameters and
calibration. A robot adjusts its movement accuracy
to the desired value.

 Self-reconfiguration: mostly encompasses
self-adaptation and self-configuration, but also some
physical change (including software and hardware).
When a conveyor module fails, and there is an
alternative conveyor path to reach the affected
destination, the modules adapt their behaviour and use
the alternative path until the module has recovered from
the failure. Alternatively, a new conveyor module is
requested from the user and integrated into the existing
system.

 Self-organisation: a system creates or adapts its own
structure to reach a goal. Modules form coalitions to
provide the requested skills.

 Self-assembly: sub-systems or modules connect
with each other to form the whole. A robot
self-assembles with a gripper which it can
autonomously pick up from its toolwarehouse.

 Self-disassembly: a system decomposes itself into
subsystems or modules. A coalition which is not
necessary any more disassembles. For instance, a robot
will place its gripper back in the toolwarehouse.

 Self-diagnosis: modules can find out and state what is
wrong with themselves. A feeder which cannot
provide parts will check if there are no ready parts
inside, or if there is a blockage, or if there is any other
problem preventing normal functioning.

 Self-repair/self-healing: a system can treat its problems
and maintain or re-establish functionality. A
blocked feeder will restart its software, execute
calibration movements, and if still blocked, ask the user
for help.

 Self-reproduction/self-replication: a system can create a
copy of itself. A module coalition incentivises
suitable modules to form the same type of coalition.

 Self-protection: a system can protect itself from
intruders or attacks. In case an assembly system was
open enough for strangers to gain access to it, i.e., over
the internet, it would need to protect itself from harm.

 Self-control: the system steers itself. The modules
control their own behaviour, i.e., guided by policies.

 Self-management: a system can take care of itself. This
may include self-protection, self-healing, self-
configuration, self-optimisation, self-adaptation etc.
At production time, the modules maintain themselves
as well as their neighbours in good conditions. They
manage their multi-lateral interactions, provide the
requested services, schedule maintenance etc.

3.4 Emergence
Emergence describes how order appears out of chaos
(Holland, 1998). Both emergence and self-organisation
(Section 3.2) are concepts which first appeared in physics
(phase transitions) and chemistry (molecules and material
properties), and were then also observed in other domains,
including biology (cells, DNA, brain, etc.), game theory,
social science, economics and engineering. A general theory
of emergence is still missing (Brueckner, 2000).

Most systems which exhibit emergence can be modelled
in terms of the interaction of agents. Building blocks
are combined to form a higher level system. Emergent
phenomena are often hierarchical: complex ones are
composed of simpler ones (Holland, 1995).

Definitions found in literature include:
Emergence is a bottom-up effect, which generates order

from randomness (Mueller-Schloer, 2004). It results in a
self-organised increase of order, in space or time. A global
behaviour arises from the interactions of its local parts;
cannot be traced back to the individual parts (De Wolf and
Holvoet, 2005). Desirable and undesirable emergent
behaviour in distributed systems results from the non-linear
interaction of completely deterministic processes (Parunak
and VanderBok, 1997). None of the entities composing the
system knows how to achieve the emergent phenomenon
(Di Marzo Serugendo et al., 2006b).

Although controversial, emergence does not only exist
in the eye of the observer; it is intrinsic to the system
(Holland, 1998). Novelty does not depend on the experience
of the observer, neither. It refers to the new class of words
used to describe the global phenomenon, new in the sense of
different from those used for the local level description.
However, novelty is not the same as surprise, as surprise is
related to the preparation of the observer, and novelty is not.

According to Holland (1998), for engineered systems,
emergence happens according to rules. The designers have
to find the level of detail where they can set the rules and
therefore control emergence. Notice that also this is a very
controversial statement, as for most other researchers, this
describes self-organisation, and not emergence.

It is mostly agreed that an emergent property (Auyang,
1998):

1 of a whole is not the sum of the characters of its parts.

2 is of a type which is totally different from the character
types of its constituents.

3 is not deducible or predictable from the behaviours of
the constituents investigated separately.

A resultant is different from an emergent (Auyang, 1998):
A resultant is closely tied to the material content of the
constituents. Linear systems have resultant behaviours and
are traceable. The principles of superposition, aggregation
and additivity apply. An emergent has a structural
aspect, there is novelty and non-additivity. For instance,
conductivity is resultant, whereas, superconductivity is
emergent. Nevertheless, both properties involve the same
�‘ingredients�’. Emergent properties can in principle be

 Concepts in complexity engineering 133

predicted by analysing the lower levels; in practice, we are
not always capable of doing it (Lucas, 2008).

Different forms of emergence (Castelfranchi, 2001)
exist: Diachronic: develops in time. This may happen when
new technologies are introduced and they combine with
previously existing modules. Synchronic: different ways of
looking at a given info from one level to another, e.g.,
emergence of a significant pattern, structure or form from
the point of view of a given observer. Descriptive:
synchronic, but not related just to the observer�’s
conceptualisation and description; objective emergence if
causal effect on environment. May occur when new system
behaviours cause the user to take previously not necessary
actions. Cognitive: becoming aware of previously ignored
knowledge. A system designer or user may experience this.

Some authors consider that not only system
characteristics may emerge, but also goals (Louzoun and
Atlan, 2007) and functionalities (Capera et al., 2004; Steels,
1991). In the context of engineering, this may be interpreted
as systems which can do things they were not made for.

A working definition for emergence seen from an
engineering perspective is given in Section 3.4.2.

3.4.1 Weak and strong emergence
To bring the classical notions of emergence, discussed
before, closer to the reality of engineered systems,
two-classes of emergence are proposed (De Wolf, 2007;
Fromm, 2005):

For strong emergence, the global level must show
further development. There is non-linear dependence of
the global functionality on the components and their
interactions between themselves and the environment.

Weak emergence means that the local-to-global
dependence may be quasi-linear �– but still, the appearance
of the global phenomenon is not self-evident and needs
some kind of inspiration.

�“A macrostate is weakly emergent if it can be
derived from micro-states and micro-dynamics
but only by simulation.�” (Bedau, 1997)

3.4.2 Working definition of emergence
After studying the existing definitions in literature as well as
an engineering perspective on complexity concepts, we
suggest the following working definition, based on the
research done and experience gained in the scope of our
work (Frei, 2010):

 Emergence: Systems exhibiting emergence most often
consist of at least two different levels: the macro level,
considering the system as a whole, and the micro level,
considering the system from the point of view of the
local components. Local components behave according
to local rules and based on local knowledge; a
representation of the entire system or knowledge about
the global system functionality is neither provided by a
central authority nor reachable for the components
themselves. They communicate, locally interact with

each other and exchange information with the
environment. From the interaction in this local world
emerge global phenomena, which are more than a
straight-forward composition of the local components�’
behaviours and capabilities. Typically, there is a
two-way interdependence: not only is the global
behaviour dependent on the local parts, but their
behaviour is also influenced by the system as a whole.
Nobody in the system knows how to achieve the
emergent phenomenon, and nobody has complete
knowledge of the system or a global observer�’s
perspective. An emergent phenomenon is a structure or
pattern, visible at global level.

3.5 Chaos
A system may be viewed as deterministic if the current
state(s) of the system determine its future state(s) in the
presence of random noise, environmental inputs and
unknown initial conditions; a deterministic dynamic system
whose behaviour is hard to predict is called a chaotic system
(Grobbelaar and Ulieru, 2007).

Chaos in common language means confusion or the lack
of fixed principles, whereas chaos in mathematics is
behaviour according to certain rules (Auyang, 1998). The
methods for mathematically describing chaotic behaviour
founded by Poincaré and Lorentz bring structure into
seemingly random behaviour (Waldrop, 1992).

Chaos is different from randomness: chaotic systems
behave according to strange attractors. This means that
under a set of conditions (i.e., within the attractor basin), a
system will always move towards a certain state or set of
states. To leave them, the system requires a certain energy
input (disturbance). In mathematical terms, chaotic systems
are deterministic, whereas randomness has no structure at
all.

In complexity terms, entropy is the tendency of systems
to create chaos from order, while extropy is the tendency of
systems to create order from chaos (that is, emergence)
(Lucas, 2008).

Chaotic systems have been discovered in domains as
diverse as mathematics, physics, biology, chemistry,
meteorology, fluid dynamics, astronomy and statistical
mechanics and logistics (Ranjan et al., 2003). Also
industrial assembly systems exhibit chaotic behaviour:

 cause and effect are not always in a linear relation, as a
small perturbation may cause a total system breakdown

 a successful assembly system will tend towards an
attractor which stands for the correctly assembled
product, although it may assume different states on the
way there

 assembly system behaviour is bound to certain limits
(robots cannot suddenly start doing crazy things),
although within the given boundaries, the behaviours
may vary (different robots may dynamically take over
the insertion of a bolt, according to their availability
and performance).

134 R. Frei and G. Di Marzo Serugendo

3.5.1 Sensitivity to initial conditions
The butterfly effect stands for sensitive dependence on
initial conditions. Little causes do not necessarily lead to
little effects, and big causes to big effects. Future outcomes
are arbitrarily sensitive to tiny changes in conditions
(Gell-Mann, 1995). Simple mechanisms may cause
considerable complexity, as well as complex sources may
lead to simple phenomena. In the same sense, CS can give
rise to turbulence and coherence at the same time. Brought
to a simple formula, we may say: �“In the middle of chaos,
there is order. In the middle of order, there is chaos�”
(Gleick, 1987).

Manufacturing systems often exhibit sensitivity to
specific conditions and to disturbances. Certain factors, like
energy disruptions or an abnormal increase of temperature
and humidity may lead to system breakdown, while others
have no significant effect (i.e., the occurrence of extreme
noise would disturb human operators, but not bother robots).
Some disturbances may have consequences in some cases,
but lack any effect in others. For example, a robot using
optical sensors reacts sensitively to changing light
conditions, whereas a robot working with tactile sensors
remains unaffected.

3.5.2 Edge-of-chaos
Various terms are being used for the state somewhere
between stable order and chaos (see Figure 3),
among others: dynamic order, instability in order, and
self-organised criticality (Ball, 2004; Gladwell, 2000).

Figure 3 Somewhere between order and chaos

Constantly stable equilibrium states would block evolution.
Dynamic systems get again and again into states where a
little stimulus can trigger a major reaction. This gives the
systems energy to evolve and makes new phenomena
emerge. �“The edge of chaos is a point between chaos and
order when creativity and stability fuse, where living
systems are at their most inventive, where there is the
highest chance that something distinct and unique will
emerge�” (Webb and Lettice, 2005).

Analogies may be drawn between sand piles, earth
quakes, wars, extinctions of species and revolutions
(Buchanan, 2000). Figure 3, somewhere between order and
chaos. The world organises itself into a critical state at the
edge-of-chaos: small events can stay small or grow to
enormous importance and have heavy consequences. The
power law describes such phenomena. It expresses that if
we double the energy (or any other quantity being studied),
the probability of the phenomenon to appear is half, a
quarter, etc. For instance, if the probability of an earthquake
of strength x to happen is y, the probability of an earthquake
of 2x to appear is 2 .y All events can have the same kind of

trigger. There is no fundamental difference between small
and big events. No-one knows if the next event falls onto a
finger of instability, which leads to its propagation, or if it
will stay small and not propagate. When building models of
such events, it is often possible to greatly simplify.
Researchers will find the same power laws in their models
as in reality, if the fundamentals of the models are correct. It
is at the edge-of-chaos that epidemics do or do not spread
(Gladwell, 2000).

Failures and perturbations in manufacturing systems
often follow power laws as well. This is why the systems
must be able to cope with frequent small failures as well as
with big rare ones.

3.5.3 Phase space/state space
Phase space or state space diagrams are used to represent
the behaviour of systems, with all the states which are
reachable for a system, and the transitions in-between, as a
function of system parameters. The bifurcation diagram
shows where the previously uniform behaviour of a system
separates into different directions, and possibly diffuses into
an unlimited number of different behaviours.

An attractor is a state towards which a system will
always tend, as long as it is under a set of initial conditions.
The Lorentz attractor and other strange attractors describe
systems which never quite settle into a state, but eternally
oscillate within a certain range of states, never taking the
same state twice (Hongler, 1994). If we know a system�’s
strange attractor and its dimensionality (the number of
dimensions of the corresponding state space), we can make
predictions about the systems behaviour, i.e., the
performance of an automated production line (Hongler,
1994).

3.5.4 Noise, perturbations and local maxima
Perturbations are a challenge and a chance at the same time.
Systems must cope with perturbations and not let
themselves drift away from their normal functioning.
However, perturbations can also be helpful: systems which
require some kind of optimisation may tend to be stuck in
local minima and thus not be able to evolve towards better
solutions without the system being disturbed or otherwise
stimulated.

The cybernetic law of requisite variety by Ashby (1956)
teaches that the greater the variety of possible perturbations,
the greater the variety of controlling actions it needs. This
means that a system which is always perturbed in the same
way will always require the same corrective measures.
However, if there is a plenitude of different influences on
the system, it will need a correspondingly varied set of ways
of reacting.

Complexity engineers should try to use perturbations to
their benefit. For instance, when a robot fails and other
robots resolve to collaborate in an unusual way to cope with
the failure of their peer, this new collaboration may be
discovered as an efficient way of executing the task, and

 Concepts in complexity engineering 135

thus be retained for further use even after the peer�’s
reparation.

3.5.5 Further concepts
The concepts described in this subsection have not been
explained yet but are important for the general
understanding of complexity science and chaos theory.

 Fractals: Inspiration for fractal manufacturing systems
(Ryu et al., 2006). Fractals have a self-similar structure
at arbitrarily small scale, meaning that new similar
structures appear when zooming in; self-similarity may
also be stochastic or approximate.

 Attractors basin: Like a river has a watershed basin that
drains to it, every attractor has a basin. Of particular
interest are the basin boundaries, which are often
fractal.

 Fitness function/landscape: Organisms must be fit for
survival and thus react to the requirements of the
ever-changing environment. These requirements can be
described by a fitness function. The closer an organism
matches the fitness function, the better adapted it is to
the current life condition. The criteria for endurance or
elimination of new characteristics are most often
multiple and form a fitness landscape.

 Spontaneous order: CS can spontaneously organise
themselves into coherent patterns. Conflicting
constraints lead to a rugged fitness landscape, which
means that the fitness parameters do not evolve
linearly/smoothly. The ruggedness is determined by the
internal organisation of the organism.

 Convergence: Happens when a system tends towards
the desired state/solution. If the system cannot reach it,
no matter how long it runs (it may oscillate endlessly,
or tend towards an undesired state, such as a chaotic
attractor), the system does not converge. The speed of
convergence (Di Marzo Serugendo, 2009) describes
how quickly a system reaches the desired state.

 Downward causation: Influence of the global/macro
system on its components/the micro elements, derived
from the constituents�’ self-organisation. Also an
emergent phenomenon can exhibit downward
causation, that is, the emergent phenomenon influences
the elements which lead to the emergence.

 Equilibrium: Self-maintained state of a (partially)
isolated system. Equilibria can be stable, meta-stable,
unstable quasi-stable, local/relative or global/absolute.

3.6 Dependability, robustness and similar terms
The terms robustness, dependability, resilience, redundancy,
degeneracy and graceful degradation are often used in the
same context: they all refer to how a system copes with
failures and perturbations.

 Dependability is the ability of a system to deliver a
service that can justifiably be trusted (Avizienis et al.,
2004). For instance, a cash machine must always
provide the same service, and we must be sure that
nothing else happens when we are requesting a certain
amount of cash. Central to this definition is the notion
that it is possible to provide a justification for placing
trust in a system. In practice this justification often
takes the form of a dependability case which may
include test evidence, development process arguments
and mathematical or formal proof.

 The original meaning of resilience refers to the
maximal elastic deformation of a material. In the
context of computer science and robotics (Bongard
et al., 2006; Di Marzo Serugendo et al., 2007),
resilience means dependability when facing changes, or
in other words, its ability to maintain dependability
while assimilating change without dysfunction. In the
case of MetaSelf (Di Marzo Serugendo et al., 2010), a
key feature for dynamic resilience is the availability of
dependability metadata at runtime. For instance, for
dynamically attributing a new server, it is necessary to
know the dependability values of the servers in
question.

 Dynamic resilience is a system�’s capacity to respond
dynamically by adaptation in order to maintain an
acceptable level of service in the presence of
impairments�’ (Di Marzo Serugendo et al., 2007),
whereas predictable dynamic resilience refers to the
capacity to deliver dynamic resilience within bounds
that can be predicted at design time. Accordingly, for
MetaSelf, resilience metadata is information about
system components, sufficient to govern decision-
making about dynamic reconfiguration. Resilience
policies serve as guidelines for reconfiguration.

 Stability means in manufacturing that a process always
delivers the same result, as long as the conditions are
within a certain specified range. A system must
continuously deliver correctly assembled products and
cope with perturbations or failures.

 Robustness means that a system does not easily get
disturbed in its normal functioning. It can cope with
failures, changing conditions and is able to remain
usable.

 Redundancy means that there are more than one
elements with the same functionalities in a system. It is
the standard solution of engineers to cope with failures,
and it involves structurally identical elements.
Redundancy is costly, because the redundant resources
remain unused, and therefore redundancy is often
avoided as far as possible. Self-organising systems have
typically a lot of redundancy, which leads to an
inherent robustness against many failures.

136 R. Frei and G. Di Marzo Serugendo

 Degeneracy (Sole et al., 2002) is an alternative which
can be observed in natural systems such as the brain. In
case of a lesion, structurally different brain regions can
adapt to take over the tasks of the damaged area. The
same can also be achieved in technological systems:
i.e., a robot may request new coalition partners to form
composite skills, which allow them to take over the task
of a failing original robot.

 With graceful degradation, a damaged or perturbed
system does not totally break down. It maintains at least
part of its functionality, even if with reduced
performance.

4 Discussion, conclusions and directions

After reviewing the most important concepts in complexity
engineering, we now analyse the general situation. The role
of the observer is addressed in Section 4.0.1, and challenges
as well as limitations of self* systems in 4.0.2. At the end,
we draw conclusions (Section 4.1).

4.1 The role of the observer
The role of the observer in determining whether or not a
system exhibits emergence was treated in Section 3.4. The
discussion here is more general, not limited to emergence.

What we perceive as an observer (or as many different
observers) is often different from what really exists
(Gershenson, 2007). The observer mostly has a very limited
perspective. Not everything happening in a system is
visible; the fact that something cannot be seen does not
mean that it does not exist.

From the perspective of the observing designer, there is
always a temptation to suppose that the created interactions
do indeed take place, even if they are not visible. The
designer should therefore try not to jump to conclusions
which may not be well-founded. Similarly, an observer who
is not the designer is always tempted to make interpretations
of the observed and find explanations which may not
correspond to reality. Also here, caution is appropriate.

According to discussions at the 4th Technical Forum
Group on Self-Organisation (TF4), some researchers think
that an emergent phenomenon is meaningful to the observer
(only?), and only if the observer is also the designer. Only
the observer-designer determines if a phenomenon is indeed
emergent because this person knows how the system works.
This means that somebody who does not understand how a
system works cannot correctly judge what is happening, i.e.,
cannot say if a phenomenon is a self-* property, or if it is
under centralised control. In many situations, a system will,
however, perform differently when under centralised control
than when acting in a distributed-autonomous way. A
careful observer may be able to determine the differences
and come to the right conclusions.

As a matter of fact, a system which is made to run
independently from a human observer (i.e., literally all
systems we are considering here), will function while being

observed or not. We therefore argue that observation can
only help the observer to understand the system, but it does
not change anything at the level of the system.

4.2 Challenges and limitations with self-* systems
Self-* properties (addressed in Sections 3.2 and 3.3) are an
important part of complexity engineering. They allow
systems to play active and increasingly autonomous roles in
accomplishing their tasks, but there are also challenges and
limitations to the possibilities of self-* properties:

 Sensitivity to initial conditions: Systems may efficiently
find a way to accomplish their task under certain initial
conditions, but not be able to do so when the conditions
are slightly different. Autonomous guided vehicles
(AGVs) may serve as an example: we suppose that their
task is to pick up a variety of finished products from
assembly stations and deliver them to boxes according
to customer orders. If the AGVs start from distributed
locations, they may very quickly settle into an efficient
rhythm of picking up and delivering products. But
when the AGVs start from a single point, it may take
them much longer to coordinate the tasks between
them, and thus their performance is affected. Engineers
thus have to consider their system�’s sensitivity to initial
conditions, and attempt to find solutions to mitigate the
effects.

 Parameter tuning: Many applications depend on
diverse parameters which have to be tuned in order for
the system to run smoothly. Human operators often
supervise the tuning, or do it manually by trial-and-
error. Suitable strategies need to be developed if the
system is to do is autonomously.

 Latency to find new stable states: Most self-* systems
can eventually find stable states or stable solutions to
achieve their tasks, but it takes time. This means that
the designer and user of self-* systems must be able to
accept delays.

 No solution found/no convergence: In certain cases, a
self-* system may not be able to solve the task given, or
its calculations may never converge. The designer has
to preview this and arrange for a way out, such as
alerting the user and/or settling for a solution which
requires the relaxation of certain constraints.

 Analysis of self-* properties: It is inherently difficult to
analyse self-* properties. The system may find ways to
fulfil tasks which the designer did not plan or preview.
The other way round, the designer may intend the
system to act in a certain way, and in reality, it is all
different. Also, the interplay between various self-*
properties is difficult to analyse. Further research
efforts are certainly necessary.

 Dependability/resilience: it must be assured that the
system does what it is supposed to do, independent
from the actual situation and circumstances, and this is

 Concepts in complexity engineering 137

challenging, especially for the type of system
considered here. Thanks to their redundancy, these
systems are often inherently robust to certain types of
failures, and this robustness comes for free. They may,
however, be fragile when facing other faults. For
further discussion see Di Marzo Serugendo (2009).

4.3 Conclusions
Although this article is directed at promoting complexity
engineering, the authors are aware of the fact that
complexity engineering is not always the most adequate
solution. They should be chosen when classical engineering
comes to its limits (compare Section 2.2), or when
alternative ways of solving a problem are desired.

We have positioned complexity engineering within other
engineering domains, such as systems engineering and
classical engineering. We reviewed the definitions of
important notions such as self-organisation and emergence,
and explained the controversies between unpredictability,
complexity and other related terms.

The second part of this set of two-articles on complexity
engineering reviews existing methods. Please refer to
Frei and Di Marzo Serugendo (2011).

Acknowledgements

This work was started while Regina Frei received a PhD
grant from the Portuguese Foundation for Science and
Technology. She currently receives a post-doc grant from
the Swiss National Science Foundation.

References
Abbott, R. (2006) �‘Complex systems + systems engineering =

complex systems engineering�’, in Conf. on Systems
Engineering Research, Position paper, Los Angeles, CA,
USA.

Amaral, L. and Ottino, J. (2004) �‘Complex networks �– augmenting
the framework for the study of complex systems�’, European
Physical Journal B, Vol. 38, No. 2, pp.147�–162.

Ashby, W. (1956) An Introduction to Cybernetics, Chapman &
Hall, London.

Auyang, S. (1998) Foundations of Complex-System Theories in
Economics, Evolutionary Biology, and Statistical Physics,
Cambridge University Press, Cambridge, UK.

Avizienis, A., Laprie, J., Randell, B. and Landwehr, C. (2004)
�‘Basic concepts and taxonomy of dependable and secure
computing�’, IEEE Transactions on Dependable and Secure
Computing, Vol. 1, No. 1, pp.11�–33.

Ball, P. (2004) Critical Mass: How One Thing Leads to Another,
Arrow Books, London, UK.

Bar-Yam, Y. (1997) Dynamics of Complex Systems. Studies in
Nonlinearity, Addison-Wesley, Reading, MA, USA.

Bar-Yam, Y. (2003) �‘When systems engineering fails �– toward
complex systems engineering�’, in IEEE Int. Conf. on Systems,
Man & Cybernetics (SMC), Vol. 2, pp.2021�–2028,
Washington DC, USA.

Bar-Yam, Y. (2005) �‘About engineering complex systems:
Multiscale analysis and evolutionary engineering�’, in
Brueckner, S., Di Marzo Serugendo, G., Karageorgos, A. and
Nagpal, R. (Eds.): Engineering Self-organising Systems:
Methodologies and Applications, ESOA 2004, LNCS,
Vol. 3464, pp.16�–31, Springer Berlin.

Bedau, M. (1997) �‘Weak emergence�’, Philosophical Perspectives:
Mind, Causation, and World, Vol. 11, pp.375�–399.

Bjelkemyr, M., Semere, D. and Lindberg, B. (2007) �‘An
engineering systems perspective on system of systems
methodology�’, in IEEE System of Systems Engineering,
San Antonio, Texas, USA, pp.1�–7.

Bongard, J., Zykov, V. and Lipson, H. (2006) �‘Resilient machines
through continuous self-modeling�’, Science, November,
Vol. 314, No. pp.1118�–1121.

Brueckner, S. (2000) �‘Return from the ant �– synthetic ecosystems
for manufacturing control�’, PhD thesis, Institute of Computer
Science, Humboldt-University, Berlin, Germany.

Buchanan, M. (2000) Ubiquity: The Science of History... or Why
the World is Simpler than we Think, Phoenix, London.

Buchli, J. and Santini, C. (2005) �‘Complexity engineering,
harnessing emergent phenomena as opportunities for
engineering�’, Tech. rep., Santa Fé Institute Complex Systems
Summer School, NM, USA.

Bullock, S. and Cliff, D. (2004) �‘Complexity and emergent
behaviour in ICT systems�’, Tech. rep., HP-2004-187,
Hewlett-Packard Labs.

Camazine, S., Deneubourg, J-L., Franks, N., Sneyd, J., Theraulaz,
G. and Bonabeau, E. (2001) Self-organization in Biological
Systems, Princeton University Press, Princeton, NJ, USA.

Capera, D., Picard, G. and Gleizes, M-P. (2004) �‘Applying
ADELFE methodology to a mechanism design problem�’, in
Int. Joint Conf. on Autonomous Agents and Multiagent
Systems (AAMAS), Vol. 3, pp.1508�–1509, New York, USA.

Castelfranchi, C. (2001) �‘The theory of social functions:
challenges for computational social science and multiagent
learning�’, Cognitive Systems Research, Vol. 2, No. 1,
pp.5�–38.

Choi, T., Dooley, K. and Rungtusanatham, M. (2001) �‘Supply
networks and complex adaptive systems: control versus
emergence�’, Operations Management, Vol. 19, pp.351�–366.

Correia, L. (2006) �‘Self-organised systems: fundamental
properties�’, Revista de Ciencias da Computacao, Vol. 1,
No. 1, pp.1�–10.

Correll, N. and Mondada, F. (2007) �‘Modeling self-organized
aggregation in a swarm of miniature robots�’, in Int. Conf. on
Robotics and Automation (ICRA), Workshop on Collective
Behaviors inspired by Biological and Biochemical Systems,
Rome, Italy.

De Wolf, T. (2007) �‘Analysing and engineering self-organising
emergent applications�’, PhD thesis, Department of Computer
Science, Katholieke Universiteit Leuven, Belgium.

De Wolf, T. and Holvoet, T. (2005) �‘Emergence versus
selforganisation: different concepts but promising when
combined�’, in Brueckner, S.A., Di Marzo Serugendo, G.,
Karageorgos, A. and Nagpal, R. (Eds.): Engineering
Self-Organising Systems, LNAI, Vol. 3464, pp.1�–15,
Springer, Berlin Heidelberg.

De Wolf, T. and Holvoet, T. (2007) �‘A taxonomy for self-*
properties in decentralised autonomic computing�’, in
Parashar, M. and Hariri, S. (Eds.): Autonomic Computing:
Concepts, Infrastructure, and Applications, pp.101�–120, CRC
Press, Taylor and Francis Group.

138 R. Frei and G. Di Marzo Serugendo

Delic, K. and Dum, R. (2006) �‘On the emerging future of
complexity sciences�’, ACM Ubiquity, Vol. 7, No. 10, p.1.

Di Marzo Serugendo, G. (2009) �‘Robustness and dependability of
self-organising systems �– a safety engineering perspective�’, in
Int. Symp. on Stabilization, Safety, and Security of Distributed
Systems (SSS), LNCS, Vol. 5873, pp.254�–268, Springer,
Berlin Heidelberg, Lyon, France.

Di Marzo Serugendo, G., Fitzgerald, J. and Romanovsky, A.
(2010) �‘Metaself �– an architecture and development method
for dependable self-* systems�’, in Symp. on Applied
Computing (SAC), pp.457�–461, Sion, Switzerland.

Di Marzo Serugendo, G., Fitzgerald, J., Romanovsky, A. and
Guelfi, N. (2006a) �‘Dependable self-organising software
architectures �– an approach for self-managing systems�’, Tech.
rep., BBKCS-05-06, School of Computer Science and
Information Systems, Birkbeck College, London, UK.

Di Marzo Serugendo, G., Gleizes, M-P. and Karageorgos, A.
(2006b) �‘Self-organisation and emergence in MAS: an
overview�’, Informatica, Vol. 30, pp.45�–54.

Di Marzo Serugendo, G., Fitzgerald, J., Romanovsky, A. and
Guelfi, N. (2007) �‘A metadata-based architectural model for
dynamically resilient systems�’, in ACM Symposium on
Applied Computing (SAC), pp.566�–573, ACM, Seoul, Korea.

Di Marzo Serugendo, G., Gleizes, M. and Karageorgos, A. (2005)
�‘Self-organization in multi-agent systems�’, Knowledge
Engineering Review, Vol. 20, No. 2, pp.165�–189.

Edmonds, B. (1999) �‘What is complexity? �– the philosophy of
complexity per se with application to some examples in
evolution�’, in Heylighen, F. and Aerts, D. (Eds.): The
Evolution of Complexity, Kluwer, Dordrecht.

Frei, R. (2010) �‘Self-organisation in evolvable assembly systems�’,
PhD thesis, Department of Electrical Engineering, Faculty of
Science and Technology, Universidade Nova de Lisboa,
Portugal.

Frei, R. and Barata, J. (2010) �‘Distributed systems �– from natural
to engineered: three phases of inspiration by nature�’, Int. J. of
Bio-inspired Computation, Vol. 2, Nos. 3/4, pp.258�–270.

Frei, R. and Di Marzo Serugendo, G. (2011) �‘Advances
in complexity engineering�’, Int. J. of Bio-inspired
Computation, Vol. 1, No. 1, pp.11�–22.

Fromm, J. (2005) �‘Ten questions about emergence�’,
http://arxiv.org/abs/nlin/0509049.

Gell-Mann, M. (1995) �‘What is complexity?�’, in Complexity,
Vol. 1, John Wiley and Sons, Inc., New York, USA.

Gershenson, C. (2007) �‘Design and control of self-organizing
systems�’, PhD thesis, Faculty of Science and Center Leo
Apostel for Interdisciplinary Studies, Vrije Universiteit,
Brussels, Belgium.

Gladwell, M. (2000) �‘The tipping point: how little things can make
a big difference�’, Abacus, London, UK.

Gleick, J. (1987)Chaos, Vintage, London.
Grobbelaar, S. and Ulieru, M. (2007) �‘Complex networks as

control paradigm for complex systems�’, in IEEE Int. Conf. on
Systems Man and Cybernetics (SMC), pp.4069�–4074,
Montreal, Canada.

Halloy, J., Sempo, G., Caprari, G., Rivault, C., Asadpour, M.,
Tache, F., Said, I., Durier, V., Canonge, S., Ame, J., Detrain,
C., Correll, N., Martinoli, A., Mondada, F., Siegwart, R. and
Deneubourg, J-L. (2007) �‘Social integration of robots into
groups of cockroaches to control self-organized choices�’,
Science, Vol. 318, No. 5853, pp.1155�–1158.

Heylighen, F. (1996) �‘What is complexity?�’, available at
http://pespmc1.vub.ac.be/COMPLEXI.html.

Heylighen, F. (2003) �‘The science of self-organization and
adaptivity�’, in Kiel, E. (Ed.): The Encyclopedia of Life
Support Systems, Knowledge Management, Organizational
Intelligence and Learning, and Complexity, EOLSS
Publishers, Oxford, UK.

Heylighen, F. (2008) �‘Complexity and self-organisation�’, in Bates,
M.J. and Maack, M.N. (Eds.): Encyclopedia of Library and
Information Sciences, Taylor & Francis.

Holland, J. (1975) Adaptation in Natural and Artificial Systems,
MIT Press, Cambridge, MA, USA.

Holland, J. (1992) Adaptation in Natural and Artificial Systems: an
Introductory Analysis with Applications to Biology, Control,
and Artificial Intelligence, MIT Press, Cambridge, MA, USA.

Holland, J. (1995) Hidden Order: How Adaptation Builds
Complexity, Addison-Wesley, Reading, MA, USA.

Holland, J. (1998) Emergence �– From Chaos to Order, Oxford
University Press, Oxford, UK.

Hongler, M-O. (1994) Chaotic and Stochastic Behaviour in
Automatic Production Lines, Springer Berlin Heidelberg.

Johnson, C. (2005) �‘What are emergent properties and how do
they affect the engineering of complex systems?�’, Reliability
Engineering and System Safety, Vol. 91, No. 12,
pp.1475�–1481.

Jost, J. (2004) �‘External and internal complexity of complex
adaptive systems�’, Theory in Biosciences, Vol. 123, No. 1,
pp.69�–88.

Kauffmann, S. (1995) At Home in the Universe: The Search for the
Laws of Self-organization and Complexity, Oxford University
Press, Oxford, UK.

Kenger, P. (2006) �‘Module property verification �– a method to
plan and perform verifications in modular architectures�’, PhD
thesis, Department of Production Engineering, Royal Institute
of Technology (KTH), Stockholm, Sweden.

Kuras, M. (2006) �‘Complex-system engineering�’,
http://cs.calstatela.edu/wiki/images/c/c5/Kuras.pdf.

Kuzgunkaya, O. and ElMaraghy, H. (2006) �‘Assessing
the structural complexity of manufacturing systems
configurations�’, Int. J. of Flexible Manufacturing Systems,
Vol. 18, No. 2, pp.145�–171(27).

Langton, C.G. (1986) �‘Studying artificial life with cellular
automata�’, in (Farmer, D., Lapedes, A., Packard, N. and
Wendroff, B. (Eds.): 5th Annual Conf. of the Center for
Nonlinear Studiesi, Los Alamos; Evolution, Games and
Learning: Models for Adaptation in Machines and Nature,
pp.120�–149, Amsterdam, The Netherlands.

Louzoun, Y. and Atlan, H. (2007) �‘The emergence of goals in a
self-organizing network: a non-mentalist model of intentional
actions�’, Neural Networks, Vol. 20, No. 2, pp.156�–171.

Lucas, C. (2008) �‘The complexity & artificial life research
concept for self-organizing systems�’, available at
http://www.calresco.org.

Maguire, S. and McKelvey, B. (1999) �‘Complexity &
management: moving from fad to firm foundations�’,
Emergence: A J. of Complexity Issues in Organizations &
Management, Vol. 1, No. 2, pp.19�–61.

Mitchell, M. (2006) �‘Complex systems: network thinking�’, in
Working papers, available at
http://www.santafe.edu/research/publications/workingpapers/
06-10-036.pdf, Sante Fé Institute, NM, USA.

 Concepts in complexity engineering 139

Muehl, G., Werner, M., Jaeger, M., Herrmann, K. and Parzyjegla,
H. (2007) �‘On the definitions of self-managing and
self-organizing systems�’, in Braun, T., Carle, G. and
Stiller, B. (Eds.): KiVS 2007 Workshop: Selbstorganisierende,
Adaptive, Kontextsensitive Verteilte Systeme (SAKS),
pp.291�–301, Bern, Switzerland.

Mueller-Schloer, C. (2004) �‘Organic computing: on the feasibility
of controlled emergence�’, in 2nd IEEE/ACM/IFIP Int. Conf.
on Hardware/Software Co-Design and System Synthesis
CODES+ISSS, pp.2�–5, ACM, New York, USA.

Mueller-Schloer, C. and Sick, B. (2008) �‘Controlled emergence
and self-organization�’, in Wuertz, R. (Ed.): Organic
Computing, Understanding Complex Systems, pp.81�–104,
Springer Berlin Heidelberg.

Newman, D. (1996) �‘Emergence and strange attractors�’,
Philosophy of Science, Vol. 63, No. 2, pp.245�–261.

Nicolis, G. and Prigogine, I. (1977) Self-organization in
Non-Equilibrium Systems: From Dissipative Structures to
Order through Fluctuations, J. Wiley & Sons, New York.

Norman, D. and Kuras, M. (2004) �‘Engineering complex systems�’,
available at http://www.mitre.org.

Oliver, D., Kelliher, T. and Keegan, J. (1997) Engineering
Complex Systems with Models and Objects, McGraw-Hill,
New York.

Parunak, H. and VanderBok, R. (1997) �‘Managing emergent
behaviour in distributed control systems�’, in Instrument
Society of America (ISA-Tech), p.97, Anaheim, Canada.

Philipp, T., Boese, F. and Windt, K. (2006) �‘Autonomously
controlled processes �– characterisation of complex production
systems�’, in 3rd Int. CIRP Conf. on Digital Enterprise
Technology (DET), Setubal, Portugal.

Puviani, M., Di Marzo Serugendo, G., Frei, R. and Cabri, G.
(2010) �‘A method fragments approach to methodologies for
engineering self-organising systems�’, Submitted to ACM
Transactions on Autonomous and Adaptive Systems (TAAS).

Ranjan, P., Kumara, S., Surana, A., Manikonda, V., Greaves, M.
and Peng, W. (2003) �‘Decision making in logistics: a chaos
theory based analysis�’, CIRP Annals �– Manufacturing
Technology, Vol. 52, No. 1, pp.381�–384.

Reeves, G. and Fraser, S. (2009) �‘Biological systems from an
engineer�’s point of view�’, PLoS Biology, Vol. 7, No. 1,
pp.32�–35.

Rouse, W. (2003) �‘Engineering complex systms: implications for
research in systems engineering�’, IEEE Transactions on
Systems, Man and Cybernetics �– Part C: Applications and
Reviews, Vol. 33, No. 2, pp.154�–156.

Ryu, K., Yucësan, E. and Jung, M. (2006) �‘Dynamic restructuring
process for self-reconfiguration in the fractal manufacturing
system�’, Int. J. of Production Research, Vol. 44, No. 15,
pp.3105�–3129.

Rzevski, G. (2004) �‘Designing complex engineering systems�’, in
Volga Conf. on Complex Adaptive Systems, Keynote paper,
Samara, Russia.

Rzevski, G. and Skobelev, P. (2007) �‘Emergent intelligence in
multi-agent systems�’, Tech. rep., Magenta Technology.

Schuh, G., Sauer, A. and Dring, S. (2006) �‘Modeling
collaborations as complex systems�’, in 4th Int. Industrial
Simulation Conf. (ISC), pp.168�–174, Palermo, Italy.

Sole, R., Ferrer-Cancho, R., Montoya, J. and Valverde, S. (2002)
�‘Selection, tinkering and emergence in complex networks�’,
Complexity, Vol. 8, No. 1, pp.20�–31.

Spilker, H. (2007) �‘Werden Roboter zur Gefahr für die Menschen?
Interview with Prof. Alois Knoll�’, Technology Review, June,
p.106.

Steels, L. (1991) �‘Towards a theory of emergent functionality�’, in
Meyer, J-A. and Wilson, S. (Eds.): From Animals to Animats:
1st Int. Conf. on Simulation of Adaptive Behaviour,
pp.451�–461, Paris, France.

Ulieru, M. and Doursat, R. (2010) �‘Emergent engineering: a
radical paradigm shift�’, J. of Autonomous and Adaptive
Communications Systems.

van Eijnatten, F. (2005) �‘Methodological aspects of chaos and
complexity in organisation and management�’, Tech. rep.,
Eindhoven University of Technology, The Netherlands.

Waldrop, M. (1992) Complexity, Simon & Schuster Paperbacks,
New York, USA.

Webb, C. and Lettice, F. (2005) �‘Performance measurement,
intangibles, and six complexity science principles�’, in 3rd Int.
Conf. on Manufacturing Research (ICMR), Cranfield, UK.

Wolfram, S. (1986) �‘Approaches to complexity engineering�’,
Physica., Vol. D, No. 22, pp.385�–399.

Wolfram, S. (2002) A New Kind of Science, Media, Champaign,
IL, USA.

Woodard, C. (2006) �‘Architectural strategy and design evolution in
complex engineered systems�’, PhD thesis, Business Studies
Department, Harvard Univ., Cambridge, MA, USA.

Zapf, M. and Weise, T. (2007) �‘Offine emergence engineering for
agent societies�’, in Proc. of the Fifth European Workshop on
Multi-Agent Systems EUMAS�‘07, Hammamet, Tunesia.

Notes

1 In this section, the term specification is not used with its
meaning in computer science, but rather its meaning in
manufacturing engineering; a specification is a description of
the identified requirements.

2 Another way of expressing this is: �“The behaviour of a
complex system will be a combination of pre-set objectives
and constraints as defined by the system developer, and
adaptive islands where the system is allowed to make its own
decisions�” (Mueller-Schloer and Sick, 2008).

3 Safe synthetic biology, see http://www.synbiosafe.eu
4 Explanations from the Biotechnology lectures (academic year

2004�–2005) by Prof. Florian Wurm at the Swiss Federal
Institute in Lausanne, Switzerland

5 Multi-lateral describes a relationship with several peers at the
same time.

