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1 Introduction 

Despite a lot of knowledge about complex systems,  
the application of this knowledge to the engineering  
domain remains difficult. Efforts are scattered over many 
scientific and engineering disciplines such as software 
engineering, social sciences, economy, physics, chemistry, 
biotechnology, and others. 

Only few of the projects cited in this article have a 
systematic approach which could be applied to other 
problems. This lack of general methodologies may have 

various reasons. Compared to other engineering branches, 
complexity science is quite recent, and complexity 
engineering even more so. While researchers observe the 
typical characteristics of complexity in many different areas, 
the way of treating them or using them is mostly very 
individually tailored for the specific system at hand. 
Furthermore, there is probably a lack of incentives for 
unifying complexity-related methods, as researchers often 
rather consider themselves as experts for their area than as 
complexity engineers. 
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Figure 1 Complexity-related research areas 

 

 
There is clearly a need for systematic approaches and 
generally valid methods. The focus of this article is 
therefore on how to use the findings of complexity science 
for engineering, with the most prominent ingredients�’ being 
self-organisation and emergence. 

Complexity-related research areas: Figure 1 illustrates 
the situation of the complexity researcher; many different 
areas are related and relevant for many different types  
of complex systems in nature and engineering. A  
multi-disciplinary approach and the ability to communicate 
with specialists from many different domains are required. 
How can this overwhelming richness of concepts be 
managed? Are there useful principles? 

First of all, it is necessary to very well understand the 
characteristics of the system being studied, or the 
requirements of the systems being engineered (Frei and 
Barata, 2010). Second, the key concepts for success have to 
be identified. Most of them cannot be found in traditional 
engineering disciplines. Third, the concepts and methods 
taken from non-engineering domains have to be adapted in 
order to comply with engineering principles. 

The inherent multi-disciplinarity requires researchers 
able of understanding a broad range of concepts, methods 
and principles. An example of such multi-disciplinarity is 
natural computing (De Castro, 2006), where natural 
sciences meet computer science and all kinds of bio-
inspired methods are applied to engineering issues. Another 
example are self-organising assembly systems (Frei, 2010; 
Frei and Di Marzo Serugendo, 2011), where agile 
manufacturing comes together with software engineering 

and complexity science. It is an area that is used for 
illustrative examples throughout this article. 
1.1 Scope and organisation 
The topic of this article is engineering, not the sole study of 
complex systems. We therefore do not discuss natural 
complex systems, but rather consider how to engineer 
artificial complex systems, and how to use the findings of 
complexity science. 

The survey in Section 2 covers work done under the 
names of emergence engineering, complexity engineering 
and other related terms because they mostly address the 
same type of system and use similar approaches. Typical 
application areas and concrete cases of complexity 
engineering are: 

 systems engineering: systems of systems in health care, 
military defence and transportation including 
pedestrians, bikes, cars, buses, trains and planes 

 mobile robotics: swarms for maintenance and safety 

 manufacturing automation: agile and evolvable 
production systems 

 software engineering: peer-to-peer, multi-agent 
systems, safety-critical applications 

 communication systems: persuasive computing 

 business/finance/economy: prediction and influencing 

 nanotechnology and biotechnology: cell engineering, 
nanorobotics for medical applications. 
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In Section 3, we reflect on the complexity engineering 
approach, draw conclusions and give directions for future 
work. 

2 Complexity engineering approaches 

This section is organised as follows: concepts and principles 
are reported in Section 2.1. Section 2.2 details mechanisms 
and patterns. Modelling and analysis are the subjects of 
Section 2.3, and Section 2.4 considers design approaches. 
Section 2.5 details architectures. Methods to develop  
and implement the designed systems are presented in  
Section 2.6. Section 2.7 treats validation and verification. 
Finally, Section 2.8 explains applied approaches. 

2.1 Concepts and principles 
This section reports a set of concepts and principles which 
are generally important when creating complex systems. 
They represent different perspectives which lead to different 
approaches. 

2.1.1 Emergent functionality 
Steels (1991) defined emergent functionality (EF) as a 
function which is not achieved directly by a component or a 
hierarchical system of components, but indirectly by  
the interaction of more primitive components among 
themselves and with the environment. Each component�’s 
behaviour has side effects, and the sum of these gives rise to 
the EF. In order to achieve the desired effect, all the 
components need to be together and operate simultaneously. 
Systems with EF are useful when the dependence on the 
environment is important, and when it is difficult to foresee 
all possible circumstances in advance. Remark: what Steels 
called EF is nowadays often referred to as self-organisation; 
the arguments have mostly stayed the same. 

2.1.2 Synthetic ecosystems 
Creating systems based on the concept of synthetic 
ecosystems (Brueckner, 2000; Parunak et al., 1998) or 
digital ecosystems (Wu and Chang, 2007) are very  
useful for complexity engineering. Systems are considered 
�‘alife�’ or �‘life-like�’ and the integration of nature-inspired 
mechanisms follow almost automatically. The behaviour of 
species (often insects) and their interactions with each other 
as well as with the available resources serve as models for 
with multi-agent systems. The following design principles 
are suggested (Brueckner, 2000): 

1 Things, not functions: avoid functional decomposition 
take real world units instead. 

2 Small agents: prefer many simple agents to a few 
complicated ones. 

3 Diversity, heterogeneity: create agents with differing 
capabilities and characteristics. 

4 Redundancy: the same capabilities should exist more 
than once, and there should be more than one way to 
solve a specific problem. 

5 Decentralisation: create proactive agents and avoid 
centralised services. 

6 Modularity: it should be possible to compose the 
system�’s functionalities stepwise, in layers. 
[Nevertheless, do not forget the limitations of 
modularity, discussed in Section 2.1.2 of Frei and Di 
Marzo Serugendo, (2011)]. 

7 Parallelism: solve problems in parallel and allow agents 
to participate in several coalitions at once. 

8 Bottom-up control: local interactions lead to a global 
result, with no entity executing control from the top. 

9 Locality: sensor-motor interaction is local, as well as 
the interactions between the agents. 

10 Indirect communication: as far as possible, abstain from 
direct agent-to-agent communication. Passing messages 
through a shared environment allows communication to 
be decoupled in time. 

11 Recursion, self-similarity: re-use successful structures 
and strategies at various levels. 

12 Feedback, reinforcement: take into account the result of 
earlier actions. 

13 Randomisation: introduce a random factor in agent 
decisions to avoid negative synchronism (e.g., all 
agents heading for the shortest queue at the same 
instant). 

14 Evolutionary change: prefer gradual and evolutionary 
change to abrupt and revolutionary change. 

15 Information sharing: inform other agents. Learn as 
individuals or as a society. 

16 Forgetting: outdated information must disappear 
automatically. 

17 Multiple goals: include maintenance-goals and 
achievement-goals. Design the system to be able to 
pursue various goals at once. 

An additional design principle, added by the authors of this 
article, is the use of positive and negative feedback.  
Their interplay contributes to the system�’s convergence, 
oscillations or divergence. 

These design rules summarise the most important 
principles which should always be applied when designing 
nature-inspired systems. In some cases, there may be 
reasons for making exceptions, such as having direct 
communication between the agents. The designer should be 
aware of the reasons and know that the choice to  
make an exception may cause difficulties under certain 
circumstances. 
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2.1.3 Distributed autonomic computing 
De Wolf and Holvoet (2007) suggest that decentralised 
autonomic computing (DAC) can realise autonomic 
computing in a decentralised way, using emergence. Self-* 
properties are thus achieved collectively. They propose a 
taxonomy for self-* properties. 

DAC is achieved when a system is constructed 
as a group of locally interacting autonomous 
entities that cooperate to adaptively maintain 
the desired system-wide behaviour without any 
external or centralised control (De Wolf and 
Holvoet, 2007). 

DAC is achieved mainly through the implementation of 
collectively achieved self-* properties, which can be 
classified according to the following taxonomy criteria  
(De Wolf and Holvoet, 2007): 

 �‘Micro versus macro�’ or �‘local versus global�’: self-* 
properties can be of microscopic (local, concerning a 
single agent and its immediate vicinity), or macroscopic 
(global, concerning several agents/the entire system) 
scope. The way how locality is defined is determining 
for judging if a property is local or global. Additionally, 
a self-* property can be macroscopic in one system and 
microscopic in another: it depends on how it is 
implemented. 

 Ongoing versus one-shot: most self-* properties are 
required over an extended time (e.g., maintaining the 
system protected from malicious intrusion), but there 
may also be one-shot properties which are triggered 
from time to time (e.g., self-reconfiguration after major 
failures). 

 Time/history dependent versus time/history 
independent: behaviour which can be objectively 
measured at any time is time/history independent. 
Time/history dependent behaviour needs to be seen in 
relation to the system�’s evolution over a certain period 
(e.g., number of packets delivered per hour). 

 Continuous or smooth evolution: properties which 
evolve in a smooth way are rather rare. Most of them 
jump from one state to another. 

 Adaptation-related: properties which show how well a 
system adapts to change. 

 Spatial versus non-spatial: some self-* properties 
require a spacial structure, while others are not  
space-related. 

 Resource allocation: in certain cases the system is 
required to allocate limited resources to services, or 
tasks to resources, etc. 

 Group formation: coalitions or teams may be formed, 
and also clustering of items or data can be included 
here. 

 Role-based organisations: some self-* properties form 
organisations based on roles and interactions. 

 Self-protection: some systems need to protect 
themselves from malicious attacks. This includes 
defence actions and in certain cases also  
counter-attacks. 

2.2 Mechanisms 
According to Bar-Yam (2005), complex systems should be 
built with strategies modelled after biological evolution or 
market economics. Planning mostly does not work in such 
systems, and design is often done in parallels (concurrent 
engineering). Modularity, abstraction, hierarchy and 
layering are useful methods, but at some degree of 
interdependence they become ineffective, as discussed in 
Section 1. 

Other suitable mechanisms include: 

 Trust: An efficient method for agents to know with 
whom to collaborate, and whom to avoid, is managing 
their levels of trust towards their peers. Trust can be 
established through direct interaction as well as through 
recommendation from peers who know the agent in 
question. 

 Gossip: A difficulty of direct communication is that the 
receiver of the message must be known in advance. 
Gossip avoids this, and allows messages to randomly 
spread across a community. 

 Swarm rules: Different variants of swarm rules (such as 
seen in flocks of birds or schools of fish) exist, but they 
mostly consist of three parts: e.g.: 
1 keep close to your peers 
2 avoid collisions 
3 move forward. 

Such simple, local rules allow any number of agents to 
act in a coordinated way without requiring any form of 
centralised control. 

 Stigmergy: The deposition of markers in the 
environment is a way of indirect communication often 
used by social insects, such as ants deposing 
pheromones. This leads to collective intelligence 
(Bonabeau et al., 1999; Schut, 2010). 

Mechanisms generally describe how a process works; 
patterns (described in 2.2.2) can serve as a more concrete 
guidance. They define mechanisms in a more systematic 
way, saying what to do under which conditions. 

2.2.1 Friction reduction 
Gershenson (2007) proposes that friction between 
interacting agents should be reduced. This will result in a 
higher satisfaction of the system, i.e., better performance. 
To achieve this, mediators can arbitrate among the elements 
of a system. The goal is to minimise conflict, interferences 
and frictions as well as to maximise cooperation and 
synergy. See Table 1 for the possible interactions between 
two agents A and B, where the upper part of the table 
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presents strategies for friction reduction, and the lower part 
strategies for higher satisfaction. 

Table 1 Ways to reduce friction/to increase synergy between 
the elements A and B 

Concept Explanation 

Tolerance A shares its resources with B 

Courtesy B searches for alternative resources 

Compromise A combination of tolerance and courtesy 

Imposition Forced courtesy 

Eradication A eliminates B 

Apoptosis B eliminates itself 

Cooperation A and B work together for the benefit of the 
whole 

Individualism For the benefit of the whole, A can increase 
its own benefit 

Altruism A can reduce its benefit to the benefit of the 
whole 

Exploitation Forced altruism 

2.2.2 Patterns 
Most mechanisms have been expressed as design patterns, 
which is a way of referencing mechanisms similar to how it 
is done in software engineering by Gamma et al. (1994). 

De Wolf and Holvoet (2007) give some guidance for the 
design of self-* mechanisms under the form of patterns, 
including a catalogue of coordination mechanisms which 
allow the emergence of macroscopic properties. Proposed 
coordination patterns are: 

 Stigmergy: indirect communication means 
communication through the environment. Agents 
depose, e.g., digital pheromones on their current 
location, and their peers read the information when 
passing there. In certain cases, indirect communication 
is more complicated and less specific than the direct 
exchange of messages. The main advantage is that 
communication is decoupled. Agents do not need to 
respond immediately, or wait for a peer to respond. 

 Gradient-field (also called computational field): similar 
to electric or magnetic fields, computational fields can 
be sensed by agents who are looking for information or 
orientation. Notice that gradient-fields can be used to 
implement other mechanisms, such as stigmergy for 
task assignment (Weyns et al., 2006) and motion 
coordination (Mamei et al., 2004). 

 Market-based: resource allocation is often done by 
using virtual marketplaces. Agents needing a service 
make a call for proposals, that offering the service in 
question answer, and the best offer is selected. This can 
be done by direct communication, but also works 
through stigmergy. 

 Tag-based: tags are observable labels, markings or 
social cues. They help agents recognise members of a 
certain group, or agents with a certain characteristic, 
etc. Tags are especially useful for coordination and 
group formation. 

 Token-based: a token is an object which represents the 
control over a resource or the fulfilling of a role. Token 
thus exist in limited numbers and are handed from one 
agent to another when appropriate. 

Moreover, Babaoglu et al. (2006) recommend the use of 
basic biological processes as design patterns in distributed 
computing: 

 Diffusion: loose entities tend to naturally spread over a 
free space. They are transported from an area of high 
concentration to an area of lower concentration. This 
mechanism can, i.e., be exploited to let mobile robots 
distribute themselves over an area. 

 Replication: cells, viruses or software programmes may 
create a copy of themselves for various reasons. In 
computer science, replication refers to the use of 
redundant resources to improve reliability,  
fault-tolerance or performance. 

 Chemotaxis: bacteria and other small living  
organisms coordinate their movement according to the 
concentration of chemicals in their environment, i.e., 
they move towards food sources or away from toxic 
substances. This concept is related to gradient-fields 
discussed above. 

2.3 Modelling and analysis 
The analysis of complex systems is particularly challenging 
because of the multiple interactions between the 
components. It is often difficult to detect which components 
influence each other, and in which ways. There are a few 
analysis approaches which are specifically made for 
complex systems, but this does not mean that other 
approaches may not be suitable as well, if applied with the 
appropriate care. 

Different ways of modelling complex systems take 
different approaches to solve the problems and have a 
different focus (Rouse, 2003). The following list is not 
exhaustive. 

 Hierarchical mappings refer to the hierarchical 
decomposition of systems or tasks into simpler sub-
units. The focus is on modularisation, which is typically 
used in the classical engineering approach and referred 
to as divide and conquer. As an example, hierarchical 
mappings could be used to design a car, but they are not 
very well suited for complex adaptive systems. 

 The use of state equations or differential equations is a 
formal method which considers the states in which a 
system can be. The focus is on how the system gets 
from one state to another. This is important for cases 
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where the dynamic systems must be controlled in a 
stable and optimised way, e.g., motors. 

 Non-linear/discontinuous mechanics focus on simple 
behaviours which can have chaotic effects. For 
instance, fluid turbulences can be modelled by  
non-linear mathematics. 

 Autonomous agents are naturally suited to model 
distributed systems where many entities interact in 
diverse ways. The focus is on the activities of each 
agent as well as the agent�’s interactions with each other 
and the environment. 

 Ecosystems are typical examples of complex systems 
(see discussion in Section 2.1.2). When using 
ecosystems as a model, engineers often refer to them as 
being digital, synthetic or virtual. The processes in 
ecosystems �‘take advantage of emergence and 
deliberately mimic evolution to accomplish and manage 
the engineering outcomes desired�’ (Norman and Kuras, 
2004). 

 Finite element analysis is a type of numerical analysis, 
which is typically used to model complicated 
geometrical structures. Also flows can be modelled 
with finite elements, e.g., the behaviour of water in a 
turbine. The focus is on dynamics. 

 Schuh et al. (2006) suggest that collaborative systems 
be modelled as networks, and that there is a difference 
between guided networks, which are explicitly 
managed by a focal entity, and self-organised emergent 
networks, which are implicitly managed by the context. 

2.3.1 Requirements 
Design structure networks (DSN) (Woodard, 2006) are a 
structured approach to linking requirements with design 
features. DSN help the designer assess the cost of design 
changes in complex systems. Woodard furthermore suggests 
system design games and a set of agent-based models (the  
Palm-Handspring model, the value network model and the 
platform competition model) to analyse design decisions 
and their consequences. The method is based on the theory 
of design evolution by Baldwin and Clark (2000), which 
builds on the theory of CAS by Holland (1992). A detailed 
explanation of Woodard�’s work would go beyond the scope 
of this article. 

2.3.2 Multi-scale analysis 

Multi-scale analysis relates complexity with structure and 
function. According to Ashby�’s law of requisite variety 
(Ashby, 1956), at every scale, the variety of the system must 
be larger than the variety necessary for the task to fulfil. In a 
generalised form it suggests that the effectiveness of a 
system organisation can be evaluated by its variety at each 
scale of tasks to be performed (Bar-Yam, 2003). The limits 
of this method are given by the ability of a single agent 

(human being) to understand the interdependencies between 
the components. 

2.3.3 Equation-free macro-scale analysis 
Equation-free macroscopic analysis (De Wolf, 2007) serves 
both analysis and verification. It is mainly usable for 
swarms and similar collective phenomena which consist of 
more than one level or scale. While traditional methods 
focus on the microscale only, this method is adapted for 
macroscale behaviour. 

The equation-free method needs a good microscopic 
simulation model from which the macroscopic variables  
can be measured. The strong points of this method is  
that it is more feasible than formal proofs, founded  
by dynamical systems theory (which simulations are  
not), less computationally intensive than a huge number  
of begin-to-end simulations, and a mixture between  
individual-based and aggregate-based simulations. It 
consists of short bursts of microscopic simulations to extract 
the info which traditional numerical procedures would 
obtain from direct evaluation of the macroscopic evolution 
equation, if this equation was available. It requires  
time-independent converging macroscopic variables (very 
difficult to find). The method gives statistically relevant 
info, not about every run of the system. 

2.4 Design 
The terms architecture and design are sometimes  
confused. The architecture (see Section 2.5) is the structure 
according to which a system is built, whereas the design 
refers to the process of creating a system (including its 
architecture). Section 2.4.1 explains design strategies, 
whereas, Sections 2.4.2 and 2.4.3 report design abstractions. 

2.4.1 Design strategies 
Marcus (2006) suggests the following design strategies: 

 Top-down, which is control-based, with predefined 
coordination and interactions. 

 Bottom-up, which is collaboration-based and  
self-organising; collaboration and coordination  
emerge from the interactions. 

 �‘Middle out�’, which is coordination-based. It combines 
existing components and collaborations but also drives 
new requirements, collaborations and components. It is 
a mediation between a set or requirements and a set of 
services, new available capabilities and new needed 
capabilities. 

2.4.2 Information flows 
DeWolf (2007) suggests that information flows be 
established between the various localities of the system, 
which means that the designer focuses on which 
information needs to be available at which location, at 
which instant, and where it comes from. 
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2.4.3 Intelligent networks 
Rzevski (2004) recommends to create intelligent networks 
instead of integrated units. This means that intelligence is 
not inside a single unit but rather emerges from the 
interactions within the community. The focus should be on 
adaptability rather than on stability. Three steps in running a 
system are identified: 

1 sensory perception: detecting and anticipation changes 
in the environment 

2 cognition: reasoning about perceived changes and 
deciding about the best action 

3 execution: controlling the implementation of cognitive 
decisions. 

2.4.4 BASIC 
Schut (2010) published a survey on model design for the 
simulation of collective intelligence. He suggests several 
levels of model refinement in the design phase, which 
include problem assessment, modelling (generic, specific 
and computer model), simulation, verification and 
validation. The so-called BASIC recipe for modelling 
consists of determining the following: 

1 action set for all individuals 

2 observation set for all individuals 

3 action  observation methods 

4 costs for individuals for methods from 3 

5 benefits for individuals for methods from 3 

6 observation  action methods for all individuals 

The basic recipe can then be augmented with suitable steps 
for the actual requirements, such as internal states, diversity, 
non-determinism or adaptivity, as illustrated in Schut 
(2010). For the specific modelling, diverse models �– 
available in literature are suggested for typical applications. 

2.4.5 Self-made network 
Ulieru and Doursat (2010) introduce an approach for the 
bottom-up evolution of architectures which are based on a 
self-grown network of basic cells, similar to what happens 
in embryogenesis. This means that the coding of the 
behaviours are indirect; they guide the behaviour of the 
components (the cells), and the behaviour of the system as a 
whole emerges from their interactions. 

Concretely, the system consists of self-assembling nodes 
which have pairs of attachment nodes and pairs of gradient 
values, which keep track of the node�’s position in a chain. 
The ports can be occupied or free, and if free they can be 
enabled or disabled. Chains are the simplest self-assembled 
structures, but also considerably more elaborate ones may 
emerge. 

All nodes carry the same programme with three routines 
for updating the gradient values, port management and link 

creation. The parameters given to these routines determine 
then the topology of the self-assembled structures. 
Depending on the application, the nodes (or agents) may be 
given additional characteristics, and they may be 
heterogeneous. 

2.4.6 Genetic programming 
Genetic programming consists of taking instructions  
from programmes and mixing them based on evolutionary 
algorithms. A reference model for genetic programming 
was created by Cramer (1985) and formalised by Koza 
(1992). Fitness functions indirectly represent the global goal 
of the system; so one might object that the whole process is 
not emergent in the proper sense. However, it is not given in 
the fitness function HOW the task is to be solved (Zapf and 
Weise, 2007). The functions only help to evaluate the 
adequateness of the solution. The agents finally equipped 
with the result of the evolutionary algorithm do not have 
any info about the objective functions neither about the 
fitness of their current actions. It remains open how to solve 
the mentioned co-evolution of different agent types, or how 
to deal with heterogeneous agents. 

Zapf and Weise (2007) propose a solution for what they 
call offline emergence engineering, based on a combination 
of strategies from genetic programming and agent software 
engineering. In offline approaches, once a programme is 
generated, there are no changes any more. Group behaviour 
emerges before it is put into the real environment: 
simulation is proposed as a mean to find out if the emerging 
behaviour is appropriate, and if so, the system is realised. 
An advantage is that evolution within a simulated 
environment avoids a potentially long learning phase in the 
real environment. However, such an approach has obvious 
weaknesses: no simulation is ever going to be complete, and 
there are always factors influencing the system in reality 
which were not completely understood at simulation time, 
or which simply cannot be represented due to their nature. 

In the case of online emergence engineering (as opposed 
to offline emergence engineering), Zapf and Weise (2007) 
suggest that emergence is planned1 to occur during 
execution. Nevertheless, through thorough analysis of the 
components and their multi-lateral interactions, the range of 
emergent phenomena can certainly be limited, and 
engineers can design ways for the system to cope with them. 
For illustration, consider a mobile robot society based on  
ant-inspired mechanisms: If the rules and mechanisms are 
evolved beforehand, simulated to be sure that they  
work, and only implemented afterwards, this is offline 
engineering. In case the engineer takes basic rules, 
implements them, and lets them evolve while already 
running on the real robots, it is online engineering. 

2.4.7 Emergence-based engineering 
Deguet et al. (2007) describe concepts to build systems  
that will produce emergent phenomena. Emergence  
happens between the design and the observation:  
so-called design-to-behaviour emergence. Downward 
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causation applied to code and behaviour means that the 
code/algorithm is determined by the system�’s behaviour, not 
the programmer/designer. In other words, the designer gives 
the machine a description of the expected behaviour and 
gets some code in return. The main idea is to implement or 
generate the systems without knowing �‘how it works�’. 
According to Deguet et al. (2007), this can be done by  
three approaches (each of which is an issue itself!): by 
imitating phenomena, by using an incremental design 
process, or by creating self-adaptive systems (and 
understanding how the (meta-) system will be able to 
modify itself). 

2.5 Architectures 
The following architectures are particularly suitable for 
complex systems. 

2.5.1 MetaSelf architecture 
MetaSelf (Di Marzo Serugendo et al., 2008, 2010) is a 
service-oriented architecture for self-organising and  
self-adaptive systems, where the services are provided by 
components or agents. This architecture exploits metadata 
to support decision-making and adaptation, based on the 
dynamic enforcement of explicitly expressed policies. 
Metadata and policies are themselves managed by 
appropriate services. The components, the metadata and the 
policies are all decoupled from each other and can be 
dynamically updated or changed. 

MetaSelf applications have been made in the area of 
dependability explicit computing (Paes et al., 2007) and 
evolvable assembly systems (Frei et al., 2008). 

2.5.2 The autonomic manager 
As software systems become increasingly complex and 
difficult to manage, autonomic computing (Kephart and 
Chess, 2003) was proposed as a way of handling this. 
Software should actively manage itself instead of passively 
being managed by a human administrator. Most self-* 
properties can be achieved under the responsibility of a 
single autonomous entity (a manager) which controls a 
hierarchy of other autonomous entities. The autonomic 
manager consists of a central loop which handles all 
upcoming events within the system. The autonomic 
manager follows the MAPE loop (IBM, 2005), which stands 
for monitoring, analysis, planning and execution, supported 
by a knowledge base. 

An alternative to this centralised approach is DAC (see 
Section 2.1.3), where interacting and fairly autonomous 
individuals replace the manager. 

2.5.3 The three-layer architecture 
Kramer and Magee (2007) propose a three-layer 
architecture to realise self-adaptive and self-managing 
computing systems, where the components configure their 
interactions themselves. The lowest layer is the component 

control, which includes sensors, actuators and control loops. 
The middle layer takes care of change management. It is a 
sequencing layer, to which the lower layer reports state 
changes. New control behaviours are planned here, and 
parameters for existing control behaviours are adapted. 
Finally, the highest layer implements the goal management. 
Time consuming planning is executed at this level, 
according to the change requests coming from the middle 
layer and the high level goals specified by the user. 

2.5.4 Controller/observer architecture 
Organic computing (Wuertz, 2008) is a project2 which 
combines software engineering with neuroscience and 
molecular biology. Within this framework, Schoeler and 
Mueller-Schloer (2005) developed a controller/observer 
architecture to �‘keep emergent behaviour within predefined 
limits�’. It allows the system to make free decisions within 
so-called adaptive islands, limited by pre-set objectives and 
constraints. 

The basic structure consists of an execution unit which 
receives an input and generates an output. Above the 
execution unit, there is an observer/controller unit. The 
observer receives input from the environment as well as 
from the execution unit. The controller compares the 
situation reported by the observer to the goals set by the 
user and reacts by reconfiguring the execution unit. 

2.5.5 Task-based adaptation 
Task-based adaptation (Sousa et al., 2005) is performed by 
self-adapting computing infrastructures which automate 
their configuration and reconfiguration. Dynamic task 
selection can be based on an evolving threshold mechanism 
and agent stimuli (De Wolf and Holvoet, 2003). External 
stimuli come from the environment (as it is, not modified by 
other agents), from interactions with other agents, and in the 
form of stigmergy (Bonabeau et al., 1999), which is  
indirect communication, or communication through the 
environment. 

The key ideas in task-based adaptation are: 

 explicit representation of user tasks to determine the 
required service qualities 

 decoupling task and preference specification from the 
low level mechanisms; that is a clean separation 
between what is needed and how it is carried out 

 efficient algorithms to calculate in real-time  
near-optimal resource allocations and reallocations. 

In task-aware systems, the users specify their tasks and 
goals, and it is the job of the system to automatically  
map them into the capabilities available in the ubiquitous 
environment. Computing applications can adapt and 
reconfigure themselves according to the current tasks to be 
fulfilled (Sousa et al., 2005; Garlan et al., 2004; Cheng  
et al., 2006). Such systems automate human multiple 
objective trade-off, considering situation-dependent 
preferences (knowledge-based decisions). 



 Advances in complexity engineering 207 

Figure 2 Final state of the MetaSelf development method 

 

 
2.6 Development and implementation 
This section describes methods for development and 
implementation of the previously created concepts and 
architectures. 

2.6.1 The customised UP 

De Wolf (2007) proposes a design methodology based on 
the unified process (UP) (Jacobson et al., 1999), which is an 
existing industry-ready software engineering process. The 
UP was customised to explicitly focus on engineering 
macroscopic behaviour of self-organised emergent  
multi-agent systems. 

During the requirement analysis phase the problem is 
structured into functional and non-functional requirements, 
using techniques such as use cases, feature lists and a 
domain model that reflects the problem domain. 
Macroscopic requirements (at the global level) are 
identified. The design phase is split into architectural 
design and detailed design addressing microscopic issues. 
Information flow (a design abstraction) traverses the system 
and forms feedback loops. Locality is �“that limited part of 
the system for which the information located there is 
directly accessible to the entity�” (De Wolf, 2007). Activity 
diagrams are used to determine when a certain behaviour 
starts and what its inputs are. Information flows are enabled 
by decentralised coordination mechanisms, defined by 
provided design patterns. During the implementation phase, 
the design is realised by using a specific language. When 
implementing, the programmer focuses on the microscopic 
level of the system (agent behaviour). In the testing and 
verification phase, agent-based simulations are combined 
with numerical analysis algorithms for dynamical systems 
verification at macro-level. 

The CUP approach has been applied to autonomous 
guided vehicles and document clustering (De Wolf, 2007). 

2.6.2 Policies and metadata 

A way to guide a system in its development without hard-
coding its behaviour is the use of policies, as suggested by 
Kephart and Walsh (2004), and Kephart and Das (2007) in 
the context of autonomic computing (Kephart and Chess, 
2003). Policies can express actions, goals and utility 
functions. Depending on their type, they lead one or several 
agents to directly execute an action (i.e., if the gripper 
blocks, try to re-initialise it), to maintain their behaviour as 
to reach a certain goal (e.g., always keep the speed below  

3 m/s), or to follow a more complicated guideline and 
choose appropriate actions (such as: reduce the effort of 
reconfiguration). 

Policies always work in conjunction with corresponding 
metadata, which is data that is not directly processed in 
operation. Metadata can describe the performance of an 
axis, the interfaces of a gripper, the preferential partners of a 
mobile robot or the current availability of a GPS module. 

2.6.3 MetaSelf design method 
The MetaSelf development method (Di Marzo Serugendo 
and Frei, 2009; Di Marzo Serugendo et al., 2010), which 
consists of four phases, is illustrated in Figure 2. 

The requirement and analysis phase identifies  
the functionality of the system along with self-* 
requirements specifying where and when self-organisation 
or self-management is needed or desired. The required 
quality of service is determined. 

The design phase consists of two sub-phases. In the first 
part, D1, the designer chooses architectural patterns (e.g., 
autonomic manager or observer/controller architecture) and 
self-* mechanisms, governing the components�’ interactions 
and behaviour [e.g., trust, gossip, or stigmergy, that is 
indirect coordination through changes in the environment 
(Bonabeau et al., 1999)]. Rules for self-organisation and 
policies for self-adaptation are defined. In the second part, 
D2, the individual autonomous components (services, 
agents, etc.) are designed. The necessary metadata and 
policies are selected and described. The self-* mechanisms 
are simulated and possibly adapted/improved. 

The implementation phase produces the run-time 
infrastructure including agents or services, metadata and 
executable policies. 

In the verification phase, the designer makes sure that 
agents, the environment, artefacts and mechanisms work as 
desired. Potential faults and their consequences are 
identified, similar to the way failure modes and effects 
analysis (FMEA) (McDermott et al., 2008) works, and 
measures to avoid the identified faults are taken 
accordingly. 

2.6.4 Evolutionary engineering 
In Bar-Yam�’s (2003, 2005) evolutionary engineering 
(EE)/enlightened evolutionary engineering (E3), the 
advances a system makes are often unanticipated and not 
fully understood, but the system does learning by doing. 
Evolutionary processes are based on incremental iterative 
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change and cyclical feedback. EE includes methods  
which involve rapid parallel exploration and a context 
designed to promote change through competition between 
design/implementation groups, with field testing of multiple 
variants. Examples of evolutionary methods in software 
engineering are: spiral development, extreme programming 
and the open source movement. The functioning products 
which are in use at a certain moment in time are considered 
as the evolving population which will be replaced by new 
generations of products. If the function of a system needs to 
change, the system can adapt because there are many 
possible variants of subsystems that can be generated. The 
focus of E3 is on creating environment and process rather 
than a product, and it continually builds on what already 
exists. Operational systems include multiple versions of 
functional components, and E3 uses multiple parallel 
development processes. More effective components are 
gradually introduced. 

Bar-Yam proposes the following methods: 

1 Analysing the environment and temporarily modifying 
it to influence the complex system�’s self-directed 
development. (Complex systems cannot be completely 
isolated from their environments). 

2 Tailoring developmental methods to specific scales and 
regimes (i.e., phases in the life-cycle of a complex 
system, such as development and operation). 

3 Identifying or defining a targeted outcome space at 
multiple scales and in multiple regimes. (Outcome 
spaces are close to specifying �‘requirements�’ or 
�‘desired capabilities�’ for complex systems). 

4 Establishing rewards and penalties, including the 
explicit formulation of satisfying criteria. (Not to 
confound with direction and guidance, which directly 
concern agent behaviour; rewards and penalties refer to 
agent generated outcomes). 

5 Judging actual results and allocate prices. This is 
associated with the criteria of rewards but also involves 
the explicit consideration of other outcomes. 

6 Formulating and applying developmental stimulants. 

7 Characterising continuously, i.e., capturing and 
publishing information about the way things are at 
every moment in a complex system. Among others, this 
helps agents take decisions and allows tracking the 
evolution of the system. 

8 Formulating and enforcing safety regulations 
(policing). 

Related to EE, and maybe better-known, is evolutionary 
computation (De Jong, 2006). It belongs to the field  
of artificial intelligence; it is mostly concerned  
with optimisation tasks and uses the mechanisms of 
evolutionary reproduction and inheritance. Evolutionary 
computation is not to be confused with genetic 
programming (Section 2.4.6). 

2.6.5 The AMAS theory and ADELFE 
Engineering systems which generate emergent 
functionalities is the goal of Capera et al. (2004) and 
Gleizes et al. (2007). Their adaptive multi-agent system 
(AMAS) theory claims that for any functionally adequate 
system, there exists at least one cooperative internal 
medium system that fulfils an equivalent function in the 
same environment. ADELFE (Bernon et al., 2005) is an 
engineering methodology for AMASs, based on the AMAS 
theory. ADELFE is limited to cooperative systems and does 
not provide support for the achievement of specific goals. 

The main ADELFE strategy is to maintain cooperation, 
or in other words, to avoid so-called non-cooperative 
situations (NCS). Agents try to anticipate these NCS, and 
act accordingly. This means that designers have to describe 
their own specific NCS set and plan the respective actions 
for each kind of agent. Notice that it is certainly not always 
possible to preview all the NCS which can occur, and 
designing corrective actions for them is not easy, neither. 

A cooperative agent in the AMAS theory has the 
following characteristics: it is autonomous; it is unaware of 
the global function of the system (this emerges from the 
agent level towards the multi-agent level); it can detect 
NCSs and acts to return in a cooperative state; it is not 
altruistic but benevolent (it seeks to achieve its goal while 
being cooperative). 

2.6.6 A general methodology 
The general methodology by Gershenson (2007) provides 
guidelines for system development. Particular attention is 
given to the vocabulary used to describe self-organising 
systems. It is composed of five iterative steps or phases: 
representation, modelling, simulation, application and 
evaluation. 

In the representation phase, according to given 
constraints and requirements, the designer chooses an 
appropriate vocabulary, the abstractions level, granularity, 
variables, and interactions that have to be taken into account 
during system development. Then, the system is divided 
into elements by identifying semi-independent modules, 
with internal goals and dynamics, and with interactions with 
the environment. The representation of the system should 
consider different level of abstractions. 

In the modelling phase, a control mechanism is defined, 
which should be internal and distributed to ensure the 
proper interaction between the elements of the system, and 
produce the desired performance. However, the mechanism 
cannot have strict control over a self-organising system; it 
can only steer it. To develop such a control mechanism, the 
designer should find aspects or constraints that will prevent 
the negative interferences between elements (reduce 
friction) and promote positive interferences (promote 
synergy). The control mechanism needs to be adaptive, able 
to cope with changes within and outside the system (i.e., be 
robust) and active in the search of solutions. It will not 
necessarily maximise the satisfaction of the agents, but 
rather of the system. It can also act on a system by bounding 
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or promoting randomness, noise, and variability. A mediator 
should synchronise the agents to minimise waiting times. 

In the simulation phase, the developed model(s) are 
implemented and different scenarios and mediator strategies 
are tested. Simulation development proceeds in stages: from 
abstract to particular. The models are progressively 
simulated, and based on the results, the models are refined 
and simulated again. The application phase is used to 
develop and test model(s) in a real system. Finally, in the 
evaluation phase, the performances of the new system are 
measured and compared with the performances of previous 
ones. 

This methodology was applied to traffic lights,  
self-organising bureaucracies and self-organising artefacts 
(Gershenson, 2007) 

2.6.7 Agents and artefacts meta-model 
Gardelli et al. (2008) use architectural pattern based on  
the agents and artefacts (A&A) metamodel which  
features agents as proactive goal-driven entities, and 
artefacts as encapsulated services to be exploited by agents.  
The environment plays an important role in this  
approach. It consists of artefacts and environmental agents,  
which are incorporated self-organisation mechanisms. 
These environmental agents are responsible for sustaining 
feedback loops between the agents and the environment. 

This approach consists of three iterative design stages: 
modelling, simulation and tuning. In the modelling phase, 
the agents�’ behaviour is designed, and architectural 
structures are sketched. Afterwards, simulation is used to 
verify the suitability of the agents and the architecture. In 
the tuning phase, parameters are adapted in order to 
optimise the system�’s performance. 

2.7 Validation and verification 
After creating solutions at micro level, the system 
verification mainly aims at giving guarantees that the 
resulting macroscopic behaviour meets the requirements 
(De Wolf, 2007). This is almost never straight-forward. For 
instance, software code cannot prove to be correct, or to 
have been exposed to all relevant environmental scenarios. 
It is thus appropriate to talk about acceptable behaviour 
(Zapf and Weise, 2007), or to give more detailed indications 
about the verified scenarios. 

Most of the approaches which have been proposed  
for modelling in Section 2.3) can also be used for  
validation and verification purposes, in particular those in 
Sections 2.3.2 and 2.3.3. Sometimes, macroscopic 
behaviour can only be verified by begin-to-end simulations; 
efforts to formalise emergence are typically limited to rather 
simple application scenarios (De Wolf, 2007). But as 
simulations are always abstractions of reality, they alone are 
often not enough to prove that a complex engineered  
system will comply with the requirements. Especially  
self-organisation and emergence challenge researchers. 
Different subsystems depend on and interact with each other 

in many often very complex, dynamic and unpredictable 
ways. 

Not all verification methods are equally useful for any 
case. Most often a combination of different methods will do 
best. De Wolf and Holvoet (2007) propose the methods 
represented in Table 2, together with their typical 
applications. 

Table 2 Verification methods 

Method Application 

Unit-based and 
integration testing 

Most useful for one-shot 
microscopic properties 

Formal proof Microscopic; not usable for 
interaction models 

Statistical experimental Long-term ongoing properties 

verification Expensive due to large number of 
experiments 

Equation-based 
macroscopic 
verification 

Adaptation-related; only if the 
macroscopic property in question 
can be modelled as a variable in a 
(partial) differential equation 

Equation-free 
macroscopic 
verification 

Long-term ongoing properties with 
smooth and continuous behaviour, 
adaptation-related; time-dependent 
variable reflecting the property in 
question has to be found (see 
Section 2.3.3) 

Time series analysis 
based on chaos theory 

Adaptation-related long-term 
behaviour, measuring complexity, 
i.e. 

2.8 Applied approaches 

A view of complex systems engineering from the 
perspective of integrated circuit design evolution was given 
by Bramlett (2002). It seems that, different from other 
perspectives, for CPU design, component coupling is 
important, and the systems are considered as closed and 
highly optimised. The design process can be seen as a series 
of phase transitions in convergence towards design 
requirements, which is an emergent property. Abstractions 
at different levels and granularities are used to define 
convergence phases, rates and transitions. Often the design 
process itself is far more complex than the artefact it 
produces. The author also states that there is a need for open 
architectures for cross-disciplinary engineering, taking the 
human as part of the system. 

Rzevski (2004) presents complexity engineering at the 
example of an intelligent variable geometry compressor and 
a family of space exploration robots); however, some 
theoretical background about the used strategies may be 
missing. Remarkably, Rzevski�’s strategy for self-repair is 
isolating defective parts and thus making them harmless. 
Such an approach certainly makes sense in practice, but it 
does not correspond to the usual interpretation of the term 
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reparation as it does not repair the defect neither consider 
the consequences of an isolation on the rest of the system. 

3 Discussion, conclusions and directions 

After reviewing numerous existing concepts and methods in 
complexity engineering, we now analyse the general 
situation. 

3.1 Discussion 

The methods and approaches cited in this article are mostly 
from the area of computer science. This is due to the nature 
of complexity engineering: the systems in question usually 
need some kind of intelligence and a corresponding control 
system, which leads us typically to computer science. 
Purely mechanical systems are rarely complex and adaptive 
or self-organised. 

The claim that decentralised control should be avoided 
has been quite prominently uttered in the last few years. But 
is it always favourable to build a system with purely 
decentralised control? Decentralised systems also have 
weaknesses. They are often not optimal, they take longer to 
solve problems, and may use more resources to do so. On 
the positive side, distributed systems are robuster and they 
can better cope with disturbances. 

Due to their nature, the validation of complex systems 
with emergence and self-* properties is difficult. Formal 
approaches at agent level do not automatically cover global 
phenomena. Simulations are another way to verify system 
behaviour, but there are the obvious limitations of time 
requirements and non-completeness to this approach 
(Gleizes et al., 2007). Formal modelling techniques can 
capture important features of the design choices and enable 
designers to reason about them in a useful way (Woodard, 
2006). We may have to accept that we will never be able to 
completely control or predict the behaviour of a complex 
system; we should rather cope with this by adapting our 
actions to the new situations (Gershenson, 2007). This 
indicated that deterministic models or predictions are not 
necessary; having realistic default expectations with the 
possibility to correct errors or exceptions after they have 
occurred, works quite well in practice. 

3.2 Conclusions 

The application of complexity engineering methods should 
always be accompanied by a reflection on the reasons why 
these methods have been chosen. Are they useful for the 
actual application? Or might other methods be more 
suitable? The engineering method should always be selected 
with care. 

A fundamental challenge of complexity engineering is 
that it touches many different domains; it is therefore 
difficult to decide about generally applicable methods. For 
instance, network models and statistics may be helpful when 

creating wireless communication systems but not at all for 
building manufacturing systems. This article tries to 
structure the existing methods and thus make it easier for 
engineers to choose a method which is suitable for their 
applications. 

This article ends with directions for further research 
which we consider important for the development of 
complexity engineering. 

3.3 Further research directions 
Complexity engineering has still not been established as a 
proper engineering domain. Research remains scattered and 
focused on specific examples, which is the reason why most 
methodologies are not generally applicable. We would like 
to encourage other researchers to make efforts in 
complexity engineering, and to coordinate their research 
with peers. A general framework for complexity 
engineering should be created, linking existing and new 
methods with each other, giving receipts for how to 
approach which type of problem. Complexity engineering 
requires particular attention concerning the following issues 
(Buchli and Santini, 2005): theory, universal principles, 
implementation substrates, designing, programming and 
controlling methodologies as well as collecting and sharing 
of experience. 

Although academia increasingly discovers their interest 
in complexity engineering, industry is reluctant. It is 
difficult to persuade industrials to give away total control. 
Complexity is mostly perceived as disturbing, annoying or 
overwhelming. Researchers should therefore not only 
develop methodologies for complexity engineering, but at 
the same time also try to persuade industry of the benefits 
which using complexity can offer. 

Industry requires dependable methods. Self-organised 
emergent MAS will only be acceptable in an industrial 
application if one can give guarantees about the 
macroscopic behaviour (De Wolf, 2007). This can be  
shown experimentally or proven formally. Both formal 
prove and experimental evidence has advantages and 
disadvantages. On one hand, experiments often provide 
statistical evidence that the desired results will often  
appear under certain circumstances. But it can also  
mean that the adverse conditions which lead to failure  
have not been encountered yet. Formal proof, on the other 
hand, always uses abstractions, and making the right 
abstractions is difficult. Formal proofs are useful for 
understanding certain aspects of a system, but they can 
never express the complete reality. Additionally, they 
depend on the language chosen to describe the system. 
Every language has a certain expressivity. This expressivity 
may be suitable for certain aspects of a system, but limit the 
model in capturing others. 

Methods to provide sufficient evidence of dependability 
should be developed especially for complexity engineering 
methods, given that they are often different from traditional 
engineering methods due to the use of self-* properties and 
emergence. 
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