
Int. J. Bio-Inspired Computation, Vol. 3, No. 4, 2011 199

Copyright © 2011 Inderscience Enterprises Ltd.

Advances in complexity engineering

R. Frei*
Intelligent Systems & Networks Group,
Imperial College London,
London SW7 2BT, UK
E-mail: work@reginafrei.ch
*Corresponding author

Giovanna Di Marzo Serugendo
CUI �– Université Genève,
Battelle �– Bâtiment A, Rte de Drize 7,
CH-1227 Carouge, Switzerland
E-mail: giovanna.dimarzo@unige.ch
Abstract: Complexity science has seen increasing interest in the recent years. Many engineers
have discovered that traditional methods come to their limits when coping with complex adaptive
systems or autonomous agents. To find alternatives, complexity science can be applied to
engineering, resulting in a quickly growing field, referred to as complexity engineering. Most
current efforts come either from scientists who are interested in bio-inspired methods and
working in computer science or mobile robots, or they come from the area of systems
engineering. This article is the second part of a set of two articles on this topic; the first one
reviewed the definitions of the most important concepts such as emergence and self-organisation
from an engineer�’s perspective, and analysed different types of nature-inspired technology. This
article provides a survey of the currently existing approaches to complexity engineering. In the
end, challenges ahead are indicated.

Keywords: complex adaptive systems; complexity science; bio-inspired; autonomy; emergence;
nature-inspired; engineering; multi-agent systems; self-organisation; self-* properties; robotics.

Reference to this paper should be made as follows: Frei, R. and Di Marzo Serugendo, G. (2011)
�‘Advances in complexity engineering�’, Int. J. Bio-Inspired Computation, Vol. 3, No. 4,
pp.199�–212.

Biographical notes: Regina Frei is currently a Postdoctoral Researcher at the Intelligent Systems
and Networks Group, Department of Electrical and Electronic Engineering, Imperial College
London, UK. She received her PhD from the Electrical Engineering Department, Faculty
of Sciences and Technology, New University of Lisbon, Portugal and her MSc in
Micro-Engineering from the Swiss Federal Institute of Technology in Lausanne (EPFL),
Switzerland. Her research interests are self-organising assembly systems, self-* properties and
complexity engineering.

Giovanna Di Marzo Serugendo is a Full Professor at the University of Geneva, Switzerland.
From 2005 to 2010, she was a Lecturer at Birkbeck College, London, UK. She received her MSc
in Computer Science and in Mathematics from the University of Geneva, Switzerland, and her
PhD in Software Engineering from the Swiss Federal Institute of Technology in Lausanne
(EPFL), Switzerland. Her research interests are related to the engineering of self-systems. She
co-founded the IEEE International Conference on Self-Adaptive and Self-Organising Systems
and is the Editor-in-Chief of the Association for Computing Machinery�’s Transactions on
Autonomous and Adaptive Systems.

1 Introduction

Despite a lot of knowledge about complex systems,
the application of this knowledge to the engineering
domain remains difficult. Efforts are scattered over many
scientific and engineering disciplines such as software
engineering, social sciences, economy, physics, chemistry,
biotechnology, and others.

Only few of the projects cited in this article have a
systematic approach which could be applied to other
problems. This lack of general methodologies may have

various reasons. Compared to other engineering branches,
complexity science is quite recent, and complexity
engineering even more so. While researchers observe the
typical characteristics of complexity in many different areas,
the way of treating them or using them is mostly very
individually tailored for the specific system at hand.
Furthermore, there is probably a lack of incentives for
unifying complexity-related methods, as researchers often
rather consider themselves as experts for their area than as
complexity engineers.

200 R. Frei and G. Di Marzo Serugendo

Figure 1 Complexity-related research areas

There is clearly a need for systematic approaches and
generally valid methods. The focus of this article is
therefore on how to use the findings of complexity science
for engineering, with the most prominent ingredients�’ being
self-organisation and emergence.

Complexity-related research areas: Figure 1 illustrates
the situation of the complexity researcher; many different
areas are related and relevant for many different types
of complex systems in nature and engineering. A
multi-disciplinary approach and the ability to communicate
with specialists from many different domains are required.
How can this overwhelming richness of concepts be
managed? Are there useful principles?

First of all, it is necessary to very well understand the
characteristics of the system being studied, or the
requirements of the systems being engineered (Frei and
Barata, 2010). Second, the key concepts for success have to
be identified. Most of them cannot be found in traditional
engineering disciplines. Third, the concepts and methods
taken from non-engineering domains have to be adapted in
order to comply with engineering principles.

The inherent multi-disciplinarity requires researchers
able of understanding a broad range of concepts, methods
and principles. An example of such multi-disciplinarity is
natural computing (De Castro, 2006), where natural
sciences meet computer science and all kinds of bio-
inspired methods are applied to engineering issues. Another
example are self-organising assembly systems (Frei, 2010;
Frei and Di Marzo Serugendo, 2011), where agile
manufacturing comes together with software engineering

and complexity science. It is an area that is used for
illustrative examples throughout this article.
1.1 Scope and organisation
The topic of this article is engineering, not the sole study of
complex systems. We therefore do not discuss natural
complex systems, but rather consider how to engineer
artificial complex systems, and how to use the findings of
complexity science.

The survey in Section 2 covers work done under the
names of emergence engineering, complexity engineering
and other related terms because they mostly address the
same type of system and use similar approaches. Typical
application areas and concrete cases of complexity
engineering are:

 systems engineering: systems of systems in health care,
military defence and transportation including
pedestrians, bikes, cars, buses, trains and planes

 mobile robotics: swarms for maintenance and safety

 manufacturing automation: agile and evolvable
production systems

 software engineering: peer-to-peer, multi-agent
systems, safety-critical applications

 communication systems: persuasive computing

 business/finance/economy: prediction and influencing

 nanotechnology and biotechnology: cell engineering,
nanorobotics for medical applications.

 Advances in complexity engineering 201

In Section 3, we reflect on the complexity engineering
approach, draw conclusions and give directions for future
work.

2 Complexity engineering approaches

This section is organised as follows: concepts and principles
are reported in Section 2.1. Section 2.2 details mechanisms
and patterns. Modelling and analysis are the subjects of
Section 2.3, and Section 2.4 considers design approaches.
Section 2.5 details architectures. Methods to develop
and implement the designed systems are presented in
Section 2.6. Section 2.7 treats validation and verification.
Finally, Section 2.8 explains applied approaches.

2.1 Concepts and principles
This section reports a set of concepts and principles which
are generally important when creating complex systems.
They represent different perspectives which lead to different
approaches.

2.1.1 Emergent functionality
Steels (1991) defined emergent functionality (EF) as a
function which is not achieved directly by a component or a
hierarchical system of components, but indirectly by
the interaction of more primitive components among
themselves and with the environment. Each component�’s
behaviour has side effects, and the sum of these gives rise to
the EF. In order to achieve the desired effect, all the
components need to be together and operate simultaneously.
Systems with EF are useful when the dependence on the
environment is important, and when it is difficult to foresee
all possible circumstances in advance. Remark: what Steels
called EF is nowadays often referred to as self-organisation;
the arguments have mostly stayed the same.

2.1.2 Synthetic ecosystems
Creating systems based on the concept of synthetic
ecosystems (Brueckner, 2000; Parunak et al., 1998) or
digital ecosystems (Wu and Chang, 2007) are very
useful for complexity engineering. Systems are considered
�‘alife�’ or �‘life-like�’ and the integration of nature-inspired
mechanisms follow almost automatically. The behaviour of
species (often insects) and their interactions with each other
as well as with the available resources serve as models for
with multi-agent systems. The following design principles
are suggested (Brueckner, 2000):

1 Things, not functions: avoid functional decomposition
take real world units instead.

2 Small agents: prefer many simple agents to a few
complicated ones.

3 Diversity, heterogeneity: create agents with differing
capabilities and characteristics.

4 Redundancy: the same capabilities should exist more
than once, and there should be more than one way to
solve a specific problem.

5 Decentralisation: create proactive agents and avoid
centralised services.

6 Modularity: it should be possible to compose the
system�’s functionalities stepwise, in layers.
[Nevertheless, do not forget the limitations of
modularity, discussed in Section 2.1.2 of Frei and Di
Marzo Serugendo, (2011)].

7 Parallelism: solve problems in parallel and allow agents
to participate in several coalitions at once.

8 Bottom-up control: local interactions lead to a global
result, with no entity executing control from the top.

9 Locality: sensor-motor interaction is local, as well as
the interactions between the agents.

10 Indirect communication: as far as possible, abstain from
direct agent-to-agent communication. Passing messages
through a shared environment allows communication to
be decoupled in time.

11 Recursion, self-similarity: re-use successful structures
and strategies at various levels.

12 Feedback, reinforcement: take into account the result of
earlier actions.

13 Randomisation: introduce a random factor in agent
decisions to avoid negative synchronism (e.g., all
agents heading for the shortest queue at the same
instant).

14 Evolutionary change: prefer gradual and evolutionary
change to abrupt and revolutionary change.

15 Information sharing: inform other agents. Learn as
individuals or as a society.

16 Forgetting: outdated information must disappear
automatically.

17 Multiple goals: include maintenance-goals and
achievement-goals. Design the system to be able to
pursue various goals at once.

An additional design principle, added by the authors of this
article, is the use of positive and negative feedback.
Their interplay contributes to the system�’s convergence,
oscillations or divergence.

These design rules summarise the most important
principles which should always be applied when designing
nature-inspired systems. In some cases, there may be
reasons for making exceptions, such as having direct
communication between the agents. The designer should be
aware of the reasons and know that the choice to
make an exception may cause difficulties under certain
circumstances.

202 R. Frei and G. Di Marzo Serugendo

2.1.3 Distributed autonomic computing
De Wolf and Holvoet (2007) suggest that decentralised
autonomic computing (DAC) can realise autonomic
computing in a decentralised way, using emergence. Self-*
properties are thus achieved collectively. They propose a
taxonomy for self-* properties.

DAC is achieved when a system is constructed
as a group of locally interacting autonomous
entities that cooperate to adaptively maintain
the desired system-wide behaviour without any
external or centralised control (De Wolf and
Holvoet, 2007).

DAC is achieved mainly through the implementation of
collectively achieved self-* properties, which can be
classified according to the following taxonomy criteria
(De Wolf and Holvoet, 2007):

 �‘Micro versus macro�’ or �‘local versus global�’: self-*
properties can be of microscopic (local, concerning a
single agent and its immediate vicinity), or macroscopic
(global, concerning several agents/the entire system)
scope. The way how locality is defined is determining
for judging if a property is local or global. Additionally,
a self-* property can be macroscopic in one system and
microscopic in another: it depends on how it is
implemented.

 Ongoing versus one-shot: most self-* properties are
required over an extended time (e.g., maintaining the
system protected from malicious intrusion), but there
may also be one-shot properties which are triggered
from time to time (e.g., self-reconfiguration after major
failures).

 Time/history dependent versus time/history
independent: behaviour which can be objectively
measured at any time is time/history independent.
Time/history dependent behaviour needs to be seen in
relation to the system�’s evolution over a certain period
(e.g., number of packets delivered per hour).

 Continuous or smooth evolution: properties which
evolve in a smooth way are rather rare. Most of them
jump from one state to another.

 Adaptation-related: properties which show how well a
system adapts to change.

 Spatial versus non-spatial: some self-* properties
require a spacial structure, while others are not
space-related.

 Resource allocation: in certain cases the system is
required to allocate limited resources to services, or
tasks to resources, etc.

 Group formation: coalitions or teams may be formed,
and also clustering of items or data can be included
here.

 Role-based organisations: some self-* properties form
organisations based on roles and interactions.

 Self-protection: some systems need to protect
themselves from malicious attacks. This includes
defence actions and in certain cases also
counter-attacks.

2.2 Mechanisms
According to Bar-Yam (2005), complex systems should be
built with strategies modelled after biological evolution or
market economics. Planning mostly does not work in such
systems, and design is often done in parallels (concurrent
engineering). Modularity, abstraction, hierarchy and
layering are useful methods, but at some degree of
interdependence they become ineffective, as discussed in
Section 1.

Other suitable mechanisms include:

 Trust: An efficient method for agents to know with
whom to collaborate, and whom to avoid, is managing
their levels of trust towards their peers. Trust can be
established through direct interaction as well as through
recommendation from peers who know the agent in
question.

 Gossip: A difficulty of direct communication is that the
receiver of the message must be known in advance.
Gossip avoids this, and allows messages to randomly
spread across a community.

 Swarm rules: Different variants of swarm rules (such as
seen in flocks of birds or schools of fish) exist, but they
mostly consist of three parts: e.g.:
1 keep close to your peers
2 avoid collisions
3 move forward.

Such simple, local rules allow any number of agents to
act in a coordinated way without requiring any form of
centralised control.

 Stigmergy: The deposition of markers in the
environment is a way of indirect communication often
used by social insects, such as ants deposing
pheromones. This leads to collective intelligence
(Bonabeau et al., 1999; Schut, 2010).

Mechanisms generally describe how a process works;
patterns (described in 2.2.2) can serve as a more concrete
guidance. They define mechanisms in a more systematic
way, saying what to do under which conditions.

2.2.1 Friction reduction
Gershenson (2007) proposes that friction between
interacting agents should be reduced. This will result in a
higher satisfaction of the system, i.e., better performance.
To achieve this, mediators can arbitrate among the elements
of a system. The goal is to minimise conflict, interferences
and frictions as well as to maximise cooperation and
synergy. See Table 1 for the possible interactions between
two agents A and B, where the upper part of the table

 Advances in complexity engineering 203

presents strategies for friction reduction, and the lower part
strategies for higher satisfaction.

Table 1 Ways to reduce friction/to increase synergy between
the elements A and B

Concept Explanation

Tolerance A shares its resources with B

Courtesy B searches for alternative resources

Compromise A combination of tolerance and courtesy

Imposition Forced courtesy

Eradication A eliminates B

Apoptosis B eliminates itself

Cooperation A and B work together for the benefit of the
whole

Individualism For the benefit of the whole, A can increase
its own benefit

Altruism A can reduce its benefit to the benefit of the
whole

Exploitation Forced altruism

2.2.2 Patterns
Most mechanisms have been expressed as design patterns,
which is a way of referencing mechanisms similar to how it
is done in software engineering by Gamma et al. (1994).

De Wolf and Holvoet (2007) give some guidance for the
design of self-* mechanisms under the form of patterns,
including a catalogue of coordination mechanisms which
allow the emergence of macroscopic properties. Proposed
coordination patterns are:

 Stigmergy: indirect communication means
communication through the environment. Agents
depose, e.g., digital pheromones on their current
location, and their peers read the information when
passing there. In certain cases, indirect communication
is more complicated and less specific than the direct
exchange of messages. The main advantage is that
communication is decoupled. Agents do not need to
respond immediately, or wait for a peer to respond.

 Gradient-field (also called computational field): similar
to electric or magnetic fields, computational fields can
be sensed by agents who are looking for information or
orientation. Notice that gradient-fields can be used to
implement other mechanisms, such as stigmergy for
task assignment (Weyns et al., 2006) and motion
coordination (Mamei et al., 2004).

 Market-based: resource allocation is often done by
using virtual marketplaces. Agents needing a service
make a call for proposals, that offering the service in
question answer, and the best offer is selected. This can
be done by direct communication, but also works
through stigmergy.

 Tag-based: tags are observable labels, markings or
social cues. They help agents recognise members of a
certain group, or agents with a certain characteristic,
etc. Tags are especially useful for coordination and
group formation.

 Token-based: a token is an object which represents the
control over a resource or the fulfilling of a role. Token
thus exist in limited numbers and are handed from one
agent to another when appropriate.

Moreover, Babaoglu et al. (2006) recommend the use of
basic biological processes as design patterns in distributed
computing:

 Diffusion: loose entities tend to naturally spread over a
free space. They are transported from an area of high
concentration to an area of lower concentration. This
mechanism can, i.e., be exploited to let mobile robots
distribute themselves over an area.

 Replication: cells, viruses or software programmes may
create a copy of themselves for various reasons. In
computer science, replication refers to the use of
redundant resources to improve reliability,
fault-tolerance or performance.

 Chemotaxis: bacteria and other small living
organisms coordinate their movement according to the
concentration of chemicals in their environment, i.e.,
they move towards food sources or away from toxic
substances. This concept is related to gradient-fields
discussed above.

2.3 Modelling and analysis
The analysis of complex systems is particularly challenging
because of the multiple interactions between the
components. It is often difficult to detect which components
influence each other, and in which ways. There are a few
analysis approaches which are specifically made for
complex systems, but this does not mean that other
approaches may not be suitable as well, if applied with the
appropriate care.

Different ways of modelling complex systems take
different approaches to solve the problems and have a
different focus (Rouse, 2003). The following list is not
exhaustive.

 Hierarchical mappings refer to the hierarchical
decomposition of systems or tasks into simpler sub-
units. The focus is on modularisation, which is typically
used in the classical engineering approach and referred
to as divide and conquer. As an example, hierarchical
mappings could be used to design a car, but they are not
very well suited for complex adaptive systems.

 The use of state equations or differential equations is a
formal method which considers the states in which a
system can be. The focus is on how the system gets
from one state to another. This is important for cases

204 R. Frei and G. Di Marzo Serugendo

where the dynamic systems must be controlled in a
stable and optimised way, e.g., motors.

 Non-linear/discontinuous mechanics focus on simple
behaviours which can have chaotic effects. For
instance, fluid turbulences can be modelled by
non-linear mathematics.

 Autonomous agents are naturally suited to model
distributed systems where many entities interact in
diverse ways. The focus is on the activities of each
agent as well as the agent�’s interactions with each other
and the environment.

 Ecosystems are typical examples of complex systems
(see discussion in Section 2.1.2). When using
ecosystems as a model, engineers often refer to them as
being digital, synthetic or virtual. The processes in
ecosystems �‘take advantage of emergence and
deliberately mimic evolution to accomplish and manage
the engineering outcomes desired�’ (Norman and Kuras,
2004).

 Finite element analysis is a type of numerical analysis,
which is typically used to model complicated
geometrical structures. Also flows can be modelled
with finite elements, e.g., the behaviour of water in a
turbine. The focus is on dynamics.

 Schuh et al. (2006) suggest that collaborative systems
be modelled as networks, and that there is a difference
between guided networks, which are explicitly
managed by a focal entity, and self-organised emergent
networks, which are implicitly managed by the context.

2.3.1 Requirements
Design structure networks (DSN) (Woodard, 2006) are a
structured approach to linking requirements with design
features. DSN help the designer assess the cost of design
changes in complex systems. Woodard furthermore suggests
system design games and a set of agent-based models (the
Palm-Handspring model, the value network model and the
platform competition model) to analyse design decisions
and their consequences. The method is based on the theory
of design evolution by Baldwin and Clark (2000), which
builds on the theory of CAS by Holland (1992). A detailed
explanation of Woodard�’s work would go beyond the scope
of this article.

2.3.2 Multi-scale analysis

Multi-scale analysis relates complexity with structure and
function. According to Ashby�’s law of requisite variety
(Ashby, 1956), at every scale, the variety of the system must
be larger than the variety necessary for the task to fulfil. In a
generalised form it suggests that the effectiveness of a
system organisation can be evaluated by its variety at each
scale of tasks to be performed (Bar-Yam, 2003). The limits
of this method are given by the ability of a single agent

(human being) to understand the interdependencies between
the components.

2.3.3 Equation-free macro-scale analysis
Equation-free macroscopic analysis (De Wolf, 2007) serves
both analysis and verification. It is mainly usable for
swarms and similar collective phenomena which consist of
more than one level or scale. While traditional methods
focus on the microscale only, this method is adapted for
macroscale behaviour.

The equation-free method needs a good microscopic
simulation model from which the macroscopic variables
can be measured. The strong points of this method is
that it is more feasible than formal proofs, founded
by dynamical systems theory (which simulations are
not), less computationally intensive than a huge number
of begin-to-end simulations, and a mixture between
individual-based and aggregate-based simulations. It
consists of short bursts of microscopic simulations to extract
the info which traditional numerical procedures would
obtain from direct evaluation of the macroscopic evolution
equation, if this equation was available. It requires
time-independent converging macroscopic variables (very
difficult to find). The method gives statistically relevant
info, not about every run of the system.

2.4 Design
The terms architecture and design are sometimes
confused. The architecture (see Section 2.5) is the structure
according to which a system is built, whereas the design
refers to the process of creating a system (including its
architecture). Section 2.4.1 explains design strategies,
whereas, Sections 2.4.2 and 2.4.3 report design abstractions.

2.4.1 Design strategies
Marcus (2006) suggests the following design strategies:

 Top-down, which is control-based, with predefined
coordination and interactions.

 Bottom-up, which is collaboration-based and
self-organising; collaboration and coordination
emerge from the interactions.

 �‘Middle out�’, which is coordination-based. It combines
existing components and collaborations but also drives
new requirements, collaborations and components. It is
a mediation between a set or requirements and a set of
services, new available capabilities and new needed
capabilities.

2.4.2 Information flows
DeWolf (2007) suggests that information flows be
established between the various localities of the system,
which means that the designer focuses on which
information needs to be available at which location, at
which instant, and where it comes from.

 Advances in complexity engineering 205

2.4.3 Intelligent networks
Rzevski (2004) recommends to create intelligent networks
instead of integrated units. This means that intelligence is
not inside a single unit but rather emerges from the
interactions within the community. The focus should be on
adaptability rather than on stability. Three steps in running a
system are identified:

1 sensory perception: detecting and anticipation changes
in the environment

2 cognition: reasoning about perceived changes and
deciding about the best action

3 execution: controlling the implementation of cognitive
decisions.

2.4.4 BASIC
Schut (2010) published a survey on model design for the
simulation of collective intelligence. He suggests several
levels of model refinement in the design phase, which
include problem assessment, modelling (generic, specific
and computer model), simulation, verification and
validation. The so-called BASIC recipe for modelling
consists of determining the following:

1 action set for all individuals

2 observation set for all individuals

3 action observation methods

4 costs for individuals for methods from 3

5 benefits for individuals for methods from 3

6 observation action methods for all individuals

The basic recipe can then be augmented with suitable steps
for the actual requirements, such as internal states, diversity,
non-determinism or adaptivity, as illustrated in Schut
(2010). For the specific modelling, diverse models �–
available in literature are suggested for typical applications.

2.4.5 Self-made network
Ulieru and Doursat (2010) introduce an approach for the
bottom-up evolution of architectures which are based on a
self-grown network of basic cells, similar to what happens
in embryogenesis. This means that the coding of the
behaviours are indirect; they guide the behaviour of the
components (the cells), and the behaviour of the system as a
whole emerges from their interactions.

Concretely, the system consists of self-assembling nodes
which have pairs of attachment nodes and pairs of gradient
values, which keep track of the node�’s position in a chain.
The ports can be occupied or free, and if free they can be
enabled or disabled. Chains are the simplest self-assembled
structures, but also considerably more elaborate ones may
emerge.

All nodes carry the same programme with three routines
for updating the gradient values, port management and link

creation. The parameters given to these routines determine
then the topology of the self-assembled structures.
Depending on the application, the nodes (or agents) may be
given additional characteristics, and they may be
heterogeneous.

2.4.6 Genetic programming
Genetic programming consists of taking instructions
from programmes and mixing them based on evolutionary
algorithms. A reference model for genetic programming
was created by Cramer (1985) and formalised by Koza
(1992). Fitness functions indirectly represent the global goal
of the system; so one might object that the whole process is
not emergent in the proper sense. However, it is not given in
the fitness function HOW the task is to be solved (Zapf and
Weise, 2007). The functions only help to evaluate the
adequateness of the solution. The agents finally equipped
with the result of the evolutionary algorithm do not have
any info about the objective functions neither about the
fitness of their current actions. It remains open how to solve
the mentioned co-evolution of different agent types, or how
to deal with heterogeneous agents.

Zapf and Weise (2007) propose a solution for what they
call offline emergence engineering, based on a combination
of strategies from genetic programming and agent software
engineering. In offline approaches, once a programme is
generated, there are no changes any more. Group behaviour
emerges before it is put into the real environment:
simulation is proposed as a mean to find out if the emerging
behaviour is appropriate, and if so, the system is realised.
An advantage is that evolution within a simulated
environment avoids a potentially long learning phase in the
real environment. However, such an approach has obvious
weaknesses: no simulation is ever going to be complete, and
there are always factors influencing the system in reality
which were not completely understood at simulation time,
or which simply cannot be represented due to their nature.

In the case of online emergence engineering (as opposed
to offline emergence engineering), Zapf and Weise (2007)
suggest that emergence is planned1 to occur during
execution. Nevertheless, through thorough analysis of the
components and their multi-lateral interactions, the range of
emergent phenomena can certainly be limited, and
engineers can design ways for the system to cope with them.
For illustration, consider a mobile robot society based on
ant-inspired mechanisms: If the rules and mechanisms are
evolved beforehand, simulated to be sure that they
work, and only implemented afterwards, this is offline
engineering. In case the engineer takes basic rules,
implements them, and lets them evolve while already
running on the real robots, it is online engineering.

2.4.7 Emergence-based engineering
Deguet et al. (2007) describe concepts to build systems
that will produce emergent phenomena. Emergence
happens between the design and the observation:
so-called design-to-behaviour emergence. Downward

206 R. Frei and G. Di Marzo Serugendo

causation applied to code and behaviour means that the
code/algorithm is determined by the system�’s behaviour, not
the programmer/designer. In other words, the designer gives
the machine a description of the expected behaviour and
gets some code in return. The main idea is to implement or
generate the systems without knowing �‘how it works�’.
According to Deguet et al. (2007), this can be done by
three approaches (each of which is an issue itself!): by
imitating phenomena, by using an incremental design
process, or by creating self-adaptive systems (and
understanding how the (meta-) system will be able to
modify itself).

2.5 Architectures
The following architectures are particularly suitable for
complex systems.

2.5.1 MetaSelf architecture
MetaSelf (Di Marzo Serugendo et al., 2008, 2010) is a
service-oriented architecture for self-organising and
self-adaptive systems, where the services are provided by
components or agents. This architecture exploits metadata
to support decision-making and adaptation, based on the
dynamic enforcement of explicitly expressed policies.
Metadata and policies are themselves managed by
appropriate services. The components, the metadata and the
policies are all decoupled from each other and can be
dynamically updated or changed.

MetaSelf applications have been made in the area of
dependability explicit computing (Paes et al., 2007) and
evolvable assembly systems (Frei et al., 2008).

2.5.2 The autonomic manager
As software systems become increasingly complex and
difficult to manage, autonomic computing (Kephart and
Chess, 2003) was proposed as a way of handling this.
Software should actively manage itself instead of passively
being managed by a human administrator. Most self-*
properties can be achieved under the responsibility of a
single autonomous entity (a manager) which controls a
hierarchy of other autonomous entities. The autonomic
manager consists of a central loop which handles all
upcoming events within the system. The autonomic
manager follows the MAPE loop (IBM, 2005), which stands
for monitoring, analysis, planning and execution, supported
by a knowledge base.

An alternative to this centralised approach is DAC (see
Section 2.1.3), where interacting and fairly autonomous
individuals replace the manager.

2.5.3 The three-layer architecture
Kramer and Magee (2007) propose a three-layer
architecture to realise self-adaptive and self-managing
computing systems, where the components configure their
interactions themselves. The lowest layer is the component

control, which includes sensors, actuators and control loops.
The middle layer takes care of change management. It is a
sequencing layer, to which the lower layer reports state
changes. New control behaviours are planned here, and
parameters for existing control behaviours are adapted.
Finally, the highest layer implements the goal management.
Time consuming planning is executed at this level,
according to the change requests coming from the middle
layer and the high level goals specified by the user.

2.5.4 Controller/observer architecture
Organic computing (Wuertz, 2008) is a project2 which
combines software engineering with neuroscience and
molecular biology. Within this framework, Schoeler and
Mueller-Schloer (2005) developed a controller/observer
architecture to �‘keep emergent behaviour within predefined
limits�’. It allows the system to make free decisions within
so-called adaptive islands, limited by pre-set objectives and
constraints.

The basic structure consists of an execution unit which
receives an input and generates an output. Above the
execution unit, there is an observer/controller unit. The
observer receives input from the environment as well as
from the execution unit. The controller compares the
situation reported by the observer to the goals set by the
user and reacts by reconfiguring the execution unit.

2.5.5 Task-based adaptation
Task-based adaptation (Sousa et al., 2005) is performed by
self-adapting computing infrastructures which automate
their configuration and reconfiguration. Dynamic task
selection can be based on an evolving threshold mechanism
and agent stimuli (De Wolf and Holvoet, 2003). External
stimuli come from the environment (as it is, not modified by
other agents), from interactions with other agents, and in the
form of stigmergy (Bonabeau et al., 1999), which is
indirect communication, or communication through the
environment.

The key ideas in task-based adaptation are:

 explicit representation of user tasks to determine the
required service qualities

 decoupling task and preference specification from the
low level mechanisms; that is a clean separation
between what is needed and how it is carried out

 efficient algorithms to calculate in real-time
near-optimal resource allocations and reallocations.

In task-aware systems, the users specify their tasks and
goals, and it is the job of the system to automatically
map them into the capabilities available in the ubiquitous
environment. Computing applications can adapt and
reconfigure themselves according to the current tasks to be
fulfilled (Sousa et al., 2005; Garlan et al., 2004; Cheng
et al., 2006). Such systems automate human multiple
objective trade-off, considering situation-dependent
preferences (knowledge-based decisions).

 Advances in complexity engineering 207

Figure 2 Final state of the MetaSelf development method

2.6 Development and implementation
This section describes methods for development and
implementation of the previously created concepts and
architectures.

2.6.1 The customised UP

De Wolf (2007) proposes a design methodology based on
the unified process (UP) (Jacobson et al., 1999), which is an
existing industry-ready software engineering process. The
UP was customised to explicitly focus on engineering
macroscopic behaviour of self-organised emergent
multi-agent systems.

During the requirement analysis phase the problem is
structured into functional and non-functional requirements,
using techniques such as use cases, feature lists and a
domain model that reflects the problem domain.
Macroscopic requirements (at the global level) are
identified. The design phase is split into architectural
design and detailed design addressing microscopic issues.
Information flow (a design abstraction) traverses the system
and forms feedback loops. Locality is �“that limited part of
the system for which the information located there is
directly accessible to the entity�” (De Wolf, 2007). Activity
diagrams are used to determine when a certain behaviour
starts and what its inputs are. Information flows are enabled
by decentralised coordination mechanisms, defined by
provided design patterns. During the implementation phase,
the design is realised by using a specific language. When
implementing, the programmer focuses on the microscopic
level of the system (agent behaviour). In the testing and
verification phase, agent-based simulations are combined
with numerical analysis algorithms for dynamical systems
verification at macro-level.

The CUP approach has been applied to autonomous
guided vehicles and document clustering (De Wolf, 2007).

2.6.2 Policies and metadata

A way to guide a system in its development without hard-
coding its behaviour is the use of policies, as suggested by
Kephart and Walsh (2004), and Kephart and Das (2007) in
the context of autonomic computing (Kephart and Chess,
2003). Policies can express actions, goals and utility
functions. Depending on their type, they lead one or several
agents to directly execute an action (i.e., if the gripper
blocks, try to re-initialise it), to maintain their behaviour as
to reach a certain goal (e.g., always keep the speed below

3 m/s), or to follow a more complicated guideline and
choose appropriate actions (such as: reduce the effort of
reconfiguration).

Policies always work in conjunction with corresponding
metadata, which is data that is not directly processed in
operation. Metadata can describe the performance of an
axis, the interfaces of a gripper, the preferential partners of a
mobile robot or the current availability of a GPS module.

2.6.3 MetaSelf design method
The MetaSelf development method (Di Marzo Serugendo
and Frei, 2009; Di Marzo Serugendo et al., 2010), which
consists of four phases, is illustrated in Figure 2.

The requirement and analysis phase identifies
the functionality of the system along with self-*
requirements specifying where and when self-organisation
or self-management is needed or desired. The required
quality of service is determined.

The design phase consists of two sub-phases. In the first
part, D1, the designer chooses architectural patterns (e.g.,
autonomic manager or observer/controller architecture) and
self-* mechanisms, governing the components�’ interactions
and behaviour [e.g., trust, gossip, or stigmergy, that is
indirect coordination through changes in the environment
(Bonabeau et al., 1999)]. Rules for self-organisation and
policies for self-adaptation are defined. In the second part,
D2, the individual autonomous components (services,
agents, etc.) are designed. The necessary metadata and
policies are selected and described. The self-* mechanisms
are simulated and possibly adapted/improved.

The implementation phase produces the run-time
infrastructure including agents or services, metadata and
executable policies.

In the verification phase, the designer makes sure that
agents, the environment, artefacts and mechanisms work as
desired. Potential faults and their consequences are
identified, similar to the way failure modes and effects
analysis (FMEA) (McDermott et al., 2008) works, and
measures to avoid the identified faults are taken
accordingly.

2.6.4 Evolutionary engineering
In Bar-Yam�’s (2003, 2005) evolutionary engineering
(EE)/enlightened evolutionary engineering (E3), the
advances a system makes are often unanticipated and not
fully understood, but the system does learning by doing.
Evolutionary processes are based on incremental iterative

208 R. Frei and G. Di Marzo Serugendo

change and cyclical feedback. EE includes methods
which involve rapid parallel exploration and a context
designed to promote change through competition between
design/implementation groups, with field testing of multiple
variants. Examples of evolutionary methods in software
engineering are: spiral development, extreme programming
and the open source movement. The functioning products
which are in use at a certain moment in time are considered
as the evolving population which will be replaced by new
generations of products. If the function of a system needs to
change, the system can adapt because there are many
possible variants of subsystems that can be generated. The
focus of E3 is on creating environment and process rather
than a product, and it continually builds on what already
exists. Operational systems include multiple versions of
functional components, and E3 uses multiple parallel
development processes. More effective components are
gradually introduced.

Bar-Yam proposes the following methods:

1 Analysing the environment and temporarily modifying
it to influence the complex system�’s self-directed
development. (Complex systems cannot be completely
isolated from their environments).

2 Tailoring developmental methods to specific scales and
regimes (i.e., phases in the life-cycle of a complex
system, such as development and operation).

3 Identifying or defining a targeted outcome space at
multiple scales and in multiple regimes. (Outcome
spaces are close to specifying �‘requirements�’ or
�‘desired capabilities�’ for complex systems).

4 Establishing rewards and penalties, including the
explicit formulation of satisfying criteria. (Not to
confound with direction and guidance, which directly
concern agent behaviour; rewards and penalties refer to
agent generated outcomes).

5 Judging actual results and allocate prices. This is
associated with the criteria of rewards but also involves
the explicit consideration of other outcomes.

6 Formulating and applying developmental stimulants.

7 Characterising continuously, i.e., capturing and
publishing information about the way things are at
every moment in a complex system. Among others, this
helps agents take decisions and allows tracking the
evolution of the system.

8 Formulating and enforcing safety regulations
(policing).

Related to EE, and maybe better-known, is evolutionary
computation (De Jong, 2006). It belongs to the field
of artificial intelligence; it is mostly concerned
with optimisation tasks and uses the mechanisms of
evolutionary reproduction and inheritance. Evolutionary
computation is not to be confused with genetic
programming (Section 2.4.6).

2.6.5 The AMAS theory and ADELFE
Engineering systems which generate emergent
functionalities is the goal of Capera et al. (2004) and
Gleizes et al. (2007). Their adaptive multi-agent system
(AMAS) theory claims that for any functionally adequate
system, there exists at least one cooperative internal
medium system that fulfils an equivalent function in the
same environment. ADELFE (Bernon et al., 2005) is an
engineering methodology for AMASs, based on the AMAS
theory. ADELFE is limited to cooperative systems and does
not provide support for the achievement of specific goals.

The main ADELFE strategy is to maintain cooperation,
or in other words, to avoid so-called non-cooperative
situations (NCS). Agents try to anticipate these NCS, and
act accordingly. This means that designers have to describe
their own specific NCS set and plan the respective actions
for each kind of agent. Notice that it is certainly not always
possible to preview all the NCS which can occur, and
designing corrective actions for them is not easy, neither.

A cooperative agent in the AMAS theory has the
following characteristics: it is autonomous; it is unaware of
the global function of the system (this emerges from the
agent level towards the multi-agent level); it can detect
NCSs and acts to return in a cooperative state; it is not
altruistic but benevolent (it seeks to achieve its goal while
being cooperative).

2.6.6 A general methodology
The general methodology by Gershenson (2007) provides
guidelines for system development. Particular attention is
given to the vocabulary used to describe self-organising
systems. It is composed of five iterative steps or phases:
representation, modelling, simulation, application and
evaluation.

In the representation phase, according to given
constraints and requirements, the designer chooses an
appropriate vocabulary, the abstractions level, granularity,
variables, and interactions that have to be taken into account
during system development. Then, the system is divided
into elements by identifying semi-independent modules,
with internal goals and dynamics, and with interactions with
the environment. The representation of the system should
consider different level of abstractions.

In the modelling phase, a control mechanism is defined,
which should be internal and distributed to ensure the
proper interaction between the elements of the system, and
produce the desired performance. However, the mechanism
cannot have strict control over a self-organising system; it
can only steer it. To develop such a control mechanism, the
designer should find aspects or constraints that will prevent
the negative interferences between elements (reduce
friction) and promote positive interferences (promote
synergy). The control mechanism needs to be adaptive, able
to cope with changes within and outside the system (i.e., be
robust) and active in the search of solutions. It will not
necessarily maximise the satisfaction of the agents, but
rather of the system. It can also act on a system by bounding

 Advances in complexity engineering 209

or promoting randomness, noise, and variability. A mediator
should synchronise the agents to minimise waiting times.

In the simulation phase, the developed model(s) are
implemented and different scenarios and mediator strategies
are tested. Simulation development proceeds in stages: from
abstract to particular. The models are progressively
simulated, and based on the results, the models are refined
and simulated again. The application phase is used to
develop and test model(s) in a real system. Finally, in the
evaluation phase, the performances of the new system are
measured and compared with the performances of previous
ones.

This methodology was applied to traffic lights,
self-organising bureaucracies and self-organising artefacts
(Gershenson, 2007)

2.6.7 Agents and artefacts meta-model
Gardelli et al. (2008) use architectural pattern based on
the agents and artefacts (A&A) metamodel which
features agents as proactive goal-driven entities, and
artefacts as encapsulated services to be exploited by agents.
The environment plays an important role in this
approach. It consists of artefacts and environmental agents,
which are incorporated self-organisation mechanisms.
These environmental agents are responsible for sustaining
feedback loops between the agents and the environment.

This approach consists of three iterative design stages:
modelling, simulation and tuning. In the modelling phase,
the agents�’ behaviour is designed, and architectural
structures are sketched. Afterwards, simulation is used to
verify the suitability of the agents and the architecture. In
the tuning phase, parameters are adapted in order to
optimise the system�’s performance.

2.7 Validation and verification
After creating solutions at micro level, the system
verification mainly aims at giving guarantees that the
resulting macroscopic behaviour meets the requirements
(De Wolf, 2007). This is almost never straight-forward. For
instance, software code cannot prove to be correct, or to
have been exposed to all relevant environmental scenarios.
It is thus appropriate to talk about acceptable behaviour
(Zapf and Weise, 2007), or to give more detailed indications
about the verified scenarios.

Most of the approaches which have been proposed
for modelling in Section 2.3) can also be used for
validation and verification purposes, in particular those in
Sections 2.3.2 and 2.3.3. Sometimes, macroscopic
behaviour can only be verified by begin-to-end simulations;
efforts to formalise emergence are typically limited to rather
simple application scenarios (De Wolf, 2007). But as
simulations are always abstractions of reality, they alone are
often not enough to prove that a complex engineered
system will comply with the requirements. Especially
self-organisation and emergence challenge researchers.
Different subsystems depend on and interact with each other

in many often very complex, dynamic and unpredictable
ways.

Not all verification methods are equally useful for any
case. Most often a combination of different methods will do
best. De Wolf and Holvoet (2007) propose the methods
represented in Table 2, together with their typical
applications.

Table 2 Verification methods

Method Application

Unit-based and
integration testing

Most useful for one-shot
microscopic properties

Formal proof Microscopic; not usable for
interaction models

Statistical experimental Long-term ongoing properties

verification Expensive due to large number of
experiments

Equation-based
macroscopic
verification

Adaptation-related; only if the
macroscopic property in question
can be modelled as a variable in a
(partial) differential equation

Equation-free
macroscopic
verification

Long-term ongoing properties with
smooth and continuous behaviour,
adaptation-related; time-dependent
variable reflecting the property in
question has to be found (see
Section 2.3.3)

Time series analysis
based on chaos theory

Adaptation-related long-term
behaviour, measuring complexity,
i.e.

2.8 Applied approaches

A view of complex systems engineering from the
perspective of integrated circuit design evolution was given
by Bramlett (2002). It seems that, different from other
perspectives, for CPU design, component coupling is
important, and the systems are considered as closed and
highly optimised. The design process can be seen as a series
of phase transitions in convergence towards design
requirements, which is an emergent property. Abstractions
at different levels and granularities are used to define
convergence phases, rates and transitions. Often the design
process itself is far more complex than the artefact it
produces. The author also states that there is a need for open
architectures for cross-disciplinary engineering, taking the
human as part of the system.

Rzevski (2004) presents complexity engineering at the
example of an intelligent variable geometry compressor and
a family of space exploration robots); however, some
theoretical background about the used strategies may be
missing. Remarkably, Rzevski�’s strategy for self-repair is
isolating defective parts and thus making them harmless.
Such an approach certainly makes sense in practice, but it
does not correspond to the usual interpretation of the term

210 R. Frei and G. Di Marzo Serugendo

reparation as it does not repair the defect neither consider
the consequences of an isolation on the rest of the system.

3 Discussion, conclusions and directions

After reviewing numerous existing concepts and methods in
complexity engineering, we now analyse the general
situation.

3.1 Discussion

The methods and approaches cited in this article are mostly
from the area of computer science. This is due to the nature
of complexity engineering: the systems in question usually
need some kind of intelligence and a corresponding control
system, which leads us typically to computer science.
Purely mechanical systems are rarely complex and adaptive
or self-organised.

The claim that decentralised control should be avoided
has been quite prominently uttered in the last few years. But
is it always favourable to build a system with purely
decentralised control? Decentralised systems also have
weaknesses. They are often not optimal, they take longer to
solve problems, and may use more resources to do so. On
the positive side, distributed systems are robuster and they
can better cope with disturbances.

Due to their nature, the validation of complex systems
with emergence and self-* properties is difficult. Formal
approaches at agent level do not automatically cover global
phenomena. Simulations are another way to verify system
behaviour, but there are the obvious limitations of time
requirements and non-completeness to this approach
(Gleizes et al., 2007). Formal modelling techniques can
capture important features of the design choices and enable
designers to reason about them in a useful way (Woodard,
2006). We may have to accept that we will never be able to
completely control or predict the behaviour of a complex
system; we should rather cope with this by adapting our
actions to the new situations (Gershenson, 2007). This
indicated that deterministic models or predictions are not
necessary; having realistic default expectations with the
possibility to correct errors or exceptions after they have
occurred, works quite well in practice.

3.2 Conclusions

The application of complexity engineering methods should
always be accompanied by a reflection on the reasons why
these methods have been chosen. Are they useful for the
actual application? Or might other methods be more
suitable? The engineering method should always be selected
with care.

A fundamental challenge of complexity engineering is
that it touches many different domains; it is therefore
difficult to decide about generally applicable methods. For
instance, network models and statistics may be helpful when

creating wireless communication systems but not at all for
building manufacturing systems. This article tries to
structure the existing methods and thus make it easier for
engineers to choose a method which is suitable for their
applications.

This article ends with directions for further research
which we consider important for the development of
complexity engineering.

3.3 Further research directions
Complexity engineering has still not been established as a
proper engineering domain. Research remains scattered and
focused on specific examples, which is the reason why most
methodologies are not generally applicable. We would like
to encourage other researchers to make efforts in
complexity engineering, and to coordinate their research
with peers. A general framework for complexity
engineering should be created, linking existing and new
methods with each other, giving receipts for how to
approach which type of problem. Complexity engineering
requires particular attention concerning the following issues
(Buchli and Santini, 2005): theory, universal principles,
implementation substrates, designing, programming and
controlling methodologies as well as collecting and sharing
of experience.

Although academia increasingly discovers their interest
in complexity engineering, industry is reluctant. It is
difficult to persuade industrials to give away total control.
Complexity is mostly perceived as disturbing, annoying or
overwhelming. Researchers should therefore not only
develop methodologies for complexity engineering, but at
the same time also try to persuade industry of the benefits
which using complexity can offer.

Industry requires dependable methods. Self-organised
emergent MAS will only be acceptable in an industrial
application if one can give guarantees about the
macroscopic behaviour (De Wolf, 2007). This can be
shown experimentally or proven formally. Both formal
prove and experimental evidence has advantages and
disadvantages. On one hand, experiments often provide
statistical evidence that the desired results will often
appear under certain circumstances. But it can also
mean that the adverse conditions which lead to failure
have not been encountered yet. Formal proof, on the other
hand, always uses abstractions, and making the right
abstractions is difficult. Formal proofs are useful for
understanding certain aspects of a system, but they can
never express the complete reality. Additionally, they
depend on the language chosen to describe the system.
Every language has a certain expressivity. This expressivity
may be suitable for certain aspects of a system, but limit the
model in capturing others.

Methods to provide sufficient evidence of dependability
should be developed especially for complexity engineering
methods, given that they are often different from traditional
engineering methods due to the use of self-* properties and
emergence.

 Advances in complexity engineering 211

Acknowledgements

This work was started while Regina Frei received her PhD
Grant from the Portuguese Foundation for Science and
Technology. She currently receives a post-doc grant from
the Swiss National Science Foundation.

References
Ashby, W. (1956) An Introduction to Cybernetics, Chapman &

Hall, London.
Babaoglu, O., Canright, G., Deutsch, A., Caro, G., Ducatelle, F.,

Gambardella, L., Ganguly, N., Jelasity, M., Montemanni, R.,
Montresor, A. and Urnes, T. (2006) �‘Design patterns from
biology for distributed computing�’, ACM Transactions on
Autonomous and Adaptive Systems, Vol. 1, No. 1, pp.26�–66.

Baldwin, C. and Clark, K. (2000) Design Rules, Vol. 1: The Power
of Modularity, MIT Press, Cambridge, MA, USA.

Bar-Yam, Y. (2003) �‘When systems engineering fails �– toward
complex systems engineering�’, in IEEE Int. Conf. on
Systems, Man & Cybernetics (SMC), Vol. 2, pp.2021�–2028,
Washington DC, USA.

Bar-Yam, Y. (2005) �‘About engineering complex systems:
multiscale analysis and evolutionary engineering�’, in
Brueckner, S., Di Marzo Serugendo, G., Karageorgos, A. and
Nagpal, R. (Eds.): Engineering Self-organising Systems:
Methodologies and Applications, ESOA 2004, LNCS,
Vol. 3464, pp.16�–31, Springer Berlin.

Bernon, C., Camps, V., Gleizes, M-P. and Picard, G. (2005)
�‘Engineering adaptive multi-agent systems: the Adelfe
methodology�’, in Henderson-Sellers, B. and Giorgini, P.
(Eds.): Agent-Oriented Methodologies, pp.172�–202, Idea
Group Pub., Hershey, PA, USA.

Bonabeau, E., Dorigo, M. and Théraulaz, G. (1999) Swarm
Intelligence, Oxford University Press, New York, USA.

Bramlett, B. (2002) �‘Engineering emergence�’, Tech. rep., MIT
Media Lab, Cambridge, MA, USA.

Brueckner, S. (2000) �‘Return from the ant �– synthetic ecosystems
for manufacturing control�’, PhD thesis, Institute of Computer
Science, Humboldt-University, Berlin, Germany.

Buchli, J. and Santini, C. (2005) �‘Complexity engineering,
harnessing emergent phenomena as opportunities for
engineering�’, Tech. rep., Santa Fé Institute Complex Systems
Summer School, NM, USA.

Capera, D., Picard, G. and Gleizes, M-P. (2004) �‘Applying
ADELFE methodology to a mechanism design problem�’, in
Int. Joint Conf. on Autonomous Agents and Multiagent
Systems (AAMAS), Vol. 3, pp.1508�–1509, New York, USA.

Cheng, S-W., Garlan, D. and Schmerl, B. (2006)
�‘Architecture-based self-adaptation in the presence of
multiple objectives�’, in ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems
(SEAMS), pp.2�–8, Shanghai, China.

Cramer, N. (1985) �‘A representation for the adaptive generation
of simple sequential programs�’, in Int. Conf. on Genetic
Algorithms and their Applications, pp.183�–187, Mahwah, NJ,
USA.

De Castro, L. (2006) Fundamentals of Natural Computing,
Chapman & Hall/CRC Computer and Information Sciences,
New York, USA.

De Jong, K. (2006) Evolutionary Computation: A Unified
Approach, MIT Press, Cambridge, MA, USA.

De Wolf, T. (2007) �‘Analysing and engineering self-organising
emergent applications�’, PhD thesis, Department of Computer
Science, Katholieke Universiteit Leuven, Belgium.

De Wolf, T. and Holvoet, T. (2003) �‘Adaptive behaviour based on
evolving thresholds with feedback�’, in AISB, 3rd Conf.
on Adaptive Agents and Multi-Agent Systems (AAMAS),
pp.91�–96, Melbourne, Australia.

De Wolf, T. and Holvoet, T. (2007) �‘A taxonomy for self-*
properties in decentralised autonomic computing�’, in
Parashar, M. and Hariri, S. (Eds.): Autonomic Computing:
Concepts, Infrastructure, and Applications, CRC Press,
Taylor and Francis Group, pp.101�–120.

Deguet, J., Magnin, L. and Demazeau, Y. (2007) �‘Emergence and
software development based on a survey of emergence
definitions�’, Studies in Computational Intelligence, Vol. 56,
pp.13�–21.

Di Marzo Serugendo, G. and Frei, R. (2009) �‘Experience report in
developing and applying a method for self-organisation to
agile manufacturing�’, Tech. rep., BBKCS-09-06, School of
Computer Science and Information Systems, Birbeck College,
London, UK.

Di Marzo Serugendo, G., Fitzgerald, J. and Romanovsky, A.
(2010) �‘Metaself �– an architecture and development method
for dependable self-* systems�’, in Symp. on Applied
Computing (SAC), pp.457�–461, Sion, Switzerland.

Di Marzo Serugendo, G., Fitzgerald, J., Romanovsky, A. and
Guelfi, N. (2008) �‘Metaself �– a framework for designing
and controlling self-adaptive and self-organising systems�’,
Tech. rep., BBKCS-08-08, School of Computer Science and
Information Systems, Birkbeck College, London, UK.

Frei, R. (2010) �‘Self-organisation in evolvable assembly systems�’,
PhD thesis, Department of Electrical Engineering, Faculty of
Science and Technology, Universidade Nova de Lisboa,
Portugal.

Frei, R. and Barata, J. (2010) �‘Distributed systems �– from natural
to engineered: three phases of inspiration by nature�’, Int. J. of
Bio-inspired Computation, Vol. 2, Nos. 3/4, pp.258�–270.

Frei, R. and Di Marzo Serugendo, G. (2011) �‘Self-organising
assembly systems�’, Accepted for publication in IEEE
Transactions on Systems, Man and Cybernetics, Part C:
Applications and Reviews.

Frei, R., Di Marzo Serugendo, G. and Barata, J. (2008) �‘Designing
self-organization for evolvable assembly systems�’, in IEEE
Int. Conf. on Self-Adaptive and Self-Organizing Systems
(SASO), pp.97�–106, Venice, Italy.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1994) Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison Wesley Professional Computing Series, Boston,
USA.

Gardelli, L., Viroli, M., Casadei, M. and Omicini, A. (2008)
�‘Designing self-organising environments with agents and
artifacts: a simulation-driven approach�’, Int. Journal of
Agent-Oriented Software Engineering, Vol. 2, No. 2,
pp.171�–195.

Garlan, D., Poladian, V., Schmerl, B. and Sousa, J. (2004)
�‘Task-based self-adaptation�’, in Workshop on Self-healing
Systems, 1st ACM SIGSOFT Workshop on Self-managed
Systems, pp.54�–57, Newport Beach, CA, USA.

Gershenson, C. (2007) �‘Design and control of self-organizing
systems�’, PhD thesis, Faculty of Science and Center Leo
Apostel for Interdisciplinary Studies, Vrije Universiteit,
Brussels, Belgium.

212 R. Frei and G. Di Marzo Serugendo

Gleizes, M-P., Camps, V., George, J-P. and Capera, D.
(2007) �‘Engineering systems which generate emergent
functionalities�’, in Engineering Environment-Mediated
Multiagent Systems �– Satellite Conf. held at The European
Conf. on Complex Systems (EEMMAS 2007), Dresden,
Germany.

Holland, J. (1992) Adaptation in Natural and Artificial Systems:
An Introductory Analysis with Applications to Biology,
Control, and Artificial Intelligence, MIT Press, Cambridge,
MA, USA.

IBM (2005) �‘An architectural blueprint for autonomic computing�’,
Tech. Rep. June.

Jacobson, I., Booch, G. and Rumbaugh, J. (1999) The Unified
Software Development Process, Addison Wesley, Reading,
MA, USA.

Kephart, J. and Chess, D. (2003) �‘The vision of autonomic
computing�’, IEEE Computer, Vol. 36, No. 1, pp.41�–50.

Kephart, J. and Das, R. (2007) �‘Achieving self-management via
utility functions�’, IEEE Internet Computing, Vol. 11, No. 1,
pp.40�–48.

Kephart, J. and Walsh, W. (2004) �‘An artificial intelligence
perspective on autonomic computing policies�’, in Proc. 5th
IEEE Int. Workshop on Policies for Distributed Systems and
Networks (POLICY), pp.3�–12, New York, USA.

Koza, J. (1992) Genetic Programming, on the Programming of
Computers by Means of Natural Selection, A Bradford Book,
The MIT Press, Cambridge, MA, USA.

Kramer, J. and Magee, J. (2007) �‘Self-managed systems: an
architectural challenge�’, in Future of Software Engineering
(FOSE), pp.259�–268, IEEE Computer Society, Washington,
DC, USA.

Mamei, M., Zambonelli, F. and Leonardi, L. (2004) �‘Cofields: a
physically inspired approach to motion coordination�’, IEEE
Pervasive Computing, April�–June, Vol. 3, No. 2, pp.52�–61.

Marcus, R. (2006) �‘Complex systems engineering for the global
information grid�’, available at
http://cs.calstatela.edu/wiki/images/a/a4/Marcus.ppt.

McDermott, R., Mikulak, R. and Beauregard, M. (2008)
The Basics of FMEA, CRC Press, Taylor & Francis Group,
New York, USA.

Norman, D. and Kuras, M. (2004) �‘Engineering complex systems�’,
available at http://www.mitre.org.

Paes, R., Lucena, C. and Carvalho, G. (2007) �‘Using interaction
laws to implement dependability explicit computing in open
multi-agent systems�’, in Brasilian Symposium on Software
Engineering (SBES), pp.59�–75, Joao Pessoa, Brazil.

Parunak, H.V.D., Sauter, J. and Clark, S. (1998) �‘Toward the
specification and design of industrial synthetic ecosystems�’,
in 4th Int. Workshop on Intelligent Agents IV, Agent
Theories, Architectures, and Languages (ATAL), pp.45�–59,
Springer-Verlag, London, UK.

Rouse, W. (2003) �‘Engineering complex systems: implications for
research in systems engineering�’, IEEE Transactions on
Systems, Man and Cybernetics �– Part C: Applications and
Reviews, Vol. 33, No. 2, pp.154�–156.

Rzevski, G. (2004) �‘Designing complex engineering systems�’, in
Volga Conf. on Complex Adaptive Systems, Keynote paper,
Samara, Russia.

Schoeler, T. and Mueller-Schloer, C. (2005) �‘An
observer/controller architecture for adaptive reconfigurable
stacks�’, in Int. Conf. on Architecture of Computing Systems
(ARCS), pp.139�–153, Innsbruck, Austria.

Schuh, G., Sauer, A. and Dring, S. (2006) �‘Modeling
collaborations as complex systems�’, in 4th Int. Industrial
Simulation Conf. (ISC), pp.168�–174, Palermo, Italy.

Schut, M. (2010) �‘On model design for simulation of collective
intelligence�’, Information Sciences, Vol. 180, pp.132�–155.

Sousa, J., Poladian, V., Garlan, D., Schmerl, B. and Shaw, M.
(2005) �‘Task-based adaptation for ubiquitous computing�’,
IEEE Transactions on Systems, Man and Cybernetics, Part C:
Applications and Reviews, Vol. 36, No. 3, pp.328�–340.

Steels, L. (1991) �‘Towards a theory of emergent functionality�’, in
Meyer, J-A. and Wilson, S. (Eds.): From Animals to
Animats: 1st Int. Conf. on Simulation of Adaptive Behaviour,
pp.451�–461, Paris, France.

Ulieru, M. and Doursat, R. (2010) �‘Emergent engineering: a
radical paradigm shift�’, J. of Autonomous and Adaptive
Communications Systems, to appear.

Weyns, D., Boucke, N. and Holvoet, T. (2006) �‘Gradient
field-based task assignment in an AGV transportation
system�’, in Proc. of 5ht Int. Conf. on Autonomous Agents,
pp.842�–849, ACM, New York, NY, USA.

Woodard, C. (2006) �‘Architectural strategy and design evolution in
complex engineered systems�’, PhD thesis, Business Studies
Department, Harvard Univ., Cambridge, MA, USA.

Wu, C. and Chang, E. (2007) �‘Exploring a digital ecosystem
conceptual model and its simulation prototype�’, in IEEE Int.
Symp. on Industrial Electronics (ISIE), pp.2933�–2938, Vigo,
Spain.

Wuertz, R. (Ed.) (2008) Organic Computing. Understanding
Complex Systems, Springer, Berlin Heidelberg.

Zapf, M. and Weise, T. (2007) �‘Offline emergence engineering for
agent societies�’, in Proc. of the Fifth European Workshop on
Multi-Agent Systems EUMAS�’07, Hammamet, Tunesia.

Notes
1 This might be considered as a contradiction in itself:

emergence can hardly be planned.
2 Available at http://www.organic-computing.org.

