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Abstract—Evolvable assembly systems (EAS) are intended
to tackle the challenges of agile manufacturing: high respon-
siveness, the ability to cope with ever-changing requirements,
many variants and small lot sizes. This article discusses self-
organising evolvable assembly systems (SO-EAS), which are a
research direction of EAS focusing on self-organisation and
self-management. SO-EAS are composed of modules with local
intelligence and self-knowledge, able to self-organise to form a
suitable shop-floor layout which fulfils a generic assembly plan
received in input. During production, the modules self-manage
while executing the assembly tasks. This article reports on the
latest implementation advances, such as the integration of the
agent platform Jade with the reasoning engine Jess.

I. INTRODUCTION

Nowadays, robotics and automation play an important role
in many fields such as search and rescue, medicine, warfare,
space exploration as well as manufacturing and assembly.
Robots can collaborate with humans and replace them in the
execution of repetitive, monotonous and dangerous tasks. Nev-
ertheless, also in highly automated systems, the human user
plays important roles, especially in system configuration, robot
programming, supervision / monitoring, error recovery and
system reconfiguration. These tasks are often work-intensive
and error-prone procedures.

With systems becoming increasingly complex, there is a
need for systems that can take care of themselves (exhibit self-
* properties) and play a proactive role [9]. Concretely, in self-
organising evolvable assembly systems (SO-EAS), modules
self-organise to create the shopfloor layout and self-manage
when assembling small mechatronic products.

Organisation of this article: The software architecture and
infrastructure is detailed in section II, and section III explains
the implementation issues so far addressed. Discussion, con-
clusion and further work follow in section IV.

A. Evolvability in assembly systems

Evolvability [21] refers to a system’s ability to continuously
and dynamically undergo modifications of varying importance:
from small adaptations to big changes. Products, processes
and systems are intrinsically related to each other. Each
product belongs to a certain product class [26] which requires
a certain limited set of processes, where a process means
a coherent suite of assembly operations which lead to the

finished product. Production processes are intimately linked
to product design and to system module capabilities: any
change in the product design has an impact on the processes
to apply and on the actual assembly system to use. Similarly,
any change in a joining process (for instance replacing a rivet
by a screw) may imply a change in the product design, and
certainly has an impact on the assembly system to use.

B. Contributions in the area of EAS
Evolvable assembly systems (EAS) [20], [1] refer to mod-

ular assembly systems that seamlessly integrate new modules
thanks to an agent-based control approach; that evolve / adapt
to changes in products, processes and assembly systems; and
that make automation more accessible to SMEs.

The research activities in the area of EAS have gradually
increased over the last years, and we identify five main
research areas:

Agent-based technologies: A multi-agent shopfloor control
system has been developed with all modules of the shop-floor
agentified and coordinating their work during production [1].
The use of agent-based architectures for EAS was compared
with the use of service-oriented architectures, modules of-
fer their skills under the form of services [23]. Dynamic
coalitions [13] have been defined that allow the modules to
spontaneously create and change coalitions, as well as to
request other modules to join them in order to satisfy all
requirements of a task to be fulfilled.

Ontologies and specifications: EAS ontologies were devel-
oped for products, processes and systems [15]; for a consumer
electronics industrial test case [17], and for controlling pro-
duction [24].

Roadmaps and the EUPASS project: Directions for further
research were formulated [5]. Within the EUPASS project1,
numerous academic and industrial partners made EAS ad-
vance [25]. A roadmap for adaptive assembly technology [22]
was written.

Diagnosis: Systems for the diagnosis of EAS [4] have
been investigated, as well as the suitability of service-oriented
architectures for EAS diagnosis [3].

Self-* properties and emergence: The possibility of emer-
gent behaviour in EAS was investigated [2], a proposal for

1http://www.hitech-projects.com/euprojects/eupass/index.htm

978-1-4244-6392-3/10/$26.00 ©2010 IEEE 3527



self-reconfigurabililty of the assembly system has been pro-
posed [18]. SO-EAS belong to this direction of research, and
will be detailed below.

Proactive assembly systems [7] are conceived on the same
mind-set as evolvable assembly systems, but the focus is on the
operator, who is part of the assembly system and an important
factor. The human must be a highly specialised expert which
is very active (that is, proactive) in all areas of an assembly
system life cycle. In SO-EAS, we go a step further: it is the
system which is proactive and provides innovative services to
the user.

C. Self-organising evolvable assembly systems

SO-EAS are a specific case of EAS, where: (1) Assembly
system modules self-organise, that is, modules select suitable
partners to form dynamic coalitions which have the skills
to fulfill the assembly plan of incoming product orders,
and coalitions choose their position in the shopfloor layout;
self-organisation includes also self-reconfiguration in case of
changes in the product design or the assembly processes; (2)
Assembly system modules self-manage during production,
that is, they monitor themselves as well as their coalition
partners and adapt their behaviour accordingly; if necessary,
an assembly system reconfiguration process is triggered.

The design of SO-EAS has been explained in [11], and cer-
tain aspects have been implemented: dynamic coalitions [13],
[14] allow the modules to spontaneously create and change
coalitions, as well as to request other modules to join them in
order to satisfy all requirements of a task to be fulfilled.

This article reports on the current status of the implemen-
tation, which consists of: (1) adapting ontologies, (2) repre-
senting the Generic Assembly Plan and the Layout-Specific
Assembly Instructions as workflows, (3) defining agents in
Jade, with generic core behaviour, sensitive to Jess rules, and
(4) implementing agent reactions based on communication,
which forms the basis for further full implementation of the
CHAM design (Chemical Abstract Machine [6]).

II. ARCHITECTURE AND INFRASTRUCTURE

SO-EAS are composed of assembly system modules. A
software agent is associated with every module and equipped
with thorough self-knowledge [10]. An SO-EAS receives four
main inputs from the user:

a) A set of ontology files containing the description of the
available assembly system modules.

b) A generic assembly plan (GAP, described in sec-
tion II-A), containing a sequence of operations needed
for the product to be assembled.

c) The number of products to be assembled.
d) A list of rules for self-organisation and policies for

self-management to guide the system and keep it under
control.

In a self-organising process guided by rules, modules find
suitable partners to form coalitions to fulfill the tasks spec-
ified in the GAP; the coalitions then arrange themselves in
the shopfloor layout. Once the layout has been built, the

layout-specific assembly instructions (LSAI, described in sec-
tion II-C) are derived, and executed by the modules on request
of the products to be assembled. During production, the agents
monitor themselves and their peers to make sure that they
are working according to the policies for self-management. If
a policy is broken, appropriate measures are taken, again as
specified by corresponding policies. For instance, in case a
module does not answer as expected, it may be requested to
restart its software. If the problem persists, the other coalition
partners may search for a replacement module.

A. The Generic Assembly Plan (GAP)

The GAP specifies the way a product is to be assembled:
it includes the assembly sequence of the different parts and
the way they must be joined. Tasks are defined in the form
of generic skills, that is module capabilities. The GAP does
not provide information about what module to use and what
movement to make. In other words, the GAP says what to
do but not how and is thus independent from any concrete
layout. Figure 1 shows the example of a GAP represented as
a workflow and written in XML. The four simple illustrated
tasks each have an operation type (Op), an object to be
handled (Obj), a start point (StPt) where the part is grabbed,
an end point (EndPt) where the part is released, as well as a
start orientation (StOr) and an end orientation (EndOr). This
GAP specifies that a carrier is loaded from the Storage to
Conveyor1, then Part1 is picked from Feeder1 and placed
on the Carrier, then Part2 is picked from Feeder2 and
placed on top of Part1, and finally, the Carrier with the
assembled product is unloaded to the Storage.

Fig. 1. Example of a GAP written as a workflow

B. Layout creation

The layout is incrementally built according to a process
which follows a self-organising mechanism inspired by chem-
ical reactions as illustrated in Figure 2. Modules self-assemble
to form coalitions according to a process of reactions, mod-
elled according to chemical reactions. Coalitions are built to
progressively match with the tasks defined in the GAP. In
this case, ’chemical’ reactions occur: (1) when modules agree
to collaborate with others (i.e. they form coalitions), and (2)
when a task ’bonds’ with the skills offered by a coalition (the
coalition offers its skills).

When a GAP appears in the system, all the modules
immediately look for tasks which they can fulfil alone. If
they find a suitable task, they offer their services. Otherwise
they search for suitable partner modules, according to their
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Fig. 2. Self-assembly of coalitions, following the CHAM paradigm

own physical requirements as well as the corresponding rules
for module composition. For instance, a gripper will look for
a robot to hold it. Once they have found all their partners
and formed a complete coalition (that is, the coalition can
provide all requested skills and does not have any open
requirements), they look again for suitable tasks in the GAP
and, if found, offer their services. If the coalition does not
have the required composite skills yet, additional or alternative
partners are searched and asked to join the coalition. This
procedure continues until all the tasks have received at least
one service offer, or until no more modules are available. In
this case, the task will emit a user alert after a certain time
because no satisfactory solution was found.

An incomplete coalition which, in the process of forming
itself, cannot find any suitable partners in the module pool,
will be discarded. If a task gets more than one service offer,
there are several possibilities for choosing a coalition: (1) The
user makes a choice; (2) The first suitable coalition making
an offer automatically gets the job; (3) The choice follows
an optimisation rule, selecting the coalition with the lowest
number of modules, or the newest modules, or the one with
the shortest estimated processing time for the task at hand.

A coalition which has successfully offered its services
and has been accepted (that is, assigned the task) will then
determine its position within the layout. The first coalition
may choose at random (or start at a position defined by the
user), and the following coalitions will then join them, leaving
suitable distances between them and asking for the necessary
conveyor paths to be laid. Additional chemical reaction rules
apply for the layout. A full specification in Maude of the
chemical rules is available on request from the authors. For
more details about CHAM and Maude, see [12].

C. The Layout-Specific Assembly Instructions (LSAI)

For actually assembling the product, the GAP needs to
be transformed into Layout-Specific Assembly Instructions
(LSAI). This is done in collaboration between the order agents
(agents which represent the orders to be fulfilled) and the mod-
ule agents and based on the created layout. For transforming
the GAP into the LSAI, a rewriting mechanism [19] is applied.

The LSAI consist of executable instructions for the modules.
The instructions are generated for a certain layout; if the layout
is modified, these instructions must be changed. Figure 3
shows the example of an LSAI represented as a workflow,

based on the GAP in Figure 1. Coalition1 is composed of
robot1 and gripper1. In addition to the information contained
in the GAP, the LSAI also specifies the module(s) which
execute the tasks (actor). Additional tasks A and B assure the
transport between the loading / unloading and the assembly
(tasks 1, 2, 3 and 4). Tasks 2-1 and 3-1 provide the delivery
of the parts to be assembled.

At production time, the assembly of a product will result
from the execution of the LSAI by the agents/modules ac-
cording to the workflow, taking into account the policies for
self-management.

Both the GAP and the LSAI (see section II-C) must support
sequences of activities, parallel activities, free changes of state
from one activity to another, and changes of state controlled
by a condition. The workflow notation is currently used and
has already been tested without conditions controlling the
change of states. Workflows have been successfully used to
control an educational shopfloor kit (MOFA, see [13]). The
test was done by the means of a small agent program using
the Jade platform. An agent behaviour was created solely with
the purpose of executing the workflow. This behaviour was
inside every agent in the platform and every robotic module
was represented by an agent running its own workflow. Aside
from the modules agents, there were agents representing the
parts being processed, also with a workflow behaviour inside,
and their function was to run the workflow: to discover what
action was needed next and to send the corresponding part of
the workflow to be executed by a module agent. This approach,
with some minor changes, is used here at a first stage and will
be refined later. The changes will result from the conditions
that can exist between states, and from the possible attribution
of the part agent’s role to other agents.

D. Architecture

Figure 4(a) illustrates an abstract view of the architecture
for self-organisation and self-management. It is an agent-based
approach, where modules are agentified and provide skills in
the form of services. It has been adapted from MetaSelf [8] and
exploits metadata to support decision-making and adaptation
based on the dynamic enforcement of explicitly expressed
policies for self-management and rules for self-organisation.
Figures 4(b) and 4(c) illustrate the actual decentralised soft-
ware architecture at module and coalition level. Each module
/ coalition agent is equipped with metadata (information about
itself), a reasoning engine and local policies, and has access
to the whole ontology. The components, metadata, rules and
policies are all decoupled from each other and dynamically
updated (or changed).

Additional services to build the run-time infrastructure
encompass: a registry/broker that handles the service descrip-
tions and services requests supporting dynamic binding; an
acquisition and monitoring service for the self-* property
related metadata (e.g. performance); a registry that handles
rules and policies; a reasoning tool that matches metadata
values, rules and policies, and enforces the rules and policies
on the basis of metadata. Metadata is either directly modified
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Fig. 3. Example of an LSAI written as a workflow

(a) SO-EAS software architecture (b) Module level (c) Coalition level

Fig. 4.

by components or indirectly updated through monitoring.
Metadata and policies cause the reasoning tool to determine
whether or not an action must be taken.

III. IMPLEMENTATION

The implementation described in this section follows the
architecture detailed in section II.

A. The Jess rule engine

Jess2 is a rule engine written in Java which allows a
Java application to reason through a given set of rules and
facts. The Jess rule engine uses an enhanced version of the
Rete algorithm3, which is a very efficient pattern-matching
algorithm for implementing production rule systems.

In practical terms, this engine has to receive facts into a
so-called working memory. Facts are a way to know the status
of the outside world, and, according to these facts, the rules
(in our case: rules for self-organisation or policies for self-
management) fire if their conditions are met. Conflicting rules
are treated according to their priorities.

2http://www.jessrules.com
3http://www.jessrules.com/jess/docs/52/rete.html

B. The ontology

The ontology used for describing each of the modules was
not done from scratch; instead, extracts from the EUPASS
ontology [17] were adapted. The program being used to add
elements to the ontology is Protégé4, which creates OWL5

files used as an input for the application.
We added some new classes and properties to the ontology

primarily because many of the real characteristics of robotic
modules had not been included in the ontology before but
are now important for the rules. The addition of the missing
elements to the Eupass ontology was done according to robotic
module manufacturer websites and the modules’ data-sheets.
For the the ontology classes to be easier to use inside the
agents, they were converted to Java classes using a Protégé
capability do convert OWL to Java.

C. Agent architecture

To comply with the architecture (loosely coupled policies
and components), the agents representing manufacturing com-
ponents are generic: they have a common core behaviour
which may be adapted according to ontologies and rules

4http://protege.stanford.edu
5http://www.w3.org/TR/owl-features
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loaded at runtime as shown in Figure 5(a). Notice that in Jess
terms, rules refer to both rules and policies.

(a) Ontologies and rules are loaded
at run-time.

(b) Execution of rules in a JADE agent,
using JESS.

Fig. 5.

The agents themselves are programmed using JADE API.
Agents read ontologies, gather facts for the rule engine and
perform the actions the rule engine needs.

The ontologies are loaded using the Protégé generated Java
classes, giving an individual agent a set of properties during
runtime. This gives the agent the possibility to be reconfigured
each time a new ontology is loaded. The objective is to have
agents whose behaviours are guided by policies and rules. The
chosen agent architecture has been adapted from [16] and is
shown in Figure 5(b). Each agent has its own inference engine
in Jess that is in charge of its decisions according to the facts
that were inserted in it. This makes the agent changeable
at run-time instead of design time, which is a considerable
advantage.

Figure 5(b) illustrates the input the agent receives from
the outside world and its conversion into a fact to insert in
the Jess rule engine. This new fact may, on its own or in
combination with other facts, already present in the engine’s
working memory, cause the firing of a rule that was previously
loaded. In this case, the engine may emit an order to the agent
to execute an action on itself or on the outside world.

D. Internal functioning of the agents

In the current implementation, an agent is able to load an
ontology describing the module to which it is associated, and
a set of Jess rules. The description of the module is fed to the
agent in an OWL file. The agent reads the given OWL file
and creates the needed object with the help of the converted
ontology classes. This object is then inserted in the agent’s
working memory, so that inferences can be made for it in the
rule engine. An agent is also able to react with other agents
to create coalitions according to the rules that were loaded.

The current implementation works with Jade and Jess to
create reactions as described in section II-B. Reaction rules
are implemented with communication among the agents, ac-
cording to a FIPA compatible protocol. Each agent has its own
Jess rule engine to which are loaded a set of simple rules and
a set of simple facts. The currently supported facts are:

ThisAgent: Each created agent has one such fact to describe
itself in the rule engine. It is added to the agent’s working
memory during the initialisation.

NeighbourAgent: A single agent can have several facts of
this type to describe the surrounding agents. Each time an
agent is registered in the system, the other agents create a fact
of this type describing it.

ACLMessageExt: This is an extension to the ACLMessage6

class used in Jade. Each time an agent receives an ACLMes-
sage, it converts it to this type of fact and inserts it in the
working memory [16].

When the agents are launched in the agent platform, they
react with each other according to the rules for coalition
formation. A newly formed coalition is represented by a
newly created agent. Coalitions also register themselves in
Jade’s Directory Facilitator (DF). This is necessary because
the agents need to know of the existence of neighbour agents
in order to communicate; before they start reacting, they ask
the DF about other agents.

As previously stated, the rule engine may fire a rule when
a fact is added to its working memory. At this time, there
are only four simple rules in the rule engine. These rules will
make the agents react with each other, creating a new agent for
the coalition from this reaction. The communications follow
the FIPA protocol:

Propose rule: A single agent waits for a fact describing a
neighbour agent to be inserted in its working memory. When
this happens, this agent proposes a reaction to the other agent.

Accept Reaction rule: A single agent waits for a fact of the
type of ACLMessageExt that describes a reaction proposal. If
the agent is compatible with the reaction proposal (matching
skill or physical compatibility), this rule is fired, the agent
accepts the proposal and a new agent is created out of the
reaction of the two original agents.

Reject Reaction rule: A single agent waits for a fact of the
type of ACLMessageExt that describes a reaction proposal. If
the agent is not compatible with the reaction proposal, this
rule is fired, the agent rejects the proposal and no new agent
is created.

React rule: The proposing agent waits for a fact of the type
ACLMessageExt that describes a reaction acceptance. If this
rule is fired, the agent’s rule engine tells the agent itself to
create another coalition agent with the properties of both the
reacting parties.

The mechanism works as follows: one agent asks the DF
to know all the registered agents. The DF then adds their
descriptions (NeighbourAgent objects) to the rule engine. The
rule engine then checks to see if any rule can be triggered
by this. In our implementation this should fire the Propose
rule. This rule makes the agent send reaction proposals to all
other agents. When the other agents receive the message, they
convert it to an ACLMessageExt object for Jess compatibility
purposes and add it to their own engine. This should fire the
AcceptReaction rule or the RejectReaction rule, according to

6Agent Communication Language
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their compatibility. Both the rules cause the agents to respond
with either an Accept Proposal or a Reject Proposal. The
initiator agent receives the response and, if it is an Accept
Proposal, tries to create the coalition agent.

IV. DISCUSSION, CONCLUSION AND FURTHER WORK

This article presented the current implementation advances
for the concrete realisation of self-organising evolvable as-
sembly systems. An ontology was adapted for the current
needs and now contains relevant data about real instances of
grippers, robotic axes and feeders. The generic assembly plan
(GAP) and the layout-specific assembly instructions (LSAI)
were represented as workflows and written in XML, which is
an agent-readable format. Jade was integrated with Jess and
showed promising results. Agents with generic core behaviour,
which are sensitive to Jess rules, were defined in Jade. To
create coalitions, agent react with each other based on FIPA-
compatible communication. This is a first basis for further
implementation of the CHAM design.

The next steps include: adding data-sheet information about
more types of modules to the ontology; enabling the writing
of rules directly on the application interface; implementing
the functions needed to define the system layout; showing the
defined layout to the user; implementing the agent behaviours
that will execute the LSAI; deriving the LSAI from the GAP.
Future steps include: 2D or 3D visualisation of the modules
in a virtual room; acceptance of higher level policies such as
goal based policies and utility-function based policies.
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