
 

 

 

  
Abstract—This paper describes a decentralised car traffic 

control simulation based on re-routing of vehicles and local 

propagation of messages among traffic nodes (roads 

intersections and traffic lights). A genetic algorithm is used to 

identify parameters’ values governing the simulations. This 

paper reports on the one hand on convergence results of the 

genetic algorithm, and on the other hand on preliminary 

comparison results of the fittest solutions. 

 

I. INTRODUCTION 

Road congestion is a well known problem which affects both 

rural and urban areas. Different solutions are investigated 

from ways of increasing capacity of the roads (creating more 

lanes) to complete traffic management systems combining 

real-time acquisition of traffic decisions, design of decisions, 

and propagation of information to drivers. Usually, road 

congestion is monitored locally through cameras or sensors, 

traffic flow information is then sent to control centres, where 

decisions regarding traffic control are taken and the 

corresponding solutions are then sent back to the vehicles on 

the road (e.g. through traffic signals, alerting police, etc.). 

Even though control centres form an indisputable part of 

traffic management, the density of cars and the complexity of 

the whole system calls for complementary self-organising or 

decentralised solutions taking place locally at the roads level.  

We report here on an on-going work aiming at deriving 

different decentralised models and simulations car traffic 

control based on message propagation among neighbouring 

road elements such as roads intersection, traffic lights, or 

cars. The main goal is to maximise traffic throughput and 

minimise travel time of vehicles. Simulations are controlled 

by diverse parameters whose values are separately 

established by the help of a genetic algorithm. In a previous 

paper we reported on a first model based essentially on local 

propagation of speed-up and slow-down messages among 

road intersection [5]. A second model has been defined 

where messages occur among traffic light controllers and are 

requests for green or red lights. In addition to message 

 
 

propagation, this second model incorporates as well the 

notion of re-routing of vehicles when the waiting time is too 

long. This model and first results related to the convergence 

of the genetic algorithm up to 158 generations have been 

reported in [8]. In this paper, on the one hand we report on 

new convergence results of the genetic algorithm up to 312 

generations, yielding to the determination of two local 

optimum (fittest solutions), as well as on preliminary 

evaluation of performances of the fittest solutions.  On the 

other hand, we also discuss issues related to self-organisation 

and control of such systems in an actual environment.  
 The specificity of our different models lies both in the 

decentralised approach for traffic control, and in the large 

number of cars used to simulate traffic (over 15’000). This 

paper particularly focuses on high a decentralised model for 

high congestion rates (over 50%). 

Section II describes our model, while Section III describes 

the genetic algorithm used for optimising the model’s 

parameters. Section IV presents results related to the 

convergence of the genetic algorithm towards the fittest 

solution, and preliminary performance evaluation of the 

fittest solution when compared with random cases or put 

under different conditions (no re-routing, and increased 

traffic throughput). Section V mentions some related works, 

while Section VI discusses the feasibility of decentralised 

approaches in practice. 

II. CONTROL MODEL AND SIMULATION 

A. City and Model elements  

The city is modelled as a square grid of 20 nodes by 20, 

representing a 2km*2km city space.  The distance between 

nodes is set at 100 metres.  Nodes are road intersections and 

each node maintains a traffic light controller. A lane is a 

portion of road between two nodes and has a direction (8 

lanes are connected to each node). Even though there is 

currently no mapping to an actual city, such a grid can be 

adapted to a large variety of non-square grid cases, by just 

varying the length of the lanes, and by making some of them 

one way only. 

A whole simulation comprises 15'200 vehicles travelling 
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permanently in the city streets (corresponding to 50% traffic 

congestion), and 1'520 different interconnected lanes. 

Each simulation starts with 10 vehicles distributed at 

random across each lane.  Each vehicle then randomly 

targets a destination on the opposite side of the city and 

generates its optimum route. This provides some routes 

which are more congested than others from the beginning.  

The actual speed through the city has a maximum of 30 miles 

per hour (50km/h).  Vehicles try to move at this speed unless 

there is congestion. The simulation stops after 1’800 seconds 

of virtual time, i.e. one half-hour of activity. 

B. Control and Message propagation  

Traffic light controllers can communicate with each other 

and ask for green or red lights forward or downward lanes. 

Nodes cycle the traffic light (pass a token) between their 

inbound lanes, in order to grant them access to all outbound 

lanes.  Cars do not communicate with each other, but have 

the possibility to re-evaluate their routes when traffic is 

congested. 

   

1) Parameters 

Table 1 summarises the parameters used to control message 

propagations and re-routing in a decentralised way. Cars, 

nodes and lanes locally decide (on the basis of these 

parameters) when to re-route, grant access to roads, or 

request green lights.  

 
 1 2 3 4 5 6 7 

EvaluationTrigger 3% 6% 9% 12% 15% 18% 21% 

ResponseThreshold 20% 30% 40% 50% 60% 70% 80% 

RequestThreshold 20% 30% 40% 50% 60% 70% 80% 

RequestLimit 2 4 6 8 10 12 14 

Phase 0m 5m 10m 15m 20m 25m 30m 

 

Table 1: Parameter's Values 

  

EvaluationTrigger: tendency for vehicles to re-evaluate a 

route which is taking longer than initially planned to resolve.  

The parameter value represents the % of chances of re-

evaluating a journey which is perceived as running late. 

EvaluationTrigger is between 3% and 21% (3% increment).  

ResponseThreshold: propensity of nodes to respond 

positively to change the traffic signals. The parameter value 

represents a propensity between 20% and 80% (10% 

increment) that the target node will observe a response 

issued from a lane.  

RequestThreshold: propensity of lanes to raise a request 

to change traffic signals. It is a probability curve, with higher 

congestion leading to greater likelihood of request 

transmission. Values are the same as the ResponseThreshold 

parameter. 

RequestLimit: sets the number of requests that a node 

may ignore before a change becomes mandatory. It is an 

absolute value ranging from 2 to 14 (increment of 2) 

inclusive for the maximum number of cycles during which a 

lane's message may be ignored.   

Phase: influences the likelihood of a lane to cycle the 

token when no cars are within range of the intersection.  The 

Phase parameter determines the minimum distance from the 

intersection the foremost vehicle must be before the lane will 

ask to cycle the token.  The Phase parameter is an absolute 

value and represents a distance between 0 and 30 metres 

(increment of 5). If the next vehicle is beyond this distance 

from the target node (intersection) the lane will raise a 

request to change the signal. 

 

2) Message Propagation 

Messages propagate from lanes to forward and backward 

nodes.  Tokens are employed by nodes to permit an inbound 

lane access to its outbound lanes.  The token (i.e. the green 

light) is cycled through all inbound lanes one at a time. 

Lanes employ the use of messages in the simulation in an 

attempt to influence the node's control of the token. There 

are three types of message: 1. forward messages to cycle the 

token onwards (from green to red or from red to green); 2. 

backward messages to cycle to token onwards; and 3. ignore 

messages. Messages are raised in the five following 

situations: 

A lane sends messages forward when it detects that 

vehicles are stationary waiting for the green light, asking the 

forward node to cycle its token onwards, i.e. to rotate the 

green light towards the lane in order to allow the cars to 

leave the lane. 

A lane may also send messages backward when it detects 

that it is congested, asking the backward node to cycle its 

token onwards, i.e. to rotate the green light towards another 

lane in order to stop the flow of cars coming in.  

When no vehicle are within range of the intersection, the 

lane may send a forward message to the forward node asking 

it to cycle the token, i.e. to change from green light to red 

because no vehicle is ready to cross the intersection, or to 

ask for the red light in anticipation of the arrival of the car.  

When the vehicle at the head of a lane has a green light 

but is blocked because the lanes in front are congested, the 

lane sends a forward message to the forward node asking it 

to cycle the token, so that the first car will be prevented to 

block the intersection. 

Finally, a lane may also over-write a previous message at 

any time according to the latest prevailing conditions: ignore 

messages.  This includes cancellation messages to null out 

any previous change requests. 

C. Routes determination  

Each of the 15'200 vehicles evaluates its entire route prior to 

commencing its journey using a variation of the A*-

pathfinding algorithm [1].   

Whenever the EvaluationTrigger threshold is reached, the 

journey is likely to be re-evaluated from its current point to 

the route's endpoint.  
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Given the current position of the car, the A*-pathfinding 

algorithm needs to find a new route from that position to the 

destination point. The best route is the one that minimises the 

cost of going from the current point to the destination. 

According to the A*-pathfinding algorithm a route is scored 

according to the equation F = G + H, where G is the cost to 

go from the current position of the car to a certain node 

along the considered route, and H is the estimated cost to go 

from that node to the destination (See [8] for more details on 

this algorithm). Whenever a car decides to re-evaluate its 

route (based on the EvaluationTrigger parameter), the city 

infrastructure calculates the current best route based on local 

information provided by the different nodes. It then passes 

this information to the car.  

III. GENETIC ALGORITHM AND FITNESS FUNCTION  

15'200 vehicles permanently populate the streets and 

constantly undertake journeys during the evaluation period 

(vehicles start over a new journey when they have completed 

their current journey).  Fitter sets of genes values will permit 

more journeys to be undertaken during the 1800 seconds of 

simulation time. Therefore the solution with the most 

journeys completed is the fittest.  

A. Fitness Function 

The fitness function is defined as follows:  

 

Fitness Function = journeys*100 + avgspeed*10 . 

 

The value “journeys” represents the number of completed 

journeys. The value “avgspeed” represents the average of the 

speed of all the incomplete journeys. To differentiate 

between competing solutions (with the same number of 

completed journey), we also look at the set of current but 

incomplete journeys.   

B. Genetic Algorithm 

We evaluate an initial set of 49 individuals.  Once that set is 

evaluated we select candidate genes for reproduction, 

applying crossover and mutation to yield two child genes.  

These genes are then run through the simulation.  All 

genomes tested must be unique, i.e. we will not evaluate the 

same gene sequence more than once.  If genes prove fitter 

than the worst case currently maintained, it is added to the 

set of fittest candidates and the lowest performer is dropped 

from the gene-pool.  Our tests are concerned with two 

priorities: 1. to identify the fittest candidate from the 

simulations undertaken, and 2. to demonstrate convergence 

towards fitter solutions across the entire gene-pool.   

GA Genes. The five genes are EvaluationTrigger, 

RequestThreshold, ResponseThreshold, RequestLimit, and 

Phase. They have seven possible values, yielding a search 

space of 16’807 individual solutions.   

GA Initialisation. The GA starts with an initial set of 49 

candidates, chosen with middling gene values, at random 

between 3 and 5 inclusive (see Table 1).   

Crossover and Mutation. During reproduction we select 

two candidate genomes from the genepool using roulette-

wheel selection weighted by relative fitness.  A random point 

from the second to fourth gene is selected and two sub-

strands extracted from each parent creating two individual 

siblings.  We then subject the siblings to potential mutation. 

Mutation is set at 10% initially. When an attempt to add an 

individual fails, we increase the mutation rate by one to help 

to promote wider selection.  After each successful addition to 

the genepool, mutation is then reset to 10%. 

IV. EXPERIMENTS AND RESULTS 

As said previously, we reported in [8] results up to 158 

generations (for a total of 3315 simulations) obtained by 

running the genetic algorithm described above. This allowed 

us to find a first local optimum at generation 133. We 

continued further with the genetic algorithm, and we 

extended our results up to 312 generations. We performed in 

total 8094 simulations. A second local optimum, better than 

the first one according to the fitness function, has been 

discovered at generation 271.  The results presented here 

show first how the genetic algorithm converged towards the 

fittest solution, and how the two local optimums found 

during the two experiments behave under different 

conditions. In the rest of this paper we will refer to these 

local optimum as the 1
st
 and 2

nd
 optimum respectively. 

 

1) Global Result 

Table 2 shows at a global level how the two optimum 

compare with respect to the worst simulation encountered 

while running the genetic algorithm. We can see that there is 

about a 13% respectively 16% variation between worst and 

best case (1
st
 and 2

nd
 optimum) in terms of journeys made. 

 

  Fitness Journeys 

Minimum 2’454’721 24’546 
1

st
 Optimum 2’774’920 27’748 

2
nd

 Optimum  2’847’821 28’477 

Average 2’642’442 26’423 
Absolute Difference 

(1st optimum)   320’199        3’202 

Percentage Difference 13.04% 13.04% 
Absolute Difference 

(2
nd

 optimum) 393’100 3’931 
Percentage Difference 

(2
nd

 optimum)  16.01% 16.01% 

 

Table 2: Global Results 

 

2) Number of individuals per generation 

Significantly at higher generations, many more simulations 

had to be undertaken at increasing rates of mutation in order 

to find candidates fit enough to be added to the genepool.   
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Figure 1: Number of simulations per generation 

 

 Figure 1 shows the number of new individuals created at 

each generation. We can see that for the generations 120-

130, shortly before finding the first local optimum at 

generation 133, a high number of simulations have been 

performed. Our interpretation is that simulations are stuck in 

local minima around generation 120-130.   

generations max fitness linear trend

2580000
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2680000

2730000

2780000

2830000

2880000

1 14 27 40 53 66 79 92 105 118 131 144 157 170 183 196 209 222 235 248 261 274 287 300 313

 
Figure 2:  Max fitness function value per generation 

 

Once the local is found, at generation 133, the number of 

simulations then returns to low numbers until the 2
nd

 

optimum is found at generation 271. The number of 

simulations per generation then increases drastically 

demonstrating the difficulty of the algorithm to find a better 

optimum. The number of simulations per generation is in 

direct proportions to the mutation rate. The mutation rate 

increases regularly until a solution is found, this allows the 

system to go out of the local optimum area.  

Figure 2 shows two different aspects: first the genetic 

algorithm converges linearly towards the fittest solutions: the 

maximum fitness function found at each generation displays 

a linear trend progression. Second, by comparing Figure 1 

and 2, we can see the effect that mutation has on the 

simulations: each peak in Figure 2 corresponds to a local 

maximum in Figure 1.  

 

3) Convergence of genetic algorithm 

Figure 3 shows the progression of the average fitness 

function values at each generation (over the different 

individuals created at each generation). This figure shows 

that the average fitness value remains rather stable in the first 

part of the experiment (generations 0-158), i.e. around the 1
st
 

optimum we found; it then increases when the 2
nd

 optimum is 

found (generations 158-312) and remains stable again. The 

stability effect is due to the fact that there are large 

differences between minimum and maximum fitness values 

inside a given generation.  

Figure 3: Average fitness function value per generation 

 

4) Genes and Corresponding Parameters values 

Table 3 shows the actual values for the parameters defined in 

Section II.B.  

 

Fitness       

Genes EvalTrigger ReqThr RespThr ReqLimit Phase Fitness 

Gen 0 15 % 60 % 70 % 10 15m 2721821 

Gen 77 18 % 60 % 70% 10 15m 2672821 

Gen 156 3 % 50% 30% 10  15m 2736720 

Gen 234 3 % 50% 70% 14  15m 2776921 

Gen 312 3 % 60%) 50% 12 25m 2668921 

Overall     

Genes EvalTrigger ReqThr RespThr ReqLimit Phase Fitness 

Min 
(143) 9 % 70% 70% 10 30m 2454721 

1st Opt 
(133) 3 % 70% 70% 10 25m 2774920 

2nd Opt 
(271)  3 % 50% 50% 6  20m 2847821 

Table 3: Parameters’ values  

 

The first set of rows shows the gene values at different 

points of our experiments: generation 0 (random genes), 

generation 77 (middle of first experiments); generation 157 

at the end of the first experiment during which the 1
st
 

optimum has been found; generation 234 (middle of second 

series of experiments); and generation 312 (end of genetic 

algorithm). The second set of rows shows the exact genes 

values for the least fit individual (found at generation 143); 

1
st
 optimum at generation 133, and 2

nd
 optimum at 

generation 271. Generally a lower tendency to re-evaluate 

journeys tends to improve fitness (low values for the 

EvalTrigger gene).  In all cases, the Fitness column 

represents the maximum fitness value obtained for the 

corresponding generation. 

 

5) Performances of fittest solution 

Random solutions. We compared the two optimums against 

randomly generated routes and randomly generated solutions 

provided by Generation 0 (see Table 4).  Both solutions are 

significantly better than the average random case (first row 
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of Table 3). Compared with the maximum random case in 

Generation 0, the 1
st
 optimum is only slightly better, while 

the 2
nd

 optimum shows a significant improvement. This is in 

line with Figure 3 above showing that in average the 

progression towards fittest solutions occurs by steps and for 

a given step (0-157) or (157-312) the average values are 

rather stable and similar. 

 

  Journeys 

Gen 0 (avg) 25’987 
Gen 0 (max) 27’217 
1

st
 Optimum 27’748 

2
nd

 Optimum  28’477 

Table 4: Comparison with random solutions 

 

Message Propagation only. We slightly modified the 

simulation program in order to disable completely the re-

routing of vehicles (A*-pathfinding) and we ran the 

simulations for the two optimum we found. We kept the 

message propagation only. The simulations were governed 

by the parameters of Table 3 (except for the EvalTrigger, 

which was disabled). 

 

  
Journeys 

(with re-eval) 

Journeys 

(without re-eval) 

1
st
 Optimum 27’748 24’684 

2
nd

 Optimum  28’477 25’272 

Table 5: No re-routing  

 

As Table 5 shows, the total absence of re-routing causes 

the 1
st
 optimum to behave as badly as the worst case found 

(see Table 2, number of journeys for the Minimum case). 

The 2
nd

 optimum behaves slightly better, but still is much 

worse than its original version. The EvalTrigger parameter 

of both 1
st
 and 2

nd
 optimum is 0 (3%), which means that 

there the propensity of re-evaluation the cars re-routing is 

very low in fittest solutions (Table 3). As a conclusion of this 

experiment, we can say that a low re-evaluation rate is very 

beneficial to traffic control (as fittest solutions show), while 

no re-routing at all is detrimental. 

 

Higher congestion rates. In a second experiment, we 

increased the congestion rate from 50% to 75%. The two 

optimums have been executed with 19’000 vehicles roaming 

the city (instead of the original 15’200). Table 6 shows that 

in both cases, the result is similar to the average number of 

journeys throughout all the simulations (see row Average in 

Table 2). The explanation for this is that the genes have been 

optimised for 50% saturation and not 75%.   

 

  
Journeys 

(50% saturation) 

Journeys 

(75% saturation) 

1
st
 Optimum 27’748 26’791 

2
nd

 Optimum  28’477 26’727 

Table 6: 75% Saturation 

V. RELATED WORKS 

Swarm-based traffic control usually employs ant metaphor 

for inducing a decentralised traffic control. We can cite [2] 

who apply the pheromone metaphor to provide a 

decentralised traffic congestion prediction system: cars 

deposit pheromone along their route which is later retrieved 

by forthcoming cars. The amount of pheromone deposited 

depends on the speed of the car, and represents the density of 

traffic: low speed produces high concentrations of 

pheromone, while high speed produces low concentrations of 

pheromone. The amount of pheromone later retrieved by 

other cars provides an indication about traffic congestion and 

thus serves for short-time traffic predictions. The control 

model we propose provides both re-routing of vehicles and 

traffic light cycling. Communication is used only for traffic 

light cycling. Similarly [4] use the ant metaphor to 

communicate among cars and to provide a simulation of 

traffic dynamics in different scenarios. In this case, an 

additional evolutionary algorithm, including a swarm voting 

system for preferred traffic light timing, is introduced in 

order to minimise the average waiting time of vehicles. This 

work shares similarities to our model, it couples re-routing 

and traffic light timing, but uses the ant metaphor as the 

basic communication mechanism.  An ant-based system for 

decentralised re-routing is provided by [7]. It follows the 

AntNet algorithm. Artificial ants roam the network of streets 

and update routing tables at each node (road intersection) 

which serve for guiding cars. Data provided by cars 

themselves is also used to enrich the routing.  

Decentralised solutions, without message propagation, can 

be worth mentioning as well. De Oliveira et al. [3] use a 

reinforcement learning algorithm for updating the parameters 

of traffic light controllers at run-time in non-stationary 

environments, specifically studying individual drivers’ 

behaviours. This work focuses on individual traffic light 

controllers and how they can best learn and adapt themselves 

to on-going traffic condition. The model we propose does 

not include the possibility to update or change parameters at 

run-time - parameters are fixed for a whole simulation run - 

but considers cooperation among traffic light controllers 

(through exchange of messages). Rochner et al. [6] use a 

specific three-layer architecture, where the first layer acts as 

a "reflex" layer and sits at the level of the traffic light 

controllers: fixed durations, or variable phases based on 

traffic detectors information. The second layer is based on 

monitoring, experience and learning and acts on the 

parameters of the first layer: identified traffic situations are 

mapped to parameters of the first layer. The third layer is 

based on some planning concerns, and uses an internal 

simulation to help take decisions for unknown situations, by 

optimising the values of the parameters of the lower layers. 

The third layer works "off-line" contrarily to the first layer 

which is for decisions that have to be taken on the fly as 

congestion arises. This work focuses on individual traffic 

light controllers and provides a long-term run-time learning 
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capability.   

VI. DISCUSSION 

Self-organisation and impact on global traffic. This 

paper focuses specifically on high congestion rates. It must 

be noted that the journeys start at one end of the city and 

finish at the other end. As a result, the centre of the city is 

particularly congested. Both message propagations and re-

routing occur on a local basis, lanes locally decide to trigger 

messages asking for traffic light cycling, nodes locally 

decide whether or not grant access to such requests, and cars 

locally decide on whether or not take a new route. Message 

propagation serves to maximise throughput, by facilitating 

cooperation at junctions and preventing one route from 

dominating the signal.  The messages propagated from lanes 

to forward and backward nodes help to ameliorate local 

conditions.  Despite the heavily congested nature of the city 

during rush-hour we facilitate local variations in congestion 

through this mechanism. Route re-evaluation, occurring 

when the EvaluationTrigger is set, serves to better distribute 

traffic throughout the city by taking advantage of less-

congested laneways.  Messages have also an indirect impact 

on routing and re-evaluations.  As traffic builds up, lanes 

tend to restrict access to themselves, and request access to 

others.   

Feasibility of proposed model.  Routing techniques and 

on-board devices guiding drivers exist already. As we have 

seen in Section IV, the re-evaluation rate plays a significant 

role in the performance of the whole system. Therefore, such 

routing devices should take into account current road activity 

and be aware of the re-evaluation rate (e.g. it could be 

obtained when the car enters the city zone controlled by the 

corresponding parameters). Message propagations among 

traffic lights controllers would necessitate improved traffic 

lights controller bound with sensors measuring traffic 

activity and able to wirelessly communicate with their 

neighbours (other distant traffic light controllers).   

The genes (or parameters) chosen in this model are 

propensities; they are not hard threshold; they indicate a 

tendency to re-route or to send messages when a certain 

threshold is reached. Therefore, they do not tend to integrate 

sudden changes in the system, but smooth adaptations to the 

current conditions. 

Trustworthiness and control.  The major drawback or 

weakness of decentralised/self-organising solutions lies in 

the current lack of possibilities (in general) to prove or 

ensure that self-organising or purely decentralised algorithms 

are actually reliable. Simulations are at the moment the only 

verifications tool at our disposal; however more formal tools 

are necessary before decentralised solutions may be accepted 

and deployed at a large scale in the public. The second major 

weakness of decentralised solutions is related to top-down 

control that any traffic management centre would like to 

impose at some point. Different reasons support the need for 

high-level control of decentralised system: priority events, 

resetting the system, etc. When actually implementing and 

deploying decentralised solutions, hooks for propagation 

high-level control decisions down to the local nodes should 

be provided. 

VII. CONCLUSION 

This paper proposes a decentralised car traffic control 

combining both re-routing of vehicles and exchange of 

messages between lanes and traffic light controllers (asking 

for traffic light cycling). Focus is on highly congested city 

centres (over 50% of congestion). Parameters of the system 

are set up off-line by the use of a genetic algorithm. Results 

show that a small propensity to re-route vehicles is highly 

beneficial, i.e. deciding to re-route in 3% of the cases only is 

already sufficient, while no re-routing at all is detrimental.  

Future work will first consist in extending the current 

exchange of messages by introducing the notion of “cells”, 

where adjacent nodes spontaneously form or dismantle cells 

when they are in similar or different congestion conditions 

respectively. Nodes belonging to the same cells have then 

priority when requesting light cycling. Second, as most 

simulations of car traffic control, we are using a square grid 

of routes for modelling the city. Once, the simulation proves 

to be worthy in this "simplistic" case, it will be necessary to 

translate it into an actual car traffic schema. Finally, the 

models proposed consider fixed parameter values that allow 

the system to adapt to changing conditions within a fixed 

period of time (e.g. from 8am to 10am). In order to enhance 

the adaptability to unexpected traffic conditions, it is 

necessary to integrate into the model the possibility to 

change these parameters on the fly (e.g. combining instance 

message propagation with reinforcement learning). 
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