

Abstract—This paper describes a decentralised car traffic

control simulation based on re-routing of vehicles and local

propagation of messages among traffic nodes (roads

intersections and traffic lights). A genetic algorithm is used to

identify parameters’ values governing the simulations. This

paper reports on the one hand on convergence results of the

genetic algorithm, and on the other hand on preliminary

comparison results of the fittest solutions.

I. INTRODUCTION

Road congestion is a well known problem which affects both

rural and urban areas. Different solutions are investigated

from ways of increasing capacity of the roads (creating more

lanes) to complete traffic management systems combining

real-time acquisition of traffic decisions, design of decisions,

and propagation of information to drivers. Usually, road

congestion is monitored locally through cameras or sensors,

traffic flow information is then sent to control centres, where

decisions regarding traffic control are taken and the

corresponding solutions are then sent back to the vehicles on

the road (e.g. through traffic signals, alerting police, etc.).

Even though control centres form an indisputable part of

traffic management, the density of cars and the complexity of

the whole system calls for complementary self-organising or

decentralised solutions taking place locally at the roads level.

We report here on an on-going work aiming at deriving

different decentralised models and simulations car traffic

control based on message propagation among neighbouring

road elements such as roads intersection, traffic lights, or

cars. The main goal is to maximise traffic throughput and

minimise travel time of vehicles. Simulations are controlled

by diverse parameters whose values are separately

established by the help of a genetic algorithm. In a previous

paper we reported on a first model based essentially on local

propagation of speed-up and slow-down messages among

road intersection [5]. A second model has been defined

where messages occur among traffic light controllers and are

requests for green or red lights. In addition to message

propagation, this second model incorporates as well the

notion of re-routing of vehicles when the waiting time is too

long. This model and first results related to the convergence

of the genetic algorithm up to 158 generations have been

reported in [8]. In this paper, on the one hand we report on

new convergence results of the genetic algorithm up to 312

generations, yielding to the determination of two local

optimum (fittest solutions), as well as on preliminary

evaluation of performances of the fittest solutions. On the

other hand, we also discuss issues related to self-organisation

and control of such systems in an actual environment.
 The specificity of our different models lies both in the

decentralised approach for traffic control, and in the large

number of cars used to simulate traffic (over 15’000). This

paper particularly focuses on high a decentralised model for

high congestion rates (over 50%).

Section II describes our model, while Section III describes

the genetic algorithm used for optimising the model’s

parameters. Section IV presents results related to the

convergence of the genetic algorithm towards the fittest

solution, and preliminary performance evaluation of the

fittest solution when compared with random cases or put

under different conditions (no re-routing, and increased

traffic throughput). Section V mentions some related works,

while Section VI discusses the feasibility of decentralised

approaches in practice.

II. CONTROL MODEL AND SIMULATION

A. City and Model elements

The city is modelled as a square grid of 20 nodes by 20,

representing a 2km*2km city space. The distance between

nodes is set at 100 metres. Nodes are road intersections and

each node maintains a traffic light controller. A lane is a

portion of road between two nodes and has a direction (8

lanes are connected to each node). Even though there is

currently no mapping to an actual city, such a grid can be

adapted to a large variety of non-square grid cases, by just

varying the length of the lanes, and by making some of them

one way only.

A whole simulation comprises 15'200 vehicles travelling

Decentralised Car Traffic Control using

Message Propagation and Re-routing

Martin Kelly, Giovanna Di Marzo Serugendo

School of Computer Science and Information Systems

Birkbeck College, London

jkell01@dcs.bbk.ac.uk, dimarzo@dcs.bbk.ac.uk

Proceedings of the 2007 IEEE
Intelligent Transportation Systems Conference
Seattle, WA, USA, Sept. 30 - Oct. 3, 2007

MoD5.3

1-4244-1396-6/07/$25.00 ©2007 IEEE. 223

permanently in the city streets (corresponding to 50% traffic

congestion), and 1'520 different interconnected lanes.

Each simulation starts with 10 vehicles distributed at

random across each lane. Each vehicle then randomly

targets a destination on the opposite side of the city and

generates its optimum route. This provides some routes

which are more congested than others from the beginning.

The actual speed through the city has a maximum of 30 miles

per hour (50km/h). Vehicles try to move at this speed unless

there is congestion. The simulation stops after 1’800 seconds

of virtual time, i.e. one half-hour of activity.

B. Control and Message propagation

Traffic light controllers can communicate with each other

and ask for green or red lights forward or downward lanes.

Nodes cycle the traffic light (pass a token) between their

inbound lanes, in order to grant them access to all outbound

lanes. Cars do not communicate with each other, but have

the possibility to re-evaluate their routes when traffic is

congested.

1) Parameters

Table 1 summarises the parameters used to control message

propagations and re-routing in a decentralised way. Cars,

nodes and lanes locally decide (on the basis of these

parameters) when to re-route, grant access to roads, or

request green lights.

 1 2 3 4 5 6 7

EvaluationTrigger 3% 6% 9% 12% 15% 18% 21%

ResponseThreshold 20% 30% 40% 50% 60% 70% 80%

RequestThreshold 20% 30% 40% 50% 60% 70% 80%

RequestLimit 2 4 6 8 10 12 14

Phase 0m 5m 10m 15m 20m 25m 30m

Table 1: Parameter's Values

EvaluationTrigger: tendency for vehicles to re-evaluate a

route which is taking longer than initially planned to resolve.

The parameter value represents the % of chances of re-

evaluating a journey which is perceived as running late.

EvaluationTrigger is between 3% and 21% (3% increment).

ResponseThreshold: propensity of nodes to respond

positively to change the traffic signals. The parameter value

represents a propensity between 20% and 80% (10%

increment) that the target node will observe a response

issued from a lane.

RequestThreshold: propensity of lanes to raise a request

to change traffic signals. It is a probability curve, with higher

congestion leading to greater likelihood of request

transmission. Values are the same as the ResponseThreshold

parameter.

RequestLimit: sets the number of requests that a node

may ignore before a change becomes mandatory. It is an

absolute value ranging from 2 to 14 (increment of 2)

inclusive for the maximum number of cycles during which a

lane's message may be ignored.

Phase: influences the likelihood of a lane to cycle the

token when no cars are within range of the intersection. The

Phase parameter determines the minimum distance from the

intersection the foremost vehicle must be before the lane will

ask to cycle the token. The Phase parameter is an absolute

value and represents a distance between 0 and 30 metres

(increment of 5). If the next vehicle is beyond this distance

from the target node (intersection) the lane will raise a

request to change the signal.

2) Message Propagation

Messages propagate from lanes to forward and backward

nodes. Tokens are employed by nodes to permit an inbound

lane access to its outbound lanes. The token (i.e. the green

light) is cycled through all inbound lanes one at a time.

Lanes employ the use of messages in the simulation in an

attempt to influence the node's control of the token. There

are three types of message: 1. forward messages to cycle the

token onwards (from green to red or from red to green); 2.

backward messages to cycle to token onwards; and 3. ignore

messages. Messages are raised in the five following

situations:

A lane sends messages forward when it detects that

vehicles are stationary waiting for the green light, asking the

forward node to cycle its token onwards, i.e. to rotate the

green light towards the lane in order to allow the cars to

leave the lane.

A lane may also send messages backward when it detects

that it is congested, asking the backward node to cycle its

token onwards, i.e. to rotate the green light towards another

lane in order to stop the flow of cars coming in.

When no vehicle are within range of the intersection, the

lane may send a forward message to the forward node asking

it to cycle the token, i.e. to change from green light to red

because no vehicle is ready to cross the intersection, or to

ask for the red light in anticipation of the arrival of the car.

When the vehicle at the head of a lane has a green light

but is blocked because the lanes in front are congested, the

lane sends a forward message to the forward node asking it

to cycle the token, so that the first car will be prevented to

block the intersection.

Finally, a lane may also over-write a previous message at

any time according to the latest prevailing conditions: ignore

messages. This includes cancellation messages to null out

any previous change requests.

C. Routes determination

Each of the 15'200 vehicles evaluates its entire route prior to

commencing its journey using a variation of the A*-

pathfinding algorithm [1].

Whenever the EvaluationTrigger threshold is reached, the

journey is likely to be re-evaluated from its current point to

the route's endpoint.

224

Given the current position of the car, the A*-pathfinding

algorithm needs to find a new route from that position to the

destination point. The best route is the one that minimises the

cost of going from the current point to the destination.

According to the A*-pathfinding algorithm a route is scored

according to the equation F = G + H, where G is the cost to

go from the current position of the car to a certain node

along the considered route, and H is the estimated cost to go

from that node to the destination (See [8] for more details on

this algorithm). Whenever a car decides to re-evaluate its

route (based on the EvaluationTrigger parameter), the city

infrastructure calculates the current best route based on local

information provided by the different nodes. It then passes

this information to the car.

III. GENETIC ALGORITHM AND FITNESS FUNCTION

15'200 vehicles permanently populate the streets and

constantly undertake journeys during the evaluation period

(vehicles start over a new journey when they have completed

their current journey). Fitter sets of genes values will permit

more journeys to be undertaken during the 1800 seconds of

simulation time. Therefore the solution with the most

journeys completed is the fittest.

A. Fitness Function

The fitness function is defined as follows:

Fitness Function = journeys*100 + avgspeed*10 .

The value “journeys” represents the number of completed

journeys. The value “avgspeed” represents the average of the

speed of all the incomplete journeys. To differentiate

between competing solutions (with the same number of

completed journey), we also look at the set of current but

incomplete journeys.

B. Genetic Algorithm

We evaluate an initial set of 49 individuals. Once that set is

evaluated we select candidate genes for reproduction,

applying crossover and mutation to yield two child genes.

These genes are then run through the simulation. All

genomes tested must be unique, i.e. we will not evaluate the

same gene sequence more than once. If genes prove fitter

than the worst case currently maintained, it is added to the

set of fittest candidates and the lowest performer is dropped

from the gene-pool. Our tests are concerned with two

priorities: 1. to identify the fittest candidate from the

simulations undertaken, and 2. to demonstrate convergence

towards fitter solutions across the entire gene-pool.

GA Genes. The five genes are EvaluationTrigger,

RequestThreshold, ResponseThreshold, RequestLimit, and

Phase. They have seven possible values, yielding a search

space of 16’807 individual solutions.

GA Initialisation. The GA starts with an initial set of 49

candidates, chosen with middling gene values, at random

between 3 and 5 inclusive (see Table 1).

Crossover and Mutation. During reproduction we select

two candidate genomes from the genepool using roulette-

wheel selection weighted by relative fitness. A random point

from the second to fourth gene is selected and two sub-

strands extracted from each parent creating two individual

siblings. We then subject the siblings to potential mutation.

Mutation is set at 10% initially. When an attempt to add an

individual fails, we increase the mutation rate by one to help

to promote wider selection. After each successful addition to

the genepool, mutation is then reset to 10%.

IV. EXPERIMENTS AND RESULTS

As said previously, we reported in [8] results up to 158

generations (for a total of 3315 simulations) obtained by

running the genetic algorithm described above. This allowed

us to find a first local optimum at generation 133. We

continued further with the genetic algorithm, and we

extended our results up to 312 generations. We performed in

total 8094 simulations. A second local optimum, better than

the first one according to the fitness function, has been

discovered at generation 271. The results presented here

show first how the genetic algorithm converged towards the

fittest solution, and how the two local optimums found

during the two experiments behave under different

conditions. In the rest of this paper we will refer to these

local optimum as the 1
st
 and 2

nd
 optimum respectively.

1) Global Result

Table 2 shows at a global level how the two optimum

compare with respect to the worst simulation encountered

while running the genetic algorithm. We can see that there is

about a 13% respectively 16% variation between worst and

best case (1
st
 and 2

nd
 optimum) in terms of journeys made.

 Fitness Journeys

Minimum 2’454’721 24’546
1

st
 Optimum 2’774’920 27’748

2
nd

 Optimum 2’847’821 28’477

Average 2’642’442 26’423
Absolute Difference

(1st optimum) 320’199 3’202

Percentage Difference 13.04% 13.04%
Absolute Difference

(2
nd

 optimum) 393’100 3’931
Percentage Difference

(2
nd

 optimum) 16.01% 16.01%

Table 2: Global Results

2) Number of individuals per generation

Significantly at higher generations, many more simulations

had to be undertaken at increasing rates of mutation in order

to find candidates fit enough to be added to the genepool.

225

Average Fitness

24000

24500

25000

25500

26000

26500

27000

27500

28000

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301

simulations per generation

0

20

40

60

80

100

120

140

1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 229 241 253 265 277 289 301 313

Figure 1: Number of simulations per generation

 Figure 1 shows the number of new individuals created at

each generation. We can see that for the generations 120-

130, shortly before finding the first local optimum at

generation 133, a high number of simulations have been

performed. Our interpretation is that simulations are stuck in

local minima around generation 120-130.

generations max fitness linear trend

2580000

2630000

2680000

2730000

2780000

2830000

2880000

1 14 27 40 53 66 79 92 105 118 131 144 157 170 183 196 209 222 235 248 261 274 287 300 313

Figure 2: Max fitness function value per generation

Once the local is found, at generation 133, the number of

simulations then returns to low numbers until the 2
nd

optimum is found at generation 271. The number of

simulations per generation then increases drastically

demonstrating the difficulty of the algorithm to find a better

optimum. The number of simulations per generation is in

direct proportions to the mutation rate. The mutation rate

increases regularly until a solution is found, this allows the

system to go out of the local optimum area.

Figure 2 shows two different aspects: first the genetic

algorithm converges linearly towards the fittest solutions: the

maximum fitness function found at each generation displays

a linear trend progression. Second, by comparing Figure 1

and 2, we can see the effect that mutation has on the

simulations: each peak in Figure 2 corresponds to a local

maximum in Figure 1.

3) Convergence of genetic algorithm

Figure 3 shows the progression of the average fitness

function values at each generation (over the different

individuals created at each generation). This figure shows

that the average fitness value remains rather stable in the first

part of the experiment (generations 0-158), i.e. around the 1
st

optimum we found; it then increases when the 2
nd

 optimum is

found (generations 158-312) and remains stable again. The

stability effect is due to the fact that there are large

differences between minimum and maximum fitness values

inside a given generation.

Figure 3: Average fitness function value per generation

4) Genes and Corresponding Parameters values

Table 3 shows the actual values for the parameters defined in

Section II.B.

Fitness

Genes EvalTrigger ReqThr RespThr ReqLimit Phase Fitness

Gen 0 15 % 60 % 70 % 10 15m 2721821

Gen 77 18 % 60 % 70% 10 15m 2672821

Gen 156 3 % 50% 30% 10 15m 2736720

Gen 234 3 % 50% 70% 14 15m 2776921

Gen 312 3 % 60%) 50% 12 25m 2668921

Overall

Genes EvalTrigger ReqThr RespThr ReqLimit Phase Fitness

Min
(143) 9 % 70% 70% 10 30m 2454721

1st Opt
(133) 3 % 70% 70% 10 25m 2774920

2nd Opt
(271) 3 % 50% 50% 6 20m 2847821

Table 3: Parameters’ values

The first set of rows shows the gene values at different

points of our experiments: generation 0 (random genes),

generation 77 (middle of first experiments); generation 157

at the end of the first experiment during which the 1
st

optimum has been found; generation 234 (middle of second

series of experiments); and generation 312 (end of genetic

algorithm). The second set of rows shows the exact genes

values for the least fit individual (found at generation 143);

1
st
 optimum at generation 133, and 2

nd
 optimum at

generation 271. Generally a lower tendency to re-evaluate

journeys tends to improve fitness (low values for the

EvalTrigger gene). In all cases, the Fitness column

represents the maximum fitness value obtained for the

corresponding generation.

5) Performances of fittest solution

Random solutions. We compared the two optimums against

randomly generated routes and randomly generated solutions

provided by Generation 0 (see Table 4). Both solutions are

significantly better than the average random case (first row

226

of Table 3). Compared with the maximum random case in

Generation 0, the 1
st
 optimum is only slightly better, while

the 2
nd

 optimum shows a significant improvement. This is in

line with Figure 3 above showing that in average the

progression towards fittest solutions occurs by steps and for

a given step (0-157) or (157-312) the average values are

rather stable and similar.

 Journeys

Gen 0 (avg) 25’987
Gen 0 (max) 27’217
1

st
 Optimum 27’748

2
nd

 Optimum 28’477

Table 4: Comparison with random solutions

Message Propagation only. We slightly modified the

simulation program in order to disable completely the re-

routing of vehicles (A*-pathfinding) and we ran the

simulations for the two optimum we found. We kept the

message propagation only. The simulations were governed

by the parameters of Table 3 (except for the EvalTrigger,

which was disabled).

Journeys

(with re-eval)

Journeys

(without re-eval)

1
st
 Optimum 27’748 24’684

2
nd

 Optimum 28’477 25’272

Table 5: No re-routing

As Table 5 shows, the total absence of re-routing causes

the 1
st
 optimum to behave as badly as the worst case found

(see Table 2, number of journeys for the Minimum case).

The 2
nd

 optimum behaves slightly better, but still is much

worse than its original version. The EvalTrigger parameter

of both 1
st
 and 2

nd
 optimum is 0 (3%), which means that

there the propensity of re-evaluation the cars re-routing is

very low in fittest solutions (Table 3). As a conclusion of this

experiment, we can say that a low re-evaluation rate is very

beneficial to traffic control (as fittest solutions show), while

no re-routing at all is detrimental.

Higher congestion rates. In a second experiment, we

increased the congestion rate from 50% to 75%. The two

optimums have been executed with 19’000 vehicles roaming

the city (instead of the original 15’200). Table 6 shows that

in both cases, the result is similar to the average number of

journeys throughout all the simulations (see row Average in

Table 2). The explanation for this is that the genes have been

optimised for 50% saturation and not 75%.

Journeys

(50% saturation)

Journeys

(75% saturation)

1
st
 Optimum 27’748 26’791

2
nd

 Optimum 28’477 26’727

Table 6: 75% Saturation

V. RELATED WORKS

Swarm-based traffic control usually employs ant metaphor

for inducing a decentralised traffic control. We can cite [2]

who apply the pheromone metaphor to provide a

decentralised traffic congestion prediction system: cars

deposit pheromone along their route which is later retrieved

by forthcoming cars. The amount of pheromone deposited

depends on the speed of the car, and represents the density of

traffic: low speed produces high concentrations of

pheromone, while high speed produces low concentrations of

pheromone. The amount of pheromone later retrieved by

other cars provides an indication about traffic congestion and

thus serves for short-time traffic predictions. The control

model we propose provides both re-routing of vehicles and

traffic light cycling. Communication is used only for traffic

light cycling. Similarly [4] use the ant metaphor to

communicate among cars and to provide a simulation of

traffic dynamics in different scenarios. In this case, an

additional evolutionary algorithm, including a swarm voting

system for preferred traffic light timing, is introduced in

order to minimise the average waiting time of vehicles. This

work shares similarities to our model, it couples re-routing

and traffic light timing, but uses the ant metaphor as the

basic communication mechanism. An ant-based system for

decentralised re-routing is provided by [7]. It follows the

AntNet algorithm. Artificial ants roam the network of streets

and update routing tables at each node (road intersection)

which serve for guiding cars. Data provided by cars

themselves is also used to enrich the routing.

Decentralised solutions, without message propagation, can

be worth mentioning as well. De Oliveira et al. [3] use a

reinforcement learning algorithm for updating the parameters

of traffic light controllers at run-time in non-stationary

environments, specifically studying individual drivers’

behaviours. This work focuses on individual traffic light

controllers and how they can best learn and adapt themselves

to on-going traffic condition. The model we propose does

not include the possibility to update or change parameters at

run-time - parameters are fixed for a whole simulation run -

but considers cooperation among traffic light controllers

(through exchange of messages). Rochner et al. [6] use a

specific three-layer architecture, where the first layer acts as

a "reflex" layer and sits at the level of the traffic light

controllers: fixed durations, or variable phases based on

traffic detectors information. The second layer is based on

monitoring, experience and learning and acts on the

parameters of the first layer: identified traffic situations are

mapped to parameters of the first layer. The third layer is

based on some planning concerns, and uses an internal

simulation to help take decisions for unknown situations, by

optimising the values of the parameters of the lower layers.

The third layer works "off-line" contrarily to the first layer

which is for decisions that have to be taken on the fly as

congestion arises. This work focuses on individual traffic

light controllers and provides a long-term run-time learning

227

capability.

VI. DISCUSSION

Self-organisation and impact on global traffic. This

paper focuses specifically on high congestion rates. It must

be noted that the journeys start at one end of the city and

finish at the other end. As a result, the centre of the city is

particularly congested. Both message propagations and re-

routing occur on a local basis, lanes locally decide to trigger

messages asking for traffic light cycling, nodes locally

decide whether or not grant access to such requests, and cars

locally decide on whether or not take a new route. Message

propagation serves to maximise throughput, by facilitating

cooperation at junctions and preventing one route from

dominating the signal. The messages propagated from lanes

to forward and backward nodes help to ameliorate local

conditions. Despite the heavily congested nature of the city

during rush-hour we facilitate local variations in congestion

through this mechanism. Route re-evaluation, occurring

when the EvaluationTrigger is set, serves to better distribute

traffic throughout the city by taking advantage of less-

congested laneways. Messages have also an indirect impact

on routing and re-evaluations. As traffic builds up, lanes

tend to restrict access to themselves, and request access to

others.

Feasibility of proposed model. Routing techniques and

on-board devices guiding drivers exist already. As we have

seen in Section IV, the re-evaluation rate plays a significant

role in the performance of the whole system. Therefore, such

routing devices should take into account current road activity

and be aware of the re-evaluation rate (e.g. it could be

obtained when the car enters the city zone controlled by the

corresponding parameters). Message propagations among

traffic lights controllers would necessitate improved traffic

lights controller bound with sensors measuring traffic

activity and able to wirelessly communicate with their

neighbours (other distant traffic light controllers).

The genes (or parameters) chosen in this model are

propensities; they are not hard threshold; they indicate a

tendency to re-route or to send messages when a certain

threshold is reached. Therefore, they do not tend to integrate

sudden changes in the system, but smooth adaptations to the

current conditions.

Trustworthiness and control. The major drawback or

weakness of decentralised/self-organising solutions lies in

the current lack of possibilities (in general) to prove or

ensure that self-organising or purely decentralised algorithms

are actually reliable. Simulations are at the moment the only

verifications tool at our disposal; however more formal tools

are necessary before decentralised solutions may be accepted

and deployed at a large scale in the public. The second major

weakness of decentralised solutions is related to top-down

control that any traffic management centre would like to

impose at some point. Different reasons support the need for

high-level control of decentralised system: priority events,

resetting the system, etc. When actually implementing and

deploying decentralised solutions, hooks for propagation

high-level control decisions down to the local nodes should

be provided.

VII. CONCLUSION

This paper proposes a decentralised car traffic control

combining both re-routing of vehicles and exchange of

messages between lanes and traffic light controllers (asking

for traffic light cycling). Focus is on highly congested city

centres (over 50% of congestion). Parameters of the system

are set up off-line by the use of a genetic algorithm. Results

show that a small propensity to re-route vehicles is highly

beneficial, i.e. deciding to re-route in 3% of the cases only is

already sufficient, while no re-routing at all is detrimental.

Future work will first consist in extending the current

exchange of messages by introducing the notion of “cells”,

where adjacent nodes spontaneously form or dismantle cells

when they are in similar or different congestion conditions

respectively. Nodes belonging to the same cells have then

priority when requesting light cycling. Second, as most

simulations of car traffic control, we are using a square grid

of routes for modelling the city. Once, the simulation proves

to be worthy in this "simplistic" case, it will be necessary to

translate it into an actual car traffic schema. Finally, the

models proposed consider fixed parameter values that allow

the system to adapt to changing conditions within a fixed

period of time (e.g. from 8am to 10am). In order to enhance

the adaptability to unexpected traffic conditions, it is

necessary to integrate into the model the possibility to

change these parameters on the fly (e.g. combining instance

message propagation with reinforcement learning).

REFERENCES

[1] http://www.policyalmanac.org/games/aStarTutorial.htm.

[2] Y. Ando et al. “Pheromone Model: Application to Traffic Congestion

Prediction”. In Engineering Self-Organising Systems, volume 3910 of

LNAI, pages 182--196. Springer-Verlag, 2005.

[3] D. de Oliveira et al. “Reinforcement Learning-based Control of

Traffic Lights in Non-Stationary Environments: A Case Study in a

Microscopic Simulator”. In Fourth European Workshop on Multi-

Agent Systems (EUMAS'06), 2006.

[4] R. Hoar, J. Penner, and C. Jacob. “Evolutionary Swarm Traffic: If Ant

Roads Had Traffic Lights”. In Congress on Evolutionary

Computation (CEC'02), pages 1910--1915. IEEE, 2002.

[5] M. Kelly and G. Di Marzo Serugendo. “A Decentralised Car Traffic

Control System Simulation Using Local Message Propagation

Optimised with a Genetic Algorithm”. In Engineering Self-

Organising Systems, volume 4335 of LNAI, pages 192--210.

Springer-Verlag, 2007.

[6] F. Rochner et al. “An Organic Architecture for Traffic Light

Controllers”. In Informatik 2006 - Informatik fur Menschen, volume

P-93 of Lecture Notes in Informatics, pages 120--127. Kollen Verlag,

2006.

[7] B. Tatomir, L. Rothkrantz. “Dynamic Traffic Routing Using Ant

Based Control”. In IEEE International Conference on Systems, Man

and Cybernetics, pp. 3970-3975, vol. 4, 2004

[8] M. Kelly and G. Di Marzo Serugendo. “Decentralised Car Traffic

Control Simulation Using Message Propagation Optimised with a

Genetic Algorithm”. In IEEE Congress in Evolutionary Computation

(CEC 2007), in press, 2007.

228

