
ORIGINAL RESEARCH

Ambient intelligence in self-organising assembly systems using
the chemical reaction model

Regina Frei • Giovanna Di Marzo Serugendo •

Traian Florin S, erbănut,ă

Received: 8 December 2009 / Accepted: 7 May 2010 / Published online: 16 June 2010

� Springer-Verlag 2010

Abstract This article discusses self-organising assembly

systems (SOAS), a type of assembly systems that (1) par-

ticipate in their own design by spontaneously organising

themselves in response to the arrival of a product order and

(2) manage themselves during production. SOAS address

the industry’s need for agile manufacturing systems to be

highly responsive to market dynamics. Manufacturing

systems need to be easily and rapidly changeable, but sys-

tem re-engineering/reconfiguration and especially their

(re-)programming are manual, work-intensive and error-

prone procedures. With SOAS, we try to facilitate this by

giving the systems gradually more self-* capabilities.

SOAS eases the work of the SOAS designer and engineer

when designing such as system for a specific product, and

supports the work of the SOAS operator when supervising

the system during production. SOAS represent an applica-

tion domain of ambient intelligence and humanised com-

puting which is not frequently considered, but therefore

none the less important. This article explains how an SOAS

produces its own design as the result of a self-organising

process following the Chemical Abstract Machine (CHAM)

paradigm: industrial robots self-assemble according to

specific chemical rules in response to a product order. This

paper reports on SOAS in general, the specification of the

chemical reactions and their simulation in Maude.

Keywords Self-organisation � Evolvable assembly

systems � Chemical reaction model

1 Introduction

Suppliers of automation technology provide industrial

manufacturing companies with components (called mod-

ules in this article) such as electric drives, valves, grippers,

or motors. The manufacturing companies, active in areas

such as consumer electronics, watches industry, food and

package industry, or medical equipments, purchase these

components for building robotic assembly systems to

manufacture products for their own consumers.

Over the years, the needs of manufacturing companies

have evolved. In the era of mass production, industry

produced large quantities of an identical product as rapidly

and as cheaply as possible. It was then worth paying the big

investments for custom-made installations, which would be

disposed of once the product was out of production.

Today, the market tends increasingly towards mass

customisation, with consumers individually selecting from

various product options. Therefore, manufacturing compa-

nies now increasingly need agile robotic assembly systems

able to cope with dynamic production conditions dictated

by frequent changes, low volumes and many variants. There

This work was developed while Regina Frei received a PhD grant

from the Portuguese Foundation for Science and Technology (SFRH/

BD/38608/2007); she currently receives a post-doc grant from the

Swiss National Science Foundation.

R. Frei (&) � G. Di Marzo Serugendo

Birkbeck College, University of London, Malet Street,

London WC1E 7HX, UK

e-mail: work@reginafrei.ch

G. Di Marzo Serugendo

e-mail: dimarzo@dcs.bbk.ac.uk

T. F. S, erbănut,ă

Formal Systems Laboratory, Department of Computer Science,

University of Illinois at Urbana-Champaign,

2111A Siebel Center, 201 N. Goodwin,

Urbana, IL 61801, USA

e-mail: tserban2@illinois.edu

123

J Ambient Intell Human Comput (2010) 1:163–184

DOI 10.1007/s12652-010-0016-0

is an accrued awareness in industry that manufacturing

systems need to be quickly reconfigurable, have to follow a

plug and play approach, avoiding time- and work-intensive

re-programming and maintaining productivity under per-

turbations and failures. Companies are increasingly rec-

ognising the advantages of using software agents in

manufacturing control systems, where the agents are either

pure software agents which are in charge of scheduling

tasks, for instance, or are associated with a physical body,

that is a robot or a robotic module of a manufacturing

system.

Current practice in manufacturing industry does not

consider self-* properties at all. Research approaches in the

area of changeable manufacturing systems follow various

directions: flexibility and reconfigurability concerning pre-

planned changes and easy integration of new components

(Koren et al. 1999; ElMaraghy 2006); agentified modules

for mini-systems containing all the information they need

for their execution (Hollis et al. 2003; Hanisch and Munz

2008); bio-inspired techniques such as holonic architec-

tures for optimising shop-floor production (Valckenaers

and Van Brussel 2005) or DNA-inspired techniques where

the product to be assembled contains the knowledge about

how it must be assembled (similar to DNA information)

(Ueda 2006); exploiting autonomous software agents for

coping with changes during production (Ferrarini et al.

2006), dynamic agent coalitions for production planning

(Pechoucek et al. 2000), or for learning how to coordinate

and adapt to production (Shen et al. 1998).

These approaches do not consider the mutual interrela-

tions between product, processes and systems. These

interrelations are of major importance to assure the agility

of manufacturing systems, as argued for instance in (Onori

2002), because any change in the product impacts the

assembly processes, which in turn impact the assembly

system, and vice-versa. Furthermore, from an engineering

point of view, the assembly layout structure is designed

manually and individual robots (modules) programs are

still written manually. The (re-)engineering of assembly

systems and the programming of the robots are error-prone

and very time-consuming procedures when compared with

the exploitation time of the so obtained system. The situ-

ation is even more exacerbated when product life-cycles

are getting shorter. Any reduction or simplification of the

system design and programming will facilitate the system’s

reconfiguration and agility. To address the mutual interre-

lations between product, processes and systems, and to ease

designer’s task, the main requirement of an SOAS is to

actively participate to its own design and management, and

to some extent even influence the design of the product

itself. This paper proposes to equip assembly systems with

self-* capabilities that let them participate in their own

design and become gradually more autonomous, and thus

easier to manage from the user’s (designer or operator)

point of view (Frei 2010). To this end, we use the Chemical

Abstract Machine paradigm.

1.1 Research on evolvable and self-organising

assembly systems

Our research is part of a series of works initially started by

Onori (Onori 2002) who coined the term Evolvable

Assembly Systems (EAS) to refer to assembly systems that

can seamlessly adapt to changing product requirements and

assembly processes. Research around evolvable assembly

systems advances in various directions:

– Agent-based technologies: A multi-agent shopfloor

control system has been developed with all modules

of the shop-floor agentified and coordinating their work

during production (Barata 2005; Barata et al. 2006a).

The use of agent-based architectures for EAS was

compared with the use of service-oriented architectures,

modules offer their skills under the form of services

(Ribeiro et al. 2008a). Dynamic coalitions (Frei et al.

2008b) have been defined that allow the modules to

spontaneously create and change coalitions, as well as

to request other modules to join them in order to satisfy

all requirements of a task to be fulfilled. Notice that

coalitions in assembly systems are closely related to

those investigated in virtual enterprises and collabora-

tive networks (Barata and Camarinha-Matos 2003;

Camarinha-Matos et al. 2009), where also chemical

programming has been introduced (Arenas et al. 2009).

– Ontologies and specifications: EAS ontologies were

developed for products, processes and systems (Lohse

et al. 2005, 2006; Lohse 2007); for a consumer elec-

tronics industrial test case (Maffei and Rossi 2007), and

for controlling production (Ribeiro et al. 2008b). To

better specify the interfaces between system modules,

the intermodular receptacle (a specific interface for EAS

modules) (Adamietz 2007) was defined, as well as

blueprints for module descriptions (Siltala et al. 2009).

– Roadmaps and the EUPASS project: Directions for

further research in adaptive assembly technology were

formulated (Barata et al. 2006b). Within the EUPASS

project1 (Onori et al. 2008), numerous academic and

industrial partners made EAS advance towards indus-

trial deployment of evolvable assembly (Semere et al.

2007), which goes hand-in-hand with our work.

– Diagnosis: Evolvable diagnosis (Barata et al. 2007b, c)

has been investigated, as well as the suitability of

service-oriented architectures for EAS diagnosis

(Barata et al. 2007a).

1 http://www.hitech-projects.com/euprojects/eupass/index.htm

164 R. Frei et al.

123

http://www.hitech-projects.com/euprojects/eupass/index.htm

– Self-* properties and emergence: The possibility of

emergent behaviour in EAS was investigated (Barata

and Onori 2006), a proposal for self-reconfigurabililty

of the assembly system has been proposed (Maffei

et al. 2009). SOAS belong to this direction of research,

and will be detailed below.

These works have investigated the notion of Evolvable

Assembly Systems under different complementary angles

(ontology, diagnosis, dynamic coalitions, etc.).

Our contribution to this body of work consists of actually

including self-* principles (self-organisation and self-man-

agement) both in the design of assembly systems and in their

control during production. More precisely, we consider a

design of assembly systems that follows a self-organising

mechanism, and a control at production time based on self-

managing tasks (such as modules monitoring themselves

and their neighbours and applying appropriate policies if

necessary). Results so far include a preliminary concept for

self-organising and self-managing assembly systems (Frei

et al. 2008a); an architecture for production control through

self-management (Frei et al. 2009a); and preliminary

implementation work using Jade and Jess (Frei et al. 2010).

For further details on self-organising assembly systems and

their background refer to the above-cited literature and (Frei

2010), where also verification and validation are discussed.

This article details exclusively the design of assembly

systems following a self-organising mechanism inspired by

chemical reactions. This will facilitate the work of designers

and engineers when creating systems, and prepare the grounds

for easing their re-engineering/reconfiguration when receiv-

ing new orders or when facing failures and disturbances. This

article does not discuss production time, that is, when the

robots are self-managing while assembling products.

The self-organising process is triggered by the arrival of

a product order: the system’s modules spontaneously select

each other (suitable or preferred partners) and their position

in the assembly system layout. They also derive their own

micro-instructions for robot movements. The result of this

self-organising process is a new or reconfigured assembly

system that will assemble the ordered product. In the ter-

minology of self-organising systems, the appropriate

assembly system emerges from the self-organisation pro-

cess—there is no central entity, modules progressively

aggregate to each other in order to fulfil the product order.

We use the CHAM paradigm (detailed in Sect. 3) for

expressing the self-organisation rules: chemical reactions

‘‘fire’’ whenever a module has the appropriate skill(s) to

perform one of the tasks specified in the product order (e.g.

holding a screw of specified dimensions and screwing it by

rotational movements) and whenever two modules have

compatible interfaces (e.g. one holding the other and pro-

viding additional movements).

1.1.1 Organisation of this article

Section 2 presents assembly systems and how they relate to

ambient intelligence. Section 3 briefly presents the chem-

ical reaction model and its interest for self-organising

systems. Section 4 details the concept, architecture and

infrastructure of self-organising assembly systems. Section

5 explains the rule modelling according to the chemical

reaction model, while Sect. 6 reports on the specification

and simulation work done in Maude. Section 7 briefly

discusses the Wermelinger properties of our Maude and

CHAM application, and finally, Sect. 8 concludes this

article.

2 Ambient intelligence and assembly systems

2.1 Assembly systems and modules

A product is composed of parts assembled in a specified

way, either by human hands or by robots in an assembly

system (Frei et al. 2008a), which is an industrial installa-

tion able to receive parts and join them in a coherent way

to form the final product. An assembly system consists of

a set of equipment items (modules or manufacturing

resource agents (MRAs)) such as conveyors, pallets, simple

robotic axes for translation and rotation as well as more

sophisticated industrial robots, grippers, sensors of various

types, etc. [for details see (Frei et al. 2006) or (Frei 2010)].

Basic module types which are needed for executing

assembly operations are as follows (see Figs. 1a and 2): An

axis is a module which can execute a movement along or

around a certain direction (axis). A gripper is a device

which is mounted on an axis and allows a part to be

grabbed, either with its fingers (mostly 2–3 of them), by

aspirating it or by activating an electric magnet. A feeder is

a device which receives the parts to be assembled and puts

them at disposal of the respective modules which will treat

them. For instance, tape rolls are contained in a tube and

pushed upwards, where a robot can grip them. In case of

screws, they are put into a vibrating bowl (see Fig. 1a),

which - due to the vibrations - delivers them well-aligned

on a rail, where a robot can pick them up. A conveyor is a

typically linear transportation device consisting of several

modules which can be arranged to move work-piece car-

riers, or sometimes loose parts. Other instances of conveyor

modules are corner units and T-junctions.

2.2 Evolvable and self-organising assembly systems

An evolvable assembly system (EAS) is an assembly system

which can co-evolve together with the product and the

assembly processes; it can continuously and dynamically

Self-organising assembly systems using the chemical reaction model 165

123

undergo modifications of varying importance—from small

adaptations to big changes. Product, production processes

and assembly systems are intrinsically related to each

other, as illustrated in Fig. 1b. Each product belongs to a

certain product class (Semere et al. 2008), where a pro-

duction process means a coherent suite of assembly oper-

ations which lead to the finished product by assembling a

set of parts. Production processes, the product design and

the assembly system are intimately linked. Any change in

the product design has an impact on the processes to apply

and on the actual assembly system to use. Similarly, any

change in a process (for instance replacing a rivet by a

screw) may imply a change in the product design, and

certainly has an impact on the assembly system to use. This

vision encompasses seamless integration of new modules

independently of their brand or model. Modules carry tiny

controllers for local intelligence. Thanks to software

wrappers, every module is an agent, forming a homoge-

neous society with the others, despite their original heter-

ogeneity (nature, type and vendor). Several modules

dynamically group to form coalitions offering composite

skills. For instance, a gripper alone can only seize and

release parts (simple skills: ‘‘open’’ and ‘‘close’’), when it

combines with a linear axis, together they can seize a part

and move it a long a linear axis (composite skill: ‘‘pick and

place’’). Additionally, grippers need to be hold by another

module in order to work, as illustrated on Fig. 2.

Self-organising assembly systems (SOAS) are a specific

category of evolvable assembly systems where first, a self-

organisation process supports the modules in creating the

assembly system: in response to an incoming product

order, modules progressively select their own partners and

their location in a layout; and second, the so obtained

assembly system self-manages during production time.

Each module carries information about its physical real-

ity, especially its workspace (the portion of the space that the

module uses when in action/that is accessible by the module),

its interfaces and its skills (the capabilities of the module).

2.3 Ambient intelligence in self-organising assembly

systems

Ambient intelligence (ISTAG 2001, 2003) refers to elec-

tronic systems that are sensitive and responsive to the

presence of people. They are usually embedded in the

everyday environment, context-aware, personalised, adap-

tive or anticipatory to changes in the environment.

In the area of manufacturing and assembly, a product

designer traditionally provides a design of the product, this

is an assembly sequence technically describing how to join

the products parts and in which order. He/she then hands it

to the engineer in charge of building the appropriate

assembly system. The engineer, with his/her know-how,

builds an appropriate assembly system: he/she selects

a series of modules or complete robots, decides their

arrangement in the shop-floor layout, connects them phys-

ically and programs their specific movements. The resulting

assembly system is dedicated to building the specified

product and runs under central control. A human operator

monitors the system, its performance and the quality of

products. The system is equipped with security features that

stop the system in case of critical failures. The operator

must then find out what went wrong and how to fix it.

Evolvable and self-organising assembly systems revisit

this way of building systems and demonstrate Ambient

Intelligence features and responsiveness to people along

the following three lines:

– Product requirement and link with the product

designer. A new assembly sequence, provided by the

product designer, triggers a self-organising process

among the different modules available either from the

Fig. 1 Aspects of assembly

systems

Fig. 2 A robot composed of three modules (z-axis, x-axis and

gripper), manipulating part 1 on the carrier, which is on the conveyor

166 R. Frei et al.

123

storage or already positioned on the shop-floor. The

modules spontaneously organise into appropriate coali-

tions (groups of modules) to fulfill the tasks specified in

the assembly sequence. According to the Evolvable

Assembly System paradigm (Onori 2002), the assembly

processes and the assembly system technology can

even iteratively influence the product design. The

product designer and the assembly system collaborate

in producing the final product design.

– Layout design and link with the engineer building the

assembly system. The modules autonomously search for

suitable coalition partners to compose the skills required

to fulfill the tasks of the assembly sequence. Addition-

ally, the coalitions arrange themselves in the shop-floor

layout: they choose a position taking into account

overlapping workspaces. The engineer may also collab-

orate to this process and suggest some specific module or

preferred position. The obtained layout and final choice

of modules is validated by the engineer. The assembly

system resulting from the collaboration between the

engineer and the self-organising modules is then able to

execute the assembly sequence.

– Production and link with the operator. During produc-

tion, the assembly system performs monitoring tasks.

The individual modules participating in the assembly

system monitor themselves, their neighbours, the

quality of the produced products, any unexpected item

(human hand, dropped part). Some of these tasks

involve high precision, mini and/or micro-movements,

checking of performances that go beyond human

capabilities. In collaboration with the operator, who

can stop/reset the system at any time, the assembly

system runs the production at the best possible

performance given the current production conditions.

The technology involved encompasses: RFID tags

attached to individual products being assembled reporting

on assembly tasks performed so far, sensors attached to the

different modules reporting on performances such as pre-

cision or speed, and autonomous software agents acting as

wrappers around the physical modules enabling them to

become reactive and adaptive.

We are working on both the layout design and produc-

tion time aspect described above. The focus of this paper in

on a concrete proposal for the layout design.

3 Chemical reaction model

3.1 Gamma and CHAM

The Gamma chemical reaction model (Banâtre et al. 2000)

has been introduced in 1986 as an alternative to sequential

models of programs. Gamma is built around the idea of a

chemical reaction metaphor. The main data structure is the

multiset seen as a chemical solution. A program is then a

pair (Reaction Condition, Action). The execution consists

of removing from the set the elements that appear in the

Reaction Condition part and replacing them with the

product of the Action. The program stops and reaches a

stable state when no more reactions can take place.

A well known example is given by the computation of

the sum of a multi-set of integers. Let us consider a multi-

set of integers, for instance {1, 1, 4, 5, 8}. The Gamma

program sum: x, y ? x ? y defines one reaction sum that

removes two integers (e.g. 4, 8) from the multi-set and

replaces them by their sum (12). This program clearly

converges and stops when the multi-set contains only one

integer (19), which is then the sum of the integers origi-

nally present in the multi-set. The interesting characteris-

tics is that sum is applied in parallel to any two different

integers of the multi-set. A Gamma program can also

contain more than one reaction, applying in an unspecified

order and possibly in parallel when their conditions are

met.

The Chemical Abstract Machine (CHAM) (Berry and

Boudol 1998) is an extension of the Gamma model

allowing modular structures: chemical reactions may occur

within membranes and stay local to the membrane; and the

opposite operation, the airlock, allows the extraction of

a molecule from a membrane.

3.2 Rewriting logic

Rewriting logic was introduced by Meseguer (Meseguer

1990, 1992) as a fundamental logic for concurrency,

modelling transitions between equationally defined con-

gruence classes of terms. Rewriting logic extends equa-

tional logic with rewrite rules, allowing one to derive both

equations and rewrites (or transitions). Deduction remains

the same for equations (i.e., replacing equals by equals),

but the symmetry rule is dropped for rewrite rules. For-

mally, a rewrite theory is a triple (R, E, R), where (R, E) is

an equational specification and R is a set of rewrite rules.

The distinction between equations and rewrite rules is only

semantic. They are both executed as rewrite rules by

rewrite engines, following the simple, uniform and paral-

lelisable principle of term rewriting. Rewriting logic is a

framework for true concurrency: the locality of rules, given

by their context-insensitiveness, allows multiple rules to

apply at the same time provided their patterns don’t

overlap.

An immediate advantage of defining a model as a theory

in rewriting logic is that one can use the entire arsenal of

techniques and tools developed for it to obtain corre-

sponding techniques and tools for the particular defined

Self-organising assembly systems using the chemical reaction model 167

123

model; in particular, the model can be executed, which is

not the case with most other formalisms. Since rewriting

logic is a computational logical framework, ‘‘execution’’ of

models becomes logical deduction. That means that one

can formally analyze instances of the model or their exe-

cutions/evolution directly within the rewriting logic defi-

nition of their model.

3.3 Maude

Maude (Clavel et al. 2007) is a rewrite engine offering full

execution and analysis support for rewriting logic specifi-

cations. Maude provides an execution and debugging

platform, a breadth-first search (BFS) state-space explora-

tion, and an linear temporal logic (LTL) model checker

(Eker et al. 2003), as well as an inductive theorem prover

(Clavel et al. 2006) for rewrite logic theories; these trans-

late immediately into corresponding BFS reachability

analysis, LTL model checking tools, and theorem provers

for the defined models. For example, these generic tools

were used to derive a competitive model checker (Farzan

et al. 2004), and a Hoare logic verification tool (Sasse and

Meseguer 2007) for the Java programming language.

3.4 CHAM within rewriting logic

Cham within rewriting logic: As pointed out by Meseguer

(Meseguer 1992; S, erbănut,ă al. 2009), the Chemical

Abstract Machine can be viewed as a particular definitional

style within rewriting logic. That is, every Cham is a

specific rewrite theory in rewriting logic, and CHAM

computation is precisely concurrent rewriting computation.

There is a common syntax shared by all chemical

abstract machines, with each machine possibly extending

the basic syntax by additional function symbols. The

common syntax is typed, and can be expressed as the fol-

lowing order-sorted algebraic signature X (we here use the

Maude notation for it):

sorts Molecule, Molecules, Solution .

subsorts Solution \ Molecule \ Molecules .

op � :�! Molecules .*** empty set of Molecules

op __ : Molecules Molecules �! Molecules .*** set

constructor

op {|_|} : Molecules �! Solution . *** membrane

operator

op / : Molecule Solution �! Molecule . ***

airlock operator

In rewriting logic terms, one may regard each CHAM as

a rewrite theory C ¼ ðR;ACI [Heating� Cooling [
AirlockAx;ReactionÞ; where the signature R extends the

base Cham signature X with constructs for the defined

model, and in which the Heating-Cooling rules and the

AirlockAx axiom of the Cham have been made part of the

theory’s equational axioms, together with the ACI (asso-

ciative, commutative, and identity applying to ‘__’ and ‘�’,
the set constructors). That is, we can more abstractly view

the Reaction rules of the Cham as being applied modulo

ACI [Heating � Cooling [AirlockAx:

3.5 Application to SOAS

In our work we intend to exploit the chemical reaction

model in the following way:

– Defining a self-organising mechanism for layout design

inspired by chemical reactions: the main idea is to

consider a chemical solution made of all available

modules, the tasks specified in the assembly sequence

and positions in the shop-floor. The reactions are of

different types:

1. Reactions combining modules according to their

physical compatibility. Progressively, according to

the chemical reaction model, groups of modules

(coalitions) will appear in the chemical solution.

Coalitions’ skills are the individual skills of the

modules as well as composite skills. These con-

cepts are equivalent to those used in virtual

organisations and their breeding environments

(Camarinha-Matos et al. 2009).

2. Reactions combining modules and their skills (or

coalitions and their composite skills) with assem-

bly tasks. Progressively, modules or coalitions and

corresponding tasks will disappear and be replaced

by pairs [module/coalition,task], according to

matching of available skill and requested task.

When the process stops, the chemical solution will

contain single modules or coalitions (not used) and

pairs of [coalitions, task]. Additional reactions will

then occur:

3. Combining pairs of [coalitions, tasks] with a

physical position in the layout;

4. Combining conveyor modules between two con-

secutively positioned coalitions.

5. Finally, the precise module movements will be

derived from the combination of the generically

specified tasks and the concretely formed layout.

– Using the rewriting process for self-programming of the

modules: the rewriting process transforms a generic

assembly sequence into a specific one containing the

list of actual modules, their position and their physical

movements. The derivation of the modules’ specific

movements take into account their coalition partners in

the assembly process, their positions and the positions

and properties of the actual parts to assemble.

168 R. Frei et al.

123

– Establishing a formal proof showing that we actually

reach a correct assembly system, i.e. an assembly

system that is able to build the specified products

according to the initially given assembly sequence. The

Maude tool actually produces a trace of the chemical

reactions that occur in the system, this trace acts as a

proof that the desired outcome (finding a layout that

can satisfy the GAP) can be reached, or otherwise an

error message will be emitted. If this happens, the user

may add modules which can provide the missing skills

or take other corrective actions.

3.6 Chemical reactions and self-organisation

More generally, one of the main characteristics of self-

organising systems is the use of rules for governing inter-

actions among the different components of the system, i.e.

these rules define a self-organising mechanism. The notion

of chemical reaction model is a generic model that can

subsume many self-organising mechanisms, such as the

one concerned in this paper about self-assembly of mod-

ules as well as other self-organising mechanisms such as

stigmergy, swarms, field forces or gossip.

Stigmergy is usually illustrated with ants foraging

(dropping/sensing pheromones). In this case, the chemical

solution could be formed by ants, the pieces of food, the

pheromones. Chemical reactions then update the chemical

solution when: ants move; ants drop additional phero-

mones; pheromone evaporates on its own; or a piece of

food is picked up by an ant. For schools of fish or flocks of

birds, each fish/bird updates its position according to well

known steering rules. The chemical solution is then formed

of the set of birds/fish, a single chemical reaction (applying

concurrently on all birds/fish) then updates the position of

the birds/fish (or the bird/fish itself seen as process with a

new state) according to the steering rules.

A gossip system mainly consists of peer nodes

exchanging information with a set of selected neighbours

and updating the information they maintain. The chemical

solution is then the set of peers, the chemical reaction

describes both the exchange of information and its update.

More generally, the chemical solution consists of the

environment, the agents and any artefact they may

manipulate; the chemical reactions represent the rules

defining the self-organising mechanism. In a SOAS, the

initial solution contains all modules, the requested tasks,

the available positions in the shopfloor, and rules linking

modules to tasks, to other modules, and groups of modules

to locations in the shopfloor.

In a more general context of Ambient Intelligence,

chemical reactions could be used for supporting interac-

tions among the devices of an ambient intelligence system.

For instance, in a scenario involving a smart home, actions

involving one or more home devices occur under the

pressure of a corresponding chemical reaction.

4 Running example of SOAS

4.1 Case study example

For illustration purposes, we assume the following simple

product to be assembled: an adhesive tape roller dispenser,

consisting of a body case (part1) and a tape roll (part2)

assembled on top of a carrier, as shown in Fig. 3 [for more

details see (Frei et al. 2006)].

4.2 The generic assembly plan

The Generic Assembly Plan (GAP) specifies the way a

product is to be assembled: it includes the assembly

sequence of the different parts and the way they must be

joined. Tasks are defined in the form of generic operations

(equivalent to skills). The GAP does not provide infor-

mation about what module2 to use and what movement to

make. In other words, the GAP says what to do (assemble

10 tape rollers by joining part1 with part2) but not how

(which robotic modules handle which parts and execute

which movements at which instant) and is thus independent

from any layout. Figure 4 shows the example of a GAP

represented as a workflow and written in XML. The four

simple illustrated tasks each have an operation type (Op),

an object to be handled (Obj), a start point (StPt), an end

point (EndPt), as well as a start orientation (StOr) and an

end orientation (EndOr), referring to the parts to be treated.

We assume this to be sufficient information at this stage of

implementation. This GAP specifies that a carrier is loaded

from the storage to conveyor, then part1 is picked from

feeder1 and placed on the carrier, then part2 is picked from

feeder2 and placed on top of part1, and finally, the carrier

with the assembled product is unloaded to the storage. The

flash in the rectangle on the left hand side of the GAP

Fig. 3 The adhesive tape roller dispenser

2 With the exception of the feeders, which are part-specific.

Self-organising assembly systems using the chemical reaction model 169

123

represents the beginning (IN), and the square on the right

hand side stands for the end (OUT).

4.3 Layout design

The layout is incrementally built according to a self-

organising process illustrated in Fig. 5: modules self-

assemble to form coalitions according to a process of

reactions and rewriting. Coalitions are built to progres-

sively match with the tasks defined in the GAP.

Figure 6 presents a possible layout for assembling the

tape roller. The points and the different orientations of tape

roller body case referred to in Fig. 4 are also indicated. In

this particular example, a single coalition formed of robot1
and gripper1 moves both part1 and part2 on the carrier.

The modelling with Maude of this self-organised pro-

cess leading to such a layout can be found in Sect. 5; the

simulation is in Sect. 6.

4.4 The layout-specific assembly instructions

For realising the assembly, the GAP needs to be trans-

formed into Layout-Specific Assembly Instructions (LSAI).

This transformation takes into account the actual modules,

the tasks and the parts. The LSAI consists of executable

programs for the robotic modules, based on their requested

skills. The instructions are generated for a certain layout; if

the layout is modified, these instructions must be changed.

For an example of an LSAI written as a workflow, refer to

(Frei et al. 2009b).

At production time, the assembly of a product will result

from the execution of the LSAI by the agents/modules

according to the workflow. Any change requiring a layout

reconfiguration restarts the self-organising layout design

process.

5 Modelling according to the chemical abstract

machine

The layout is incrementally built according to a self-

organising process modelled by CHAM. It consists of a

molecule solution and chemical reaction rules. The mole-

cules spontaneously react with each other according to the

rules; each time a rule fires, the molecules involved in the

reaction are replaced (or rewritten) by their new compo-

sition (the outcome of the reaction). Afterwards, other rules

may apply, and the solution is rewritten again, and so forth,

until no rule can be applied any more, and the system has

converged to a stable state. The rules are applied in a

concurrent and distributed way.

In the case of SOAS, the molecule solution is the set

of all modules; rules govern physical combinations of

modules and their provided (simple or composite) skills

to match requested tasks. The appearance of a GAP in

the solution triggers the reaction rules. As a result,

modules form coalitions, according to their compatibility

rules and composition patterns (compatible sizes and

shapes, combination of simple skills providing composite

skills), and react with a task specified in the product

order.

Just in the same way as molecules have properties on

their own and (maybe different ones) when combined, also

modules have properties on their own, and potentially

different ones in coalitions.

Figure 7 graphically illustrates how modules progres-

sively self-assemble to form coalitions and establish

transport links in-between. These coalitions are built

according to a set of rules (briefly explained in Sects. 3.5,

5.1–5.6) to progressively match with the tasks defined in

the GAP, as shown in Fig. 5. All rules apply at all times;

there is no explicitly specified order of application.

Fig. 4 Example of a GAP

written as a workflow

Fig. 5 Self-assembly of coalitions in CHAM

170 R. Frei et al.

123

However, implicitly, there is a logical order of application

because of the conditions guarding the rules.

5.1 Interface compatibility

Modules match according to the types and characteristics

of their physical interfaces. In reality, interfaces are often

brand-specific and module-type-specific, and the compati-

bility between non-related modules is limited, thus avoid-

ing combinatorial explosion.

The number of interfaces a module has determines the

maximal number of connections it may establish. For

instance, due to physical limitations, a gripper is not able to

connect to more than one axis at a time.

5.2 Composition pattern

Typical basic combinations of typical modules are speci-

fied as composition patterns. For instance, the combination

of three linear axes makes a Cartesian robot, and three

rotational axes make an ABB-type3 robot, whereas a linear

and a rotational axis build a robot with a cylindrical

workspace. In cases where many modules are available,

such rules can help reduce the search space by indicating

which module combinations typically occur; corresponding

coalitions would be formed with priority.

This type of rule can be implemented either using

module types or skills (in this work we chose the skills).

5.3 Creation of composite skills

Composite skills are combinations of simple skills which

come together when module coalitions are created. Most

skill combinations lead to immediate composite skills,

which are a direct combination (addition) of the simple

skills. Some combinations, however, also lead to the

emergence of additional composite skills. For instance,

a gripper has the skills open-close, and an axis has move.

Together, they have open-close, move and pick&place.

5.4 Task coalition matching

When a GAP is introduced, the modules’ skills react with

the operations requested by the tasks in the GAP. At the

same time, the modules react with suitable partner mod-

ules, according to their own requirements (interface com-

patibility and necessary partners, like a gripper needs to be

hold by an axis or a robot) as well as the corresponding

composition pattern (Sect. 5.2). Once a coalition is formed,

a corresponding so-called dynamic coalition agent is

inserted into the chemical solution. The coalition, again,

when suitable, reacts with other tasks and modules. This

procedure continues until all the tasks have reacted with

modules/coalitions, or until no more module is available. In

this case, the task will emit a user alert after a certain time

because no satisfactory solution could be found.

If a task reacts with more than one coalition (which will

most often be the case), several possibilities can be

envisioned:

– Let the user choose.

– Accept the first reaction.

– Accept the reaction which uses the least modules.

– Accept a reaction which uses a coalition that already

physically exists, or which requires the least reconfig-

uration effort.

– Critical tasks or tasks which react only with few

modules/coalitions choose their coalitions first; coali-

tions which react with more coalitions wait for a certain

time before choosing their coalitions.

Fig. 6 Possible shop-floor

layout for the assembly of the

tape roller

Fig. 7 Stepwise application of rules in CHAM (schematic view)

3 These are commercially available robot types; also a Scara robot,

mentioned later, is an example.

Self-organising assembly systems using the chemical reaction model 171

123

A coalition which, in the process of forming itself, cannot

find any suitable partner in the module pool, will be dis-

carded. The probability of exactly the same (fruitless) coa-

lition being built again is relatively low, and gets smaller with

an increasing number of available modules. Unsuccessful

compositions may be recorded to avoid them in future.

5.5 Layout design and transport linking

Generic layout design rules specify how MRAs and coali-

tions react with places in the layout and with conveyors to

establish transportation links in-between the robots. The

coalition which was assigned to the first task chooses its

place first (random or default position). Coalitions which

come later place themselves at default-distances from other

coalitions, and ask for transportation skills to move the

product from the previous robot to the current. Conveyors

will react to such requests and provide the necessary ser-

vices. A continuous path from IN to OUT must be formed.

5.6 Transforming the GAP into the LSAI (rewriting)

The GAP needs now to be transformed into specific

instructions for the selected modules/coalitions in their

respective positions; this is the content of the LSAI. The

CHAM rewriting technique will be exploited. Commercially

available solutions for virtual engineering (Garstenauer

2009) allow the designer to simulate the workspace and

verify if a certain point is reachable; to identify potential

collisions and cinematic singularities; to calculate trajecto-

ries, velocities, cycle times and the stress on robot mechanics.

6 Specifications and simulations in Maude

The rules 5.1–5.4 described above have been implemented

in Maude (Clavel et al. 2007), which is a language to

model systems through equational and rewriting logic

(Meseguer 1990) specifications which provides additional

support for executing and analysing (state-space explora-

tion, LTL model checking) the specified models.

The work detailed here was written in Maude version 2.4.

Notice that Maude works with so-called modules, written as

mod(...)endm. This is an unfortunate coincidence with

the typical use of the word module in this article, which refers

to a manufacturing resource agent (MRA).

The entire specification will not be discussed in detail

here; it can be downloaded from http://www.reginafrei.

ch/maude.html. However, we will look into a few issues

worth mentioning and explain the most important

Maude modules. Before presenting the specification, we

highlight some specificities of Maude and our graphical

representation.

6.1 From CHAM, through K, to Maude

As discussed in the previous section, CHAM already pro-

vides a very good means for modelling SOAS. However,

by having only one membrane constructor (‘fj jg ’) to wrap

a set of molecules and thus help build structured configu-

rations, it makes it hard to write and follow definitions,

because, typically, one needs to identify the kind of

membrane involved in a rule. The K Framework (Ros, u

2007; Ros, u and S, erbănut,ă 2010; S, erbănut,ă and Ros, u

2010), provides a methodology to specify CHAM-like

definitions within rewriting logic, while allowing more

structure and typing information to be associated to the

object representing molecules and solutions. To do that, K

replaces solutions by cells, which should be regarded as

named solutions, and, relying on the multi-sorted nature of

rewriting logic, it allows molecules and sets of molecules

to be typed. For example, using the K methodology, we

define the syntax for expressing an MRA by defining two

new categories of molecules, Mra, to represent MRAs, and

MraItem to represent the constituent molecules of an Mra,

along with a cell constructor ‘‘\mra[_\/mra[’’, wrap-

ping a (multi-)set of MraItem molecules into an Mra

molecule; in this case, ‘‘mra’’ would be called the name of

the cell. Then, the definition continues, by defining the

molecules which can constitute an MRA, such as, name,

type, a solution containing the interfaces, and one con-

taining the skills. The Mra molecules themselves can be all

wrapped in a cell named ‘‘mras’’ which could be typed as a

ConfigItem molecule. This way of specifying MRAs would

correspond to the following Backus Naur Form (BNF)-like

definitions, depicted graphically in Figs. 8 and 9:

ConfigItem ::¼ . . . j\mras [Mra�\=mras [
Mra ::¼\mra [MraItem�\=mra [

MraItem ::¼ . . . j\name [MraName\=name [
j\type [Type\=type [
j\skills [Skill�\=skills [
j\interfaces [Interface�\=interfaces [

This BNF grammar description directly maps into

Maude, by translating grammar non-terminals into sorts,

and each production into an operation declaration. For

example, ‘‘Mra :: = \mra[MraItem* \/mra[’’ maps to

the operation declaration op \mra[_\/mra[:Set
{MraItem} -[Mra., while ‘‘MraItem ::= \name[
MraName \/name[’’ maps to op\name[_\/name[:

MraName -[MraItem.

Although the (named) K cells containing types sets of

objects give more structure to the configuration than the

corresponding CHAM solutions and sets of molecules,

one could nevertheless recover the CHAM view of a

172 R. Frei et al.

123

http://www.reginafrei.ch/maude.html
http://www.reginafrei.ch/maude.html

configuration by forgetting all type information, trans-

forming cell wrappers into unnamed solution constructors

and simply adding the name of a cell as a special molecule

in the solution. For example, a K-like configuration

\mras[\mra[\name[r\/name[\type[robot

\/type[... \/mra[... \/mras[could be

expressed as the solution {|mras {|mra{|namer|} {|type

robot|}...|}...|}. Note that we could have directly used this

embedding as a CHAM into Maude, but we prefer to rather

go through the K methodology as we find it less error-

prone and producing easier-to-read definitions.

6.1.1 The K (visual) notation for rewrite rules

To ease the presentation, the structure of the model and the

rules would be presented using the K visual notation for

rewrite rules, instead of the pure-ascii Maude notation;

nevertheless, we will show how the graphical notation

directly corresponds to Maude code. Besides the graphical

representation of cells as bubbles having their name

attached to the top as a label (see, e.g., Fig. 8), K simplifies

writing of reaction rules by making them more local and

abstracting away the context. For example, consider the

following CHAM rule:

cell1 / o1 /M1 cell2 / o2 /M2

! cell1 / o3 /M1 cell2 / o2 /M2;

where small caps identifiers are constants and capitalized

ones are variables, which basically says that if the solution

containing cell name cell1 also contains an object o1—

indicated by the fact that the solution can be heated to

extract them, through airlocks, from among the remainder

of the molecules—and the solution containing cell name

cell2 also contains an object o2, then o1 should be replaced

by o3. In rewriting logic, we could specify this without

using airlocks, but rather relying on the (efficiently

implemented) matching modulo ACI, as:

fjcell1 o1 M01jg fjcell2 o2 M02jg ! fjcell1 o3 M01jg
fjcell2 o2 M02jg;

where M01 and M02 now stand for the sets of molecules

comprising the rest of the solution. Moreover, using the K

methodology, we can transform solutions into cells, as

follows:

hcell1io1 M01h=cell1ihcell2io2 M02h=cell2i
! hcell1io3 M01h=cell1ihcell2io2 M02h=cell2i:

However, in all the instances presented above, the

context matched is much bigger than the actual change.

Noticing that this is quite common for interactive

systems with complex configurations, the K notation

suggests writing the rule such that the rewrites become

local, as follows: first write the left-hand side (the

context), then underline the parts that change, and finally

write their replacement under the line. Thus, our example

rule will become:

hcell1i
o1

o3

M01h=cell1ihcell2io2 M02h=cell2i;

which using the graphical representation of cells can be

written as:

A second observation is that there is actually no need

for writing the variables M01 and M02, which are only

required for matching, with the sole purpose of abstract-

ing away the remainder of the cell. Instead, we can reduce

the symbol load by replacing them with some uniform

notation:

hcell1i � � �
o1

o3

� � � h=cell1ihcell2i � � � o2 � � � h=cell2i;

with the intuition that o1 is replaced by o3 ‘‘in the middle’’

of cell1, if o2 can be matched ‘‘in the middle’’ of cell2.

Graphically, this is represented by ‘‘ripped’’ cells, that is,

ellipses with their margins cut off:

Fig. 8 The top configuration cell

Fig. 9 The mra cell

Self-organising assembly systems using the chemical reaction model 173

123

6.2 Structure of the model

We here define the language of our model, which consists

of nested cells, containing either concrete values, like

Integers, Floats, Names, and enumerations, or a ‘‘soup’’ of

other cells, representing CHAM-like configuration

molecules.

The top configuration cell, shown in Fig. 8, contains

three mandatory cells, gaps: specifying the General

Assembly Plans, mras: specifying the Manufacturing

Resource Agents and parts: specifying the Parts, as well

as an optional cell, which appears during the model sim-

ulation, which contains the agents: (partial) coalitions of

modules aiming to solve a certain task. Notice that the term

agent used in this context is not to be confused with soft-

ware agents as mentioned elsewhere in this article.

6.2.1 Mra

The mra cell, shown in Fig. 9, contains several cells

describing the attributes of a module. For example, the

name cell contains a name identifying the MRA, type

specifies the type of the module (e.g., gripper, axis, robot,

conveyor), interfaces contains a collection of inter-

faces that the module exports, while skills contains a

collection of skills which can be performed by the module.

In Maude, one gives life to this intuitive representations

through algebraically specified operations. For example,

the module declaring the cells which can be part of an

MRA named MRA-ITEM, looks as follows:

This Maude module, named MRA-ITEM consists of

several declaration blocks. First, other modules, like MRA-

TYPE (declaring the accepted types of MRAs), or

Set{Interface} (declaring a set of predefined

Interfaces), are included. Next, there is a new sort

(MraItem) declaration, which could be seen as a non-

terminal in a context-free grammar, which would be used

to encompass all possible attributes of an MRA. Then,

those attribures are declared, as operations (constructors)

having their range MraItem.

Notice that we use XML-like tags to specify cells;

moreover, our * in the visual representation, e.g., for

Skill and Interface, correspond to algebraically

defined (multi-)Sets in our Maude specification.

All potential MRA attributes/items being specified, an

Mra is declared as a new sort/type which groups together

a set of such attributes under the mra XML-like tag:

6.2.2 Skill

The skill cell, shown in Fig. 10, must contain a man-

datory skill type, like open-close, move, feed, transport,

position-carrier,4 store, pick&place, load, unload, and may

contain several optional attributes like subtype (a move

can for instance be linear-horizontal or rotational-vertical;

a transport conveyor can be required to be linear, a corner

or a junction), range (how far can it move, how much can

it open), and potentially many more.

6.2.3 Gap

A GAP contained in a gap cell, shown in Fig. 11, is

identified by a name and is composed from the number of

products to be assembled, and one or more tasks which

need to be performed to achieve the assembly. The defi-

nition of a GAP written as a work-flow includes the notion

of sequentiality of the tasks. We do, however, not attribute

any importance to the order in which modules form

coalitions to satisfy the GAP, as in the CHAM model,

reactions occur in parallel.

6.2.4 Task

Each task cell, shown in Fig. 12, consists of one or more

operations, which are abstracted in this model as the

Fig. 10 The skill cell

Fig. 11 The GAP cell

4 Refers to the indexing devices which assure that a carrier is at the

correct position.

174 R. Frei et al.

123

Set of Skills required to perform the task. Additionally,

a task would contain the type of the task, e.g., pick&-

place, transport, feeding, and the name of the object

(part) it is performed on. Once the task is placed in the

layout during the simulation, more attributes would be

added such as the start/end point and orientation of the

object after the task.

6.2.5 Interface

Interfaces have an InterfaceType (symbolically

modelled as circular, square, triangular, oval, straight,

diamond and star according to their physical characteristics

and functionalities, as illustrated in Fig. 13) and an In-

terfaceSign: plus or minus, referring to the fact that a

gripper needs to be held by an axis (gripper is then passive,

which is plus), while the axis is holding the gripper (the

axis is then active, which is minus). The interface labels

were chosen specifically with the goal of avoiding unsuit-

able compositions, and only to allow them in the correct

number; a gripper cannot be held by more then one gripper

at once, and it cannot be held by a conveyor or a feeder, for

example.

A base axis, as shown in Fig. 13, has three active

interfaces and may hold a middle axis or a top axis (square

interface), connect to a feeder (triangular interface) and a

positioning device (straight interface). Notice that this way

of modelling interfaces supports both interface compati-

bility rules and composition pattern rules.

In our Maude model, the interfaces are specific to each

type of connection; even though symbolic, this is close to

reality. The following labels for physical compatibility are

symbolically used in Maude:

– Circular: gripper to axis or gripper to robot interfaces

– Square: axis to axis or axis to robot interfaces

– Triangular: axis or robot to feeder interfaces

– Diamond: axis or robot to toolwarehouse interfaces

– Oval: conveyor to positioning-device interfaces

– Straight: axis or robot to positioning-device interfaces

– Star: conveyor to conveyor interfaces, including the IN

and OUT elements (beginning and end of layout)

– The connection from axes to the ground is not

specifically labelled. A robot or axis with only one

interface may serve as a basis.

6.2.6 Part

As shown in Fig. 14, a part is identified by a name, has a

type (e.g., carrier, body-case, tape-roll, screw), and sev-

eral properties such as weight, material, and x/y/z

dimensions. Grip-pos refers to the position on the part

where a gripper should hold the part; part-angle and part-

position refer to the initial or current orientation and

position of a part.

Fig. 12 The task cell

Fig. 13 Interface types as

modelled in Maude

Fig. 14 The part cell

Self-organising assembly systems using the chemical reaction model 175

123

6.3 Reaction rules

The reaction rules consist of CHAM-like rules, which

match parts of the model to gather information and use that

information to transform/evolve the model. To recapitulate,

the six types of rules are:

1. Interface compatibility

2. Composition pattern

3. Creation of composite skills

4. Task coalition matching

5. Layout design and transport linking

6. Transforming the GAP into the LSAI

The current Maude specification addresses only the first

four points. This is enough to simulate and analyse how

coalitions are started and formed, driven by the GAP and

respecting the composition rules. We will next discuss the

most interesting of the rules governing our Maude model,

that is the rules for coalition creation and growth. Notice

that the empty cell is the neutral element.

Starting a coalition (rules of type 4) The rule pictured in

Fig. 15 specifies that, at any time, an MRA can start a new

coalition aimed at addressing a task, provided that at least

one of its skills can satisfy at least one of the skills required

by the operations corresponding to that task (specified by

the side condition). If that is the case, then a new agent

(standing for a potential coalition) is created, combining

features from both the MRA (provided skills, interfaces)

and the task (the task-id, the required operations/skills).

The equationally defined predicate match, not to be

confused with the regular pattern matching performed by

Maude, is used to check that the skills of the mra are

sufficient to complete at least one operations required by

the task.

The creation of the new agent is done on the base of an

empty cell, here specified by a ‘�’, being underlined in the

agents cell with its replacement, the new agent cell,

being written below the line. The required operations of the

new agent are obtained by removing the skills provided by

the MRA from those required in each of the task’s opera-

tions. These required operations are used to find suitable

candidates for the coalition, that is modules which can

satisfy some of the skills still required to accomplish the

task. The decompose operation decomposes the complex

skills required by tasks into basic skills provided by

modules, to facilitate their matching by subsequent rules.

(This is the opposite of generating complex skills out of

simple ones.)

Two observations need to be made about the visual

rules. First, note the use of ‘‘ripped’’ cells (i.e., cells with a

zig-zag lateral sides instead of the usual rounded cell

walls), used to specify that only a part of the cell is mat-

ched in the rule; this idea, which is nothing more than

matching modulo associativity, commutativity, and unit, is

similar in spirit to the use of airlocks (the mechanism used

to select one element out of a soup) in CHAMs. Moreover,

note that while the change is punctual, it ‘‘reads’’ cells from

different levels of the entire configuration. That is why our

Fig. 15 Rule for initiating a

coalition

176 R. Frei et al.

123

graphical notation specifies the change locally, by under-

lining the part changed and writing its replacement under

the line (in red), rather than writing the matching context

on both side of a rewrite rule, as customary.

The textual Maude representation of the coalition initi-

ation rule in Fig. 15 is presented in Fig. 16. The rule is

introduced by the keyword crl (conditional rule) which

specifies that the rule is guarded (the guard being intro-

duced by the final if ... line). Next, the two sides of the

rule are separated by the ‘‘=[’’ keyword and both of them

repeat the context required by the rule, while only the right

side of the =[symbol contains the agent being introduced.

Moreover, generic variables (Gaps, Gap, Tasks, ...) are

being used to account for the missing parts from each cell.

We use the visual representation for rules which extend

over several layers of the configuration.

Rule for MRAs joining a coalition (rules of type 1, 2 and

3) The rule depicted in Fig. 17 lets an MRA join a coali-

tion, provided that suitable interfaces and suitable skills are

present on both sides. This means that it implements rules

of the type 1 (interface compatibility) and 2 (composition

pattern) at the same time. The created coalition contains the

composing MRAs and has MRA characteristics itself as

well.

The use of Type(? true) and Type(- true) assures that

the joining MRA has a free interface of the same type as

one existing in the coalition, but with opposite sign. An

additional size constraint could be introduced by giving

the interfaces different numbers instead of the (?)/(-),

assuring that the opening of the holding interface is at

least as large as that of the MRA being held. The values

true or false refer to an interface being free or occupied;

also, an occupied interface is not displayed among those

available.

If the interfaces match and the side conditions are sat-

isfied, that is, the skills brought by the MRA help advance

towards solving the task, and they match the existing skills

provided by the coalition in a desirable way, then the MRA

is added to the coalition agent: its skills are added to the

provided skills, its free interfaces are added to the open

interfaces (replacing the interface which is being used to

attach the MRA) and newly occupied interfaces are

removed, its name is added to the names of the coalition,

and the required operations are adjusted to take into

account the new skills provided by the MRA.

Technically, rules of type 3 (composite skills) are

implemented through the decompose equation, which

decomposes composite skills into simple skills. For

Fig. 16 The coalition initiation

rule, as written in Maude

Self-organising assembly systems using the chemical reaction model 177

123

example pick&place is provided as soon as a coalition

contains both open-close and move skills.

eq decompose1ðpick&placeÞ
¼ open� closeðanyPreSkillÞ moveðanyPreSkillÞ:

6.4 Case study

Figure 18 is a visual representation of the Maude initial

configuration-term used for our case study. It contains only

one GAP, gap1, made of 4 tasks and requesting 10 products to

be assembled, several MRAs as well as the product parts. The

instances of MRAs specified for our case study are:

– 3 industrial robots abb-robot, cartesian-robot, and

scara-robot;

– Base axes a1, a2, a3 (having only one interface, the

other connection being the ground), middle axes a4, a5,

a6, and top-axes a7, a8, a9 (able to hold a gripper);

– Conveyors c1, c2, c3, c4, and c5;

– Endings of the layout ending-in and ending-out;

– Feeders f1, f2, and f3;

– Grippers g1, g2, and g3;

– Positioning devices pd1, pd2, and pd3;

– Tool warehouses w1 and w2; and

– Humans human1, and human2; technically, the human

is wrapped by an MRA with the skills load and unload.

For example, the scara-robot MRA is defined as shown

in Fig. 19: the MRA is a robot identified as r3, which has

four available interfaces, circular, triangular, straight, and

diamond, all of them being passive, and provides two

rotational move skills, one horizontal with range 120�, and

one vertical with range 180�.

The GAP introduced in our initial configuration contains

four tasks, and is the GAP shown in Fig. 4: the first task is

a load task, the next two are pick&place tasks, and the last

one is an unload task. For example, task t3 is defined as

shown in Fig. 20.

Fig. 17 Rule allowing a

module to join an existing

coalition

Fig. 18 Initial configuration

178 R. Frei et al.

123

This configuration term defines a task cell, identified by

t3, acting on part p2 (which is a tape roll), and requiring a

pick&place skill to execute an operation taking part p2

from the feeder f2 and placing it on top of part p1 (a body-

case).

The parts used for this case study are: a body-case,

a tape-roll and a carrier. The body-case cell is shown in

Fig. 21.

6.5 Simulation example

The advantage of having a rewriting engine such as Maude

is that once we have described the structure of the model

and the rules governing its interactions using rewriting

rules, the specification becomes executable. That is, given

a configuration instance such as the one described above,

the model can actually be ‘‘run’’ by repeatedly applying the

rules to obtain a simulation of its evolution.

Furthermore, analysis tools such as tracing the sequence

of rules applied, state-space exploration, and model-

checking, are also possible within Maude. Since the rules

are non-deterministic and they can potentially apply on any

successful match, provided the side conditions are fulfilled,

one can have many possible runs of the system, yielding for

our example many possible task-coalition matches.

We will here only discuss in detail a sequence of rule

applications required for obtaining one solution, as

extracted from a specific successful trace provided by

Maude. It is observed when directly executing the model

(i.e., without searching for all solutions).

First, the rule for initiating an agent is applied for task t1
from GAP gap1 and the MRA human1. The rule succeeds

since human1 has a skill (load) required by task t1. More-

over, since this was the only skill required by task t1, the

coalition is actually already complete with one participant

only, shown by the fact that required-ops is empty (pic-

tured as in Fig. 22).

Next,5 the agent-initiation rule applies on task t3 and

robot r1, as shown in Fig. 23, since r1 provides the move

Fig. 19 The Scara robot cell

Fig. 20 The task t3 cell

Fig. 21 Part1 cell

Fig. 22 The task t1 agent

5 The tasks are not addressed in any specific order, as the chemical

reaction model works in parallel on all ‘‘molecules’’.

Self-organising assembly systems using the chemical reaction model 179

123

skill required as part of the composite skill pick&place of

t3. After creation, the agent provides all skills of r1 (which

we have omitted for reasons of space), and all its interfaces,

but is still requires one skill for completion, open-close,

which together with the already provided move skill would

yield the composite skill pick&place. At this stage, how-

ever, the coalition is still incomplete.

Similarly, gripper g1 initiates an agent for the pick&place

task t2, shown in Fig. 24, this time satisfying its open-close

sub-skill, and still requiring a move skill for completion. The

coalition has an open interface of the type circular (? true),

and the gripper on of the type circular (- true).

Then the rule in Fig. 17 applies for gripper g2 to join the

coalition initiated by r1 for solving task t3, shown in

Fig. 25. This is possible because g2 provides the open-close

skill which is required by the agent, and, moreover, the

agent and g2 can connect on the compatible circular

interface. Upon connection their skills and still open

interfaces (except for the circular one, which is now

occupied both on gripper and robot side) are joined, while

the required operation becomes empty, meaning this coa-

lition is also complete.

Similarly, the coalition-join rule applies for r3 to join the

coalition started by g1 to solve task t2, as shown in Fig. 26.

Finally, MRA human2 initiates a coalition for satisfying

task t4, by providing the only required skill, that is unload,

and thus we have a complete solution to the task assign-

ment problem. The solution found is: t1 by human1, t2 by

coalition r3 - g1, t3 by r1 - g2, and t4 by human2.

6.6 Discussion and remarks

Notice that this article reports on a feasibility study. The

work was never intended to deliver a complete industry-

compatible prototype. This is why, at this stage, the work

does not include existing algorithms for the best shopfloor

layout design (Benjaafar et al. 2002), automated trajectory

calculation (Chen et al. 2002), automated planning (Ghal-

lab et al. 2004) or any type of elaborate assembly line

balancing optimisation (Simaria and Vilarinho 2009).

For a real industry-like implementation working with a

CHAM-based control system, we consider that the physical

(re-)configurations may only take place once a suitable

solution has been found. No real robotic module will be

moved before the suggested arrangement has been con-

sidered as suitable by a human operator, and it is indeed the

operator which will execute the physical reconfiguration.

Furthermore, the rules which are currently specified in

Maude are not sufficient for a real application yet, as

Fig. 23 The task t3 agent

Fig. 24 The task t2 agent

Fig. 25 The task t3 agent in the completed state

Fig. 26 The task t2 agent in the completed state

180 R. Frei et al.

123

certain requirements have been ignored for the sake of

simplicity of the proof-of-concept execution. For instance,

certain modules will have further requirements such as the

following: a horizontal axis may be able to provide the

requested skill of moving a part horizontally, but it will be

necessary for a support construction or a vertical axis to

hold the horizontal axis in question. Also rules for calcu-

lating the overlapping workspaces of collaborating axes

have not been added yet. The Maude specifications are

currently being extended and completed.

7 Wermelinger’s properties in SOAS

According to Wermelinger (1998), to determine if a

CHAM specification is correctly defined, it is necessary to

consider three properties:

1. CHAM terminates, that is an inert solution can be

reached, which means that either no rule is applicable

any more, or there are no components available any

more.

In our case, the solution will stop reacting as soon as

all the tasks in the GAP have been associated with

modules that provide the required skills. This means

that all tasks of the GAP must have suitable coalitions

attributed, and in a complete version, these must have

determined their position in the layout, be linked by

transport facilities, and have derived their LSAI.

Otherwise, the CHAM may also terminate because not

all the required skills are provided in sufficient number,

which means that one or several tasks remain open.

At the current stage, there is no rule for dissolving

established connections, so a CHAM might remain

in that stage, although in a different configuration, a

complete and suitable solution would be achievable.

In the case of our simulations, Maude provides all

possible complete and incomplete configurations. In

case of a real CHAM implementation, only one system is

created at once, and it may be suitable as far as created

but incomplete.

2. The architecture created by CHAM is as intended.

That means for SOAS that a layout has been created

which can satisfy the LSAI.

The skills required by the tasks and the skills provided

by the modules will react with each other, and modules

which require partners to provide composite skills will

react with suitable modules. This assures that the result

corresponds well to the desired outcome if the CHAM

terminates because all tasks have been attributed with

coalitions. If the CHAM terminates because there are

no more suitable modules available, the solution is not

complete and therefore not suitable.

3. A reconfiguration does not break the style, that is, all

reconfiguration activities are compatible with the

rules.

In SOAS, the architectural style may be understood as

the way modules can combine with each other. The

rules for physical compatibility and composition

patterns assure that only compatible modules can react

with each other. Also the GAP contributes to defining

the architectural style, as the task sequence influences

the arrangement of the modules. Changes of an

individual module or in a module coalition do not

alter the adherence of the system to the GAP.

8 Conclusion and Outlook

This article explained self-organising assembly systems

(SOAS), which realise agile manufacturing thanks to the

chemical reaction model. SOAS are composed of agenti-

fied modules carrying distributed local computing power.

Self-organisation facilitates the task of designing and

changing system layouts for the engineer and provides

proactive services by suggesting shop-floor layouts that suit

the current product orders. The Chemical Reaction Model

is used to describe this self-organising process, and Maude

serves as a simulation tool to provide evidence of suitable

system behaviour.

Our next steps encompass refining Maude rules, pro-

viding (semi-)formal proofs of system properties using the

inductive theorem prover and LTL model checker as well

as the layout design and transforming the GAP into the

LSAI according to rewriting rules (Fig. 12 shows prepa-

ratory work). Real implementation will be done with

industrial-like robots and using the JESS6 reasoning engine

to enforce rules for self-organisation and policies for self-

management (Frei 2010; Frei et al. 2010).

8.1 Resilience and dependability

The introduction of self-* properties to systems is often

done with the intention of improving their resilience, that

is, their dependability in case of failures. Dependability is

the ‘ability of a system to deliver a service that can justi-

fiably be trusted’ (Avizienis et al. 2004). For instance, a

certain robot must always provide the same service when it

is requested, and we rely on this; nothing else may happen.

Central to this definition is the notion that it is possible to

provide a justification for placing trust in a system. In

practice this justification often takes the form of a

dependability case which may include test evidence,

6 http://www.jessrules.com

Self-organising assembly systems using the chemical reaction model 181

123

http://www.jessrules.com

development process arguments and mathematical or for-

mal proof. The original meaning of resilience refers to the

maximal elastic deformation of a material. In the context of

computer science and robotics (Bongard et al. 2006; Di

Marzo Serugendo et al. 2007) and self-organising systems

(Di Marzo Serugendo 2009), resilience means ‘depend-

ability when facing changes’ (Laprie 2008), or in other

words, its ability to maintain dependability while assimi-

lating change without dysfunction. Dynamic resilience is a

systems capacity to respond dynamically by adaptation in

order to maintain an acceptable level of service in the

presence of impairments (Di Marzo Serugendo et al. 2010),

whereas predictable dynamic resilience refers to the

capacity to deliver dynamic resilience within bounds that

can be predicted at design time.

Now let us apply this to SOAS: Resilience during system

design means that if the self-* software system generating a

layout for a given GAP experiences disturbances or fail-

ures, it will recover and either continue the ongoing CHAM

process or start a new one, based on the same GAP. Fail-

ures during system design could be caused by a module for

some reason suddenly becoming unavailable; in this case,

the coalition is dissolved7 and the reaction starts afresh,

which means that the system is resilient. The same happens

if the coalitions for a GAP remain incomplete because of

missing modules. Disturbances could mean that modules

and coalitions appear or disappear while the CHAM is

executing, or even that the GAP is changed. Also in these

cases, the system is resilient.

Resilience during production means that if one or sev-

eral robotic modules fail, the remaining modules self-

organise to build a repaired or alternative system. This may

happen either through the self-adaptation and self-man-

agement process among the active modules, or through

triggering a CHAM self-organisation process as described

above, which will modify the current configuration.

8.2 Feasibility—strong and weak points

The strong points of our approach include that we ease the

design and programming of agile assembly by equipping

the modules with self-* properties. Our approach addresses

the requirements for SOAS defined at the end of Sect. 1,

such as the mutual interrelations between product, pro-

cesses and system. Furthermore, the rules are relatively

easy to define, and a new system design (if possible) may

be received more quickly than if it is created by human, as

the self-organised system helps the designers with their

work. As for the weak points, the suggested system may

not be optimal (there are no rules for optimising

performance or minimising the number of modules, yet),

and it may be more complicated than necessary. To miti-

gate this, further constraints and optimisation rules may be

added to the CHAM.

To advance towards a real application, certain tools are

required, such as a graphical user interface for visualising

the solution, which makes the self-organising process more

accessible for a human user.

Concerning the feasibility of combining self-* behav-

iours with industrial assembly systems, several issues need

to be considered:

CHAM very well suits the needs of agile assembly

systems, where a number of heterogeneous robotic com-

ponents need to form a coherent system which can provide

the required assembly operations. The modelling of SOAS

with CHAM is quite intuitive and not particularly

challenging.

The feasibility of formal/informal proof of properties

has been started and is currently being further investigated.

It is challenging, but also very promising and worth the

effort. A relevant question is how much the assumptions

simplify reality, and if they exclude any important char-

acteristics from being considered. This issue needs to be

further researched.

The actual application of the CHAM mechanisms to real

SOAS is a step which has only been initiated recently, and

future results will show the feasibility of the approach in

reality. It will require truly parallel/concurrent software

execution and the application to a real industrial robotic

system.

Finally, the human resistance to change and to systems

which could be suspected of getting out of control cannot

be neglected. In particular manufacturing industry is rather

conservative. To be persuaded of the benefits of self-*

systems, realistic prototypes are necessary to demonstrate

dependable and safe system behaviour under all conditions.

Acknowledgments The authors also thank the EU-funded coordi-

nation action PerAda, http://www.perada.org, for financially sup-

porting travel exchange between authors’ institutions.

References

Adamietz R (2007) Development of an intermodular receptacle: a first

step in creating EAS modules. PhD thesis, Faculty of Mechanical

Engineering, Institute of Applied Computer Science/Automation

(AIA), Universität Karlsruhe (TH), Karlsruhe, Germany

Arenas A, Banatre J-P, Priol T (2009) Developing autonomic and

secure virtual organisations with chemical programming. In:

11th International symposium on Stabilization, safety, and

security of distributed systems (SSS). LNCS, vol 5873. Springer,

Berlin, pp 75–89

Avizienis A, Laprie J, Randell B, Landwehr C (2004) Basic concepts

and taxonomy of dependable and secure computing. IEEE Trans

Dependable Secur Comput 1(1):11–33

7 As the next step of our ongoing work, a rule to dissolve coalitions

must be added to the current CHAM.

182 R. Frei et al.

123

http://www.perada.org

Banâtre J-P, Fradet P, Le Métayer D (2000) Gamma and the chemical

reaction model: fifteen years after. In: WMP. LNCS, vol 2235.

Springer, Berlin, pp 17–44

Barata J (2005) Coalition based approach for shopfloor agility.

Edições Orion, Amadora - Lisboa

Barata J, Camarinha-Matos L (2003) Coalitions of manufacturing

components for shop floor agility: the cobasa architecture. Int J

Netw Virtual Organ 2:50–77

Barata J, Onori M (2006) Evolvable assembly and exploiting

emergent behaviour. In: IEEE International symposium on

industrial electronics (ISIE), vol 4. Montreal, Canada, pp

3353–3360

Barata J, Cândido G, Feijão F (2006a) A multiagent based control

system applied to an educational shop floor. In: IFIP Interna-

tional conference on information technology for balanced

automation systems (BASYS), Niagara Falls, Canada, pp 119–

128

Barata J, Santana P, Onori M (2006b) Evolvable assembly systems:

a development roadmap. In: Dolgui A, Morel G, Pereira C (eds)

IFAC symposium on information control problems in manufac-

turing (INCOM), vol 12. Elsevier, St Etienne, France, pp 167–

172

Barata J, Ribeiro L, Colombo A (2007a) Diagnosis using service

oriented architectures (SOA). In: 5th IEEE International confer-

ence on industrial informatics (INDIN), vol 2. Vienna, Austria,

pp 1203–1208

Barata J, Ribeiro L, Onori M (2007b) Diagnosis on evolvable

assembly systems. In: IEEE International symposium on indus-

trial electronics (ISIE), Vigo, Spain, pp 3221–3226

Barata J, Ribeiro L, Onori M (2007c) Diagnosis on evolvable

production systems. In: IEEE International symposium on

industrial electronics (ISIE), Vigo, Spain, pp 3221–3226

Benjaafar S, Heragu S, Irani S (2002) Next generation factory

layouts: research challenges and recent progress. Interfaces

32(6):58–77

Berry G, Boudol G (1998) The chemical abstract machine. Theor

Comput Sci 96(1):217–248

Bongard J, Zykov V, Lipson H (2006) Resilient machines through

continuous self-modeling. Science 314:1118–1121

Camarinha-Matos L, Afsarmanesh H, Galeano N, Molina A (2009)

Collaborative networked organizations: concepts and practice in

manufacturing enterprises. Comput Ind Eng 57(1):46–60

Chen H, Sheng W, Xi N, Song M, Chen Y (2002) Cad-based

automated robot trajectory planning for spray painting of free-

form surfaces. Ind Robot Int J 29(5):426–433

Clavel M, Durán F, Eker S, Lincoln P, Martı́-Oliet N, Meseguer J,

Talcott C (2007) All about Maude: a high-performance logical

framework, how to specify, program, and verify systems in

rewriting logic. LNCS. Springer, Berlin

Clavel M, Palomino M, Riesco A (2006) Introducing the ITP tool:

a tutorial. J Univers Comput Sci 12(11):1618–1650

Di Marzo Serugendo G (2009) Robustness and dependability of self-

organising systems: a safety engineering perspective. In: Inter-

national symposium on stabilization, safety, and security of

distributed systems(SSS). LNCS, vol 5873. Springer, Berlin,

pp 254–268

Di Marzo Serugendo G, Fitzgerald J, Romanovsky A (2010)

Metaself: an architecture and development method for depend-

able self-* systems. In: Symposium on applied computing

(SAC), Sion, Switzerland (page To appear)

Di Marzo Serugendo G, Fitzgerald J, Romanovsky A, Guelfi N (2007)

A metadata-based architectural model for dynamically resilient

systems. In: ACM symposium on applied computing (SAC),

ACM, Seoul, Korea, pp 566–573

Eker S, Meseguer J, Sridharanarayanan A (2003) The Maude LTL

model checker and its implementation. In: 10th International

SPIN workshop on model checking of software, LNCS, vol

2648. Springer, Berlin, pp 230–234

ElMaraghy H (2006) Flexible and reconfigurable manufacturing

systems paradigms. Int J Flex Manuf Syst 17(4):261–276

Farzan A, Chen F, Meseguer J, Ros, u G (2004) Formal analysis of

Java programs in JavaFAN. In: Computer Aided Verification

(CAV), pp 501–505

Ferrarini L, Veber C, Lüder A, Peschke J, Kalogeras A, Gialelis J,

Rode J, Wunsch D, Chapurlat V (2006) Control architecture for

reconfigurable manufacturing systems: the PABADIS’PROM-

ISE approach. In: IEEE International conference on emerging

technologies and factory automation (ETFA), Prague, Czech

Republic, pp 545–552

Frei R (2010) Self-organisation in evolvable assembly systems. PhD

thesis, Department of Electrical Engineering, Faculty of Science

and Technology, Universidade Nova de Lisboa, Portugal

Frei R, Di Marzo Serugendo G, Barata J (2006) Designing self-

organization for evolvable assembly systems. Technical report,

BBKCS-09-04, School of Computer Science and Information

Systems, Birkbeck College, London, UK

Frei R, Di Marzo Serugendo G, Barata J (2008a) Designing self-

organization for evolvable assembly systems. In: IEEE Interna-

tional conference on self-adaptive and self-organizing systems

(SASO), Venice, Italy, pp 97–106

Frei R, Ferreira B, Barata J (2008b) Dynamic coalitions for self-

organizing manufacturing systems. In: CIRP International con-

ference on intelligent computation in manufacturing engineering

(ICME), Naples, Italy

Frei R, Ferreira B, Di Marzo Serugendo G, Barata J (2009a) An

architecture for self-managing evolvable assembly systems. In:

IEEE International conference on systems, man, and cybernetics

(SMC), San Antonio, TX, USA

Frei R, Pereira N, Belo J, Barata J, Di Marzo Serugendo G (2009b)

Self-awareness in evolvable assembly systems. Technical report,

BBKCS-09-07, School of Computer Science and Information

Systems, Birbeck College, London, UK

Frei R, Pereira N, Belo J, Barata J, Di Marzo Serugendo G (2010)

Implementing self-organisation and self-management in evolv-

able assembly systems. In: To appear in IEEE International

symposium on industrial electronics (ISIE), Bari, Italy

Garstenauer M (2009) Das virtuelle engineering. Comput Autom

9:24–26

Ghallab M, Nau D, Traverso P (2004) Automated planning, theory

and practice. Morgan-Kaufman

Hanisch C, Munz G (2008) Evolvability and the intangibles. Assembl

Autom 28(3):194–199

Hollis R, Rizzi A, Brown H, Quaid A, Butler Z (2003) Toward a

second-generation minifactory for precision assembly. In: Inter-

national advances robotics program workshop on microrobots,

micromachines and microsystems, Moscow, Russia

ISTAG (2001) Scenarios for ambient intelligence in 2010. informa-

tion society technologies advisory group report. http://www.

cordis.lu/ist/istag.htm

ISTAG (2003) Ambient intelligence: from vision to reality. informa-

tion society technologies advisory group report. http://www.

cordis.lu/ist/istag.htm

Koren Y, Heisel U, Jovane F, Moriwaki T, Pritchow G, Ulsoy A, Van

Brussel H (1999) Reconfigurable manufacturing systems. CIRP

Ann Manuf Technol 48(2):6–12

Laprie J (2008) From dependability to resilience. In: IEEE/IFIP

International conference on dependable systems and networks,

DSN 2008, Fast Abstracts

Lohse N (2007) Towards an ontology framework for the integrated

design of modular assembly systems. PhD thesis, School of

Mechanical Materials and Manufacturing Engineering, Faculty

of Engineering, University of Nottingham, Nottingham, UK

Self-organising assembly systems using the chemical reaction model 183

123

http://www.cordis.lu/ist/istag.htm
http://www.cordis.lu/ist/istag.htm
http://www.cordis.lu/ist/istag.htm
http://www.cordis.lu/ist/istag.htm

Lohse N, Hirani H, Ratchev S, Turitto M (2005) An ontology for the

definition and validation of assembly processes for evolvable

assembly systems. In: 6th IEEE International symposium on

assembly and task planning: from nano to macro assembly and

manufacturing (ISATP). Montreal, QC, Canada, pp 242–247

Lohse N, Ratchev S, Barata J (2006) Evolvable assembly systems: on

the role of design frameworks and supporting ontologies. In:

IEEE International symposium on industrial electronics (ISIE),

vol 4. Montreal, Canada, pp 3375–3380

Maffei A, Rossi T (2007) Development of an ontology to support the

EAS: ELECTROLUX Test case. M. Sc. thesis, University of

Pisa, Italy

Maffei A, Dencker K, Bjelkemyr M (2009) From flexibility to

evolvability: ways to achieve self-reconfigurability and full

autonomy. In: International IFAC symposium on robot control

(SYROCO), Gifu, Japan

Meseguer J (1990) Rewriting as a unified model of concurrency. In:

Concur Conf., Amsterdam, The Netherlands. LNCS, vol 458.

Springer, Berlin, pp 384–400

Meseguer J (1992) Conditional rewriting logic as a unified model of

concurrency. Theor Comput Sci 96(1):73–155

Onori M (2002) Evolvable assembly systems: a new paradigm? In:

33rd International symposium on robotics (ISR), Stockholm,

Sweden, pp 617–621

Onori M, Hanisch C, Barata J, Maraldo T (2008) Adaptive assembly

technology roadmap 2015, project report-public, document 1.5f,

nmp-2-ct-2004-507978

Pechoucek M, Marik V, Stepankova O (2000) Coalition formation in

manufacturing multi-agent systems. In: International conference

on database and expert systems application (DEXA), London,

UK, pp 241–246

Ribeiro L, Barata J, Mendes P (2008a) MAS and SOA: complemen-

tary automation paradigms. In: Azevedo A (ed) Innovation in

manufacturing networks, vol 266. Springer, Boston, pp 259–268

Ribeiro L, Barata J, Onori M, Amado A (2008b) OWL ontology to

support evolvable assembly systems. In: 9th IFAC workshop on

intelligent manufacturing systems (IFAC-IMS), Szczecin,

Poland, pp 393–398

Ros, u G (2007) K: a rewriting-based framework for computations:

preliminary version. Technical Report Department of Computer

Science UIUCDCS-R-2007-2926 and College of Engineering

UILU-ENG-2007-1827, University of Illinois at Urbana-Cham-

paign, USA

Ros, u G (2010) An overview of the K semantic framework. J Log

Algebraic Program. doi:10.1016/j.jlap.2010.03.012

Sasse R, Meseguer J (2007) Java?ITP: a verification tool based on

Hoare logic and algebraic semantics. In: Denker G, Talcott C

(eds) 6th International workshop on rewriting logic and its

applications (WRLA). Electronic Notes in Theoretical Computer

Science, vol 176(4), pp 29–46

Semere D, Barata J, Onori M (2007) Evolvable systems: develop-

ments and advance. In: IEEE International symposium on

assembly and manufacturing (ISAM), Ann Harbor, MI, USA,

pp 288–293

Semere D, Onori M, Maffei A, Adamietz R (2008) Evolvable

assembly systems: coping with variations through evolution.

Assembl Autom 28(2):126–133

S, erbănut,ă TF, Ros, u G (2010) K-Maude: a rewriting based tool for

semantics of programming languages. In: Proceedings of the 8th

International workshop on rewriting logic and its applications

(WRLA’09), LNCS (To appear)

S, erbănut,ă TF, Ros, u G, Meseguer J (2009) A rewriting logic approach

to operational semantics. Inf Comput 207(2):305–340

Shen W, Maturana F, Norrie D (1998) Learning in agent-based

manufacturing systems. In: AI & manufacturing research

planning workshop, Albuquerque, NM, USA, pp 177–183

Siltala N, Hofmann A, Tuokko R, Bretthauer G (2009) Emplacement

and blue print an approach to handle and describe modules for

evolvable assembly systems. In: International IFAC symposium

on robot control (SYROCO), Advances in soft computing, Gifu,

Japan

Simaria A, Vilarinho P (2009) 2-antbal: An ant colony optimisation

algorithm for balancing two-sided assembly lines. Comput

Industrial Engineering 56(2):489–506

Ueda K (2006) Emergent synthesis approaches to biological manu-

facturing systems. In: 3rd International CIRP conference on

digital enterprise technology (DET), Keynote paper, Setubal,

Portugal

Valckenaers P, Van Brussel H (2005) Holonic manufacturing

execution systems. CIRP Ann Manuf Technol 54(1):427–432

Wermelinger M (1998) Towards a chemical model for software

architecture reconfiguration. IEEE Proc Softw 145(5):130–136

184 R. Frei et al.

123

http://dx.doi.org/10.1016/j.jlap.2010.03.012

	Ambient intelligence in self-organising assembly systems using the chemical reaction model
	Abstract
	Introduction
	Research on evolvable and self-organising assembly systems
	Organisation of this article

	Ambient intelligence and assembly systems
	Assembly systems and modules
	Evolvable and self-organising assembly systems
	Ambient intelligence in self-organising assembly systems

	Chemical reaction model
	Gamma and CHAM
	Rewriting logic
	Maude
	CHAM within rewriting logic
	Application to SOAS
	Chemical reactions and self-organisation

	Running example of SOAS
	Case study example
	The generic assembly plan
	Layout design
	The layout-specific assembly instructions

	Modelling according to the chemical abstract machine
	Interface compatibility
	Composition pattern
	Creation of composite skills
	Task coalition matching
	Layout design and transport linking
	Transforming the GAP into the LSAI (rewriting)

	Specifications and simulations in Maude
	From CHAM, through K, to Maude
	The K (visual) notation for rewrite rules

	Structure of the model
	Mra
	Skill
	Gap
	Task
	Interface
	Part

	Reaction rules
	Case study
	Simulation example
	Discussion and remarks

	Wermelinger’s properties in SOAS
	Conclusion and Outlook
	Resilience and dependability
	Feasibility---strong and weak points

	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

