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Abstract This article recapitulates on the research done

in self-organising assembly systems (SOAS) and presents

the completed formal specifications and their simulation in

Maude. SOAS are assembly systems that (1) participate in

their own design by spontaneously organising themselves

in the shop floor layout in response to the arrival of a

product order and (2) manage themselves during produc-

tion. The self-organising process for SOAS to design

themselves follows the Chemical Abstract Machine

(CHAM) paradigm: industrial robots self-select and self-

arrange according to specific chemical rules in response to

a product order with generic assembly instructions (GAP).

This article presents an additional set of rules describing

how the GAP is transformed into layout-specific assembly

instructions, which is a kind of recipe for how the self-

organising robots assemble the product.

Keywords Self-organisation � Maude � Agile

manufacturing � Formal specifications � Assembly systems

1 Introduction

Self-organising assembly systems (SOAS) represent an

approach which gives agile manufacturing systems more

intrinsic intelligence to serve the user in a more autono-

mous way. This is a very valuable approach in a time

where technological systems are becoming increasingly

complex, difficult to manage and laborious to change. In

response, a development towards systems with more

autonomy can be observed in many different areas of

engineering and technology. This includes autonomic

computing (Kephart and Chess 2003), complexity engi-

neering (Frei and Di Marzo Serugendo 2011a; Frei and Di

Marzo Serugendo 2011b; Frei and Di Marzo Serugendo

2012), Emergent Engineering (Ulieru and Doursat 2011),

many types of self-healing technologies (Frei et al. 2012),

self-assembly at various scales (Boncheva et al. 2003;

Gross and Dorigo 2008; Phili and Stoddart 1996) and many

other self-* approaches.

Additionally, manufacturing needs to become more

agile and responsive to change in a highly competitive

world. Production lot sizes tend towards very small num-

bers, whereas the product variants and options are getting

more diverse. Manufacturing and assembly systems there-

fore need to be agile, highly responsive to changing

requirements, and able to function with minimal downtime

for reconfiguration and maintenance. These objectives are

addressed in the paradigm of evolvable assembly systems

(EAS) (Barata 2005; Onori 2002; Onori et al. 2008, 2011).

SOAS (Frei 2010; Frei and Di Marzo Serugendo 2011c) go

a step further by assigning the system modules a proactive

role in system design and assembly execution.

This article presents the now completed work done

based on what was previously published: This includes the

design (Frei et al. 2008a, 2010b; Di Marzo Serugendo and
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Frei 2010) and the architecture (Frei et al. 2009) of SOAS

(Frei 2010; Frei and Di Marzo Serugendo 2011c), as well

as the development of a specific ontology and ‘on-the-fly’

creation of coalitions (Frei et al. 2008b). A brief summary

is in (Di Marzo Serugendo and Frei 2012). In Frei et al.

(2010a) we explained the various relevant concepts, which

are briefly reviewed in this article, clarified the relation

between Ambient Intelligence and SOAS, and presented the

first part of the formal specifications. This work has now

been completed and serves as a proof of concept.

SOAS and ambient intelligence: ambient intelligence

(ISTAG 2001, 2003) refers to electronic systems that are

sensitive and responsive to the presence of people. They

are usually embedded in the everyday environment, con-

text-aware, personalised, adaptive or anticipatory to chan-

ges in the environment.

In the area of manufacturing and assembly, a product

designer traditionally provides a design of the product, this

is an assembly sequence technically describing how to join

the products parts and in which order. A team of engineers

then builds an appropriate assembly system, which consists

of a series of modules or complete robots, properly arran-

ged and connected in the shop-floor layout, and pro-

grammed to execute the assembly movements.

Traditionally, the resulting assembly system is dedicated

to building the specified product and runs under central

control. A human operator monitors the system, its per-

formance and the quality of products. The system is

equipped with security features that stop the system in case

of critical failures. The operator must then find out what

went wrong and how to fix it.

Evolvable and self-organising assembly systems revisit

this way of building systems and demonstrate Ambient

Intelligence features and responsiveness to people along

the following three lines (Frei et al. 2010a):

– Product requirements and link with the product

designer. A new assembly sequence, provided by the

product designer, triggers a self-organising process

among the different modules available either from the

storage or already positioned on the shop-floor. The

modules spontaneously organise into appropriate coali-

tions (groups of modules) to fulfill the tasks specified in

the assembly sequence.

The assembly processes and the assembly system

technology can even iteratively influence the product

design (Onori 2002). The product designer and the

assembly system collaborate in producing the final

product design.

– Layout design and link with the engineer building the

assembly system. The modules autonomously search for

suitable coalition partners to compose the skills

required to fulfill the tasks of the assembly sequence.

Additionally, the coalitions arrange themselves in the

shop-floor layout: they choose a position taking into

account overlapping workspaces. The engineer may

also collaborate to this process and suggest some

specific module or preferred position. The obtained

layout and final choice of modules is validated by the

engineer. The assembly system resulting from the

collaboration between the engineer and the self-organ-

ising modules is then able to execute the assembly

sequence.

– Production and link with the operator. During

production, the assembly system performs monitoring

tasks. The individual modules participating in the

assembly system monitor themselves, their neigh-

bours, the quality of the produced products, any

unexpected item (human hand, dropped part). Some of

these tasks involve high precision, mini and/or micro-

movements, checking of performances that go beyond

human capabilities. In collaboration with the opera-

tor, who can stop/reset the system at any time,

the assembly system runs the production at the best

possible performance given the current production

conditions.

The technology involved encompasses: RFID tags attached

to individual products being assembled reporting on

assembly tasks performed so far, sensors attached to the

different modules reporting on performances such as

precision or speed, and autonomous software agents acting

as wrappers around the physical modules enabling them to

become reactive and adaptive.

Organisation of this article: Sect. 2 briefly introduces

rewriting logic, the chemical abstract machine and the

maude software. Section 3 details the case study used in

this paper. Section 4 recalls the previously published

specifications and indicates differences between the pre-

vious and the new work. Section 5 presents the completed

specification and simulation results. Finally, Sect. 6 con-

cludes this article.

2 Background and previous work

This section is intentionally kept short. For more details,

please consult Frei et al. (2010a).

The Gamma chemical reaction model (Banâtre et al.

2000) was introduced as an alternative to sequential models

of programs. Gamma is built around the idea of a chemical

reaction metaphor. The main data structure is the multiset

seen as a chemical solution. A program is then a pair

ðReactionCondition;ActionÞ. The execution consists of

removing from the set the elements that appear in the

ReactionCondition part and replacing them with the

R. Frei et al.
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product of the Action. The program stops and reaches a

stable state when no more reactions can take place.

The Chemical Abstract Machine (CHAM) (Berry and

Boudol 1998) is an extension of the Gamma model

allowing modular structures: chemical reactions may occur

within membranes and stay local to the membrane; and the

opposite operation, the airlock, allows the extraction of a

molecule from a membrane.

Rewriting logic was introduced by Meseguer (1990,

1992) as a fundamental logic for concurrency, modelling

transitions between equationally defined congruence classes

of terms. Rewriting logic extends equational logic with

rewrite rules, allowing one to derive both equations and

rewrites (or transitions). Deduction remains the same for

equations (i.e., replacing equals by equals), but the sym-

metry rule is dropped for rewrite rules. Formally, a rewrite

theory is a triple ðR;E;RÞ, where ðR;EÞ is an equational

specification and R is a set of rewrite rules. Rewriting logic is

a framework for true concurrency: the locality of rules, given

by their context-insensitiveness, allows multiple rules to

apply at the same time provided their patterns do not overlap.

Maude (Clavel et al. 2007) is a rewrite engine offering

full execution and analysis support for rewriting logic

specifications.1 Maude provides an execution and debug-

ging platform, a breadth-first search (BFS) state-space

exploration, and a linear temporal logic (LTL) model

checker (Eker et al. 2003), as well as an inductive theorem

prover (Clavel et al. 2006) for rewrite logic theories; these

translate immediately into corresponding BFS reachability

analysis, LTL model checking tools, and theorem provers

for the defined models. For example, these generic tools

were used to derive a competitive model checker (Farzan

et al. 2004), and a Hoare logic verification tool (Sasse and

Meseguer 2007) for the Java programming language.

CHAM within rewriting logic: The chemical abstract

machine can be viewed as a particular definitional style

within rewriting logic (Meseguer 1992; Şerbănuţă et al.

2009). That is, every CHAM is a specific rewrite theory in

rewriting logic, and CHAM computation is precisely con-

current rewriting computation.

3 Case study example of SOAS

For illustration purposes, we assume the following simple

product to be assembled: an adhesive tape roller dispenser,

consisting of two body case parts (part1 and part3), a tape roll

(part2) and a screw (part4), assembled on top of a carrier, as

shown in Fig. 1. For more details see Frei (2010).

The Generic assembly plan (GAP) specifies the way a

product is to be assembled: it includes the assembly

sequence of the different parts and the way they must be

joined. Tasks are defined in the form of generic operations

(equivalent to skills). The GAP does not provide infor-

mation about what module2 to use and what movement to

make. In other words, the GAP says what to do (assemble

10 tape rollers by joining part1 with part2, part3 and part4)

but not how (which robotic modules handle which parts

and execute which movements at which instant) and is thus

independent from any layout. Figure 2 shows the example

of a GAP represented as a workflow and written in XML.

The six tasks illustrated in Fig. 2 each have an operation

type (Op), an object to be handled (Obj), a start point

(StPt), an end point (EndPt), as well as a start orientation

(StOr) and an end orientation (EndOr), referring to the

parts to be treated. We assume this to be sufficient infor-

mation at this stage of implementation. This GAP specifies

that a carrier is loaded from the storage to conveyor, then

part1 is picked from feeder1 and placed on the carrier, then

part2 is picked from feeder2 and placed on top of part1.

The same procedure follows for part3 that is placed on top

of part2, and part4 that is screwed into part3. Finally, the

carrier with the assembled product is unloaded to the

storage. The flash in the rectangle on the left hand side of

the GAP represents the beginning (IN), and the square on

the right hand side stands for the end (OUT).

The layout is incrementally built according to a self-

organising process illustrated in Fig. 3: modules self-

assemble to form coalitions according to a process of

reactions and rewriting. Coalitions are built to progres-

sively match with the tasks defined in the GAP.

The details of the modelling of this self-organising

process leading to such a layout can be found in Frei et al.

(2010a); a summary is here above in Sect. 2.

To assemble the product, the GAP needs to be trans-

formed into layout-specific assembly instructions (LSAI)

as shown in Fig. 4. This transformation takes into account

Fig. 1 The adhesive tape roller dispenser

1 This work was implemented in Maude version 2.4. 2 with the exception of the feeders, which are part-specific
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the actual modules, the tasks and the parts. The LSAI

consists of executable programs for each of the robotic

modules in the coalitions, based on their requested skills.

The instructions are generated for a certain layout; if the

layout is modified, these instructions must be changed.

At production time, the assembly of a product will result

from the execution of the LSAI by the agents/modules

according to the workflow. Any change requiring a layout

reconfiguration restarts the self-organising layout design

process.

Figure 6 illustrates the assembly procedure on a hypo-

thetical linear layout.

4 Previously published specifications

The specifications recalled in this section were published in

Frei et al. (2010a) and are necessary for understanding the

new work published in Sect. 5. The first four of the

following six rules (Frei and Di Marzo Serugendo 2011c;

Frei 2010) have been specified previously; the last two are

specified in this article.

1. Interface compatibility

2. Composition patterns

3. Creation of composite skills

4. Task coalition matching

5. Layout design and transport linking

6. Transforming the GAP into the LSAI

Note that Maude works with so-called modules, written as

mod(...)endm. This is an unfortunate coincidence with the

typical use of the word module in this article, which refers

to a manufacturing resource agent (MRA).

Similarly, note that the term agent used in this context is

not to be confused with software agents mentioned elsewhere.

The entire specification will not be discussed in detail

here; it can be downloaded from:

http://code.google.com/p/soas-maude.

Fig. 2 Example of a GAP written as a workflow

Fig. 3 Self-assembly of

coalitions in CHAM, illustrating

the process phases dominated

by rules 1–4 as well as 5 and 6.

R. Frei et al.
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4.1 Structure of the model

The language of our model consists of nested ‘‘cells’’,

which are named CHAM-like molecules. Cells contain

either concrete values, like Integers, Floats, Names, and

enumerations, or a ‘‘soup’’ of other cells, representing

CHAM-like configuration molecules.

The top configuration cell, shown in Fig. 5, contains

three mandatory cells:

– gaps, specifying the general assembly plans

– mras, specifying the manufacturing resource agents

– and parts, specifying the parts

– as well as an optional cell, which appears during the

model simulation, which contains the agents, (partial)

coalitions of modules aiming to solve a certain task.

For details about other items, please refer to Frei et al.

(2010a).

4.2 Differences from the previously published

specifications

The original specifications have been refined and

improved; they are now richer, more detailed, and more

realistic.

In the previous version (Frei et al. 2010a), the case study

only included two parts, namely a body case and the

adhesive tape roller. In this extended version, it consists of

four parts, with an additional body case part and a screw

which holds them together. Moreover, in the previous

version, only four of the six types of rules to determine the

process of self-organisation were formally specified,

whereas now, all six are included. The current version is

complete and allows the assembly system to fully design

itself from the arrival of a product order (under the form of

a GAP) to a complete assembly system ready to work on

the pieces and assemble products.

The specifications now include simple rules for layout

formation, which guide the robots towards arranging

themselves in a serpentine form, with the feeder always

being on the left of the robot. This was an initial choice we

took for experimenting the concept, and only serves as an

example at this stage. Any number of other configuration

rules could be specified, such as, for instance, ‘‘if the base

axis is pneumatically actuated, the feeder places itself on

the right of the robot base, with a distance of 10 cm’’.

As a perspective for practical use of these specifications,

a template for different layout creation rules/LSAI deri-

vation rules could be provided, so that the user could give

their wishes as input. The system would then be guided to

design itself according to the requirements of specific

production facilities and orders. There could be many

different patterns for combining feeders, robots and robotic

modules, grippers and conveyors, and they could arrange

themselves in any specified shop-floor layout.

The previously published version of our work specified

the following:

Fig. 4 Example of an LSAI

written as a workflow

(incomplete view)

∗

Fig. 5 The top configuration cell

Self-organising assembly systems formally specified in Maude
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– MRA (manufacturing resource agent)

– Skills

– Positions, angles

– Task

– GAP (generic assembly plan)

– LSAI (layout-specific assembly instructions)

– Interfaces (?/-) and diverse types

– Parts to be assembled

– Reaction rules:

1. Interface compatibility: describing the physical com-

patibility of the modules.

2. Typical composition patterns: certain modules are

typically combined with certain other modules, e.g. a

gripper is always held by a robotic axis (either an

individual robotic module or a complete robot).

3. Creation of composite skills: the modules which form

a coalition contribute their individual skills and form

composite skills, e.g. a gripper can open and close, an

axis can move, and together they form a composite

pick&place skill.

4. Task–coalition matching (considering only the type of

skills required): a task which requires a certain skill

will associate with a coalition that offers those skills.

New features in the additional rules detailed in this

article:

Additional reaction rule: 5) Layout creation and trans-

port linking: the chosen modules and coalitions are arran-

ged to form a shop floor layout and connected through

conveyors (or potentially other means of transportation).

– Form the layout (robots and feeders choose positions in

the layout).

– Establish their geographical arrangement; link robots

with conveyors.

– If impossible, adjust robot positions.

– IN and OUT to mark the inputs and outputs of a layout.

– Limit the search space by taking into account user

preferences or other constraints.

– Adapt / reconfigure the layout in case of problems; how

to determine a solution with minimal changing effort?

Additional reaction rule: 6) Derivation of the LSAI from

the GAP: the concrete assembly movements need to be

made explicit for the chosen layout.

Interface verification: Verifying that the interfaces

which are about to connect have opposite polarities (either

‘?/-’ or ‘-/?’) ! extending rule 1).

Gripper type: Matching the gripper-type, subtype and

range with the material and size of the part to be moved!
extending rule 4).

Indirect requirements: Taking into account the

requirements of the modules (for instance, a middle axis

will need a base axis) ! extending rule 2) and 3).

Coalition selection: Rules for deciding which coalition

will be associated with a task, if there are more than one

possibilities (till now, the first solution was taken) !
extending rule 4).

The CHAM-based part of the process ends once suitable

modules have associated with tasks to be fulfilled. The

layout creation and then the LSAI derivation are based on

simple rules, which are being defined using functional

Maude equations.

5 Completed specification and simulation results

5.1 Available modules

The following modules were specified and are thus avail-

able in the hypothetical shopfloor repository to build a

layout:

– 3 industrial robots abb-robot, cartesian-robot, and

scara-robot;

– Base axes a1, a2, a3 (having only one interface, the

other connection being the ground), middle axes a4, a5,

a6, and top-axes a7, a8, a9 (able to hold a gripper);

– Conveyors (generic);

– Endings of the layout ending-in and ending-out;

Fig. 6 Concept for a hypothetical linear assembly line

R. Frei et al.
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– Feeders f1, f2, f3 and f4;

– Grippers g1, g2, g3, g4, and g5;

– Positioning devices pd1, pd2, pd3 and pd4 (allowing the

conveyors to place the carrier correctly under the

robots);

– Humans (generic); technically, the human is wrapped

by an MRA with the skills load and unload.

These modules were chosen because they are suitable to

execute the tasks specified in the GAP. Like the product

chosen for this case study, the modules only represent an

example; any other set of modules could be specified

according to the user’s needs and the existing equipment.

Not all available modules are necessarily used in the

layout. For efficiency reasons, humans and conveyors were

abstracted; there are as many of them available as required.

5.2 Pick&place operation

Figure 8 illustrates the possible trajectories of a robot

executing a pick&place operation. The movement

sequence is normally as follows, with the positions illus-

trated in Fig. 7:

– Preparatory phase : from idle position or any other

position, move to B. If gripper closed: open gripper.

– Phase 1: From B move to A, close gripper, move to

back to B.

– Phase 2: From B move to C, or the other way round.

– Phase 3: From C move to B, open gripper, move to

back to C. If no other task to execute: move to idle

position and close gripper.

Furthermore, Fig. 8 indicates the robotic skills which

could execute the required movements. For Phase 2, for

instance a robot capable of moving linearly in the hori-

zontal plane (lin x, lin y) would be suitable. Alternatively,

also a robotic module with the vertical z axis as a rotational

axis may be used. For reasons of simplicity, different

solutions with other modules or other module combinations

are not considered here. For Phases 1 and 3, an axis that

moves linearly along the z axis or one that rotates along a

horizontal axis (no matter if x or y) may be used. Again,

this choice is not exhaustive and motivated by the intention

to simplify the model.

In this sense, the generation of composite skill ‘pick&

place’ is currently hardcoded in the rules. This is suitable

because the combination of gripper and axes follows a

typical composition pattern. For less common module

combinations - for instance, combining a full industrial

robot with an additional axis, other rules could be intro-

duced; there is even some space for the emergence of new

opportunistic combinations.

The Maude rules defining the LSAI generation for the

pick&place operation are presented in Sect. 5.4.

5.3 Rules for layout design and transport linking

Figure 9 illustrates the result of the specification execution,

based on a set of simple rules, as follows:

– Start at (0,0,0) ? offset, going eastwards (rule in

Fig. 10)

– Add a coalition towards the direction of advancement if

there is enough space (e.g., rule in Fig. 12)

– If end of floor is reached, add a conveyor corner, then a

conveyor going north, another conveyor corner, and

change the direction (e.g., rule in Fig. 13)

– Stop when all coalitions have been placed

Any other strategy or rules for building a layout could be

specified according to the user’s preferences and the actual

shop floor constraints.

In our current Maude implementation, the layout deri-

vation begins at the end of the process of assigning tasks to

the formed MRA coalitions. Once a set of agents covering

Fig. 7 Positions A, B, C, D, and idle

Fig. 8 Robot trajectories in a ‘pick&place’ operation and suitable

movements; abstract representation showing the combinatoric possi-

bilities to combine robot movements

Self-organising assembly systems formally specified in Maude
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all the tasks was successfully chosen, the system transitions

into the layout state. Once this happens, the rule in Fig. 10

is triggered, setting the environment for the layout and

LSAI generation phases.

This rule sets up a nested structure of cells which will

trigger the layout and LSAI specific rules. For example, the

layout generation cell is initialized with the agents resulted

after the coalition formation phase, as well as with cells

containing necessary metadata information such as the

beginning position set to the south-west corner or the

direction of advancing set to east. These cells are con-

ceived to dissolve once all the agents have been processed

in that stage; for example, Fig. 11 presents the rule con-

cluding the layout generation phase.

A typical rule for setting the position of an agent is

presented in Fig. 12. The rule first checks in the side

condition whether there is enough room on the shop-floor

Fig. 9 Layout generated with a set of simple rules inspired by

chemical abstract machine, representing an example of a more

general case. The first task t1 (loading) and the last task t6 (unloading)

are executed by humans and therefore not shown. To maintain the

generic nature of the illustration, the robots and grippers are not given

specific identifications. The form of the layout was determined by

layout formation rules that were chosen for no particular reason; they

could be easily replaced by any other layout formation rules and are

classified as ‘user preferences.

Fig. 10 Rule for starting the layout and LSAI plan generation

Fig. 11 Rule for concluding the

layout generation phase.

R. Frei et al.
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in the direction of advancing (here east). If so, it creates a

new agent to represent the conveyor taking the product

from its previous station to the current one and then it sets

the position of the current agent at the end of the newly

added conveyor. At the same time, the current position is

updated to the right of the positioned agent. Note that in

this rule each agent and carrier gets assigned an id

identifying its position in the assembly line. The rules for

the west direction are similar.

When the end of the shop floor is reached (either

towards west or east), a corner rule applies. Figure 13

presents the rule for changing direction of the assembly

line when the west end of the shop floor is reached. The

rule first checks in the side condition if adding a new agent

Fig. 12 Setting an agent in the layout

Fig. 13 Switching the direction

of the assembly line

Self-organising assembly systems formally specified in Maude
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in the same direction will exceed the limits of the shop

floor (here westwards), and if this is the case, it verifies that

the shop floor has enough space to continue northwards. If

so, three new conveyors are positioned: a corner one, to

take the product from the previous conveyor and orient it

northwards, then a regular conveyor to carry the product

north, followed by another corner conveyor to change the

direction to the opposite of the original one (here from

west to east).

5.4 Rules for tranforming the GAP into the LSAI

Based on the GAP and the created layout, a corresponding

LSAI needs to be generated. This is done according to a set

of rules which can be modified depending on user prefer-

ences and robot characteristics.

Taking into consideration the coordinates of each

module’s position in the layout, the previously abstract

movements are now instantiated. Abstract points become

concrete, and skills become operations.

For example, the main rule for deriving the pick&place

movement sequence described in Sect. 5.2 is formalized in

our Maude implementation by the following equation:

This equation gives a high-level formalisation of the

pick and place procedure, by translating it in concrete

movements and open/closing of grippers executed by the

MRAs coalition with its available skills. The idle position

is dz above the middle of the feeder with the gripper open.

From this position the coalition uses the available Skills

to moveDown to the middle of the feeder (position AP),

then it uses the open-close skill of the gripper to close and

grip the part being fed, then it first moves back up to the

idle position (moveUp), then in the horizontal plane

(moveFromTo) above the position of the conveyor

(position DP), where it descends (moveDown) and it opens

the gripper to place the part on top of the current product.

Finally, it retraces its moves up and then back to the idle

position. Figure 7 illustrates this sequence of movements.

As mentioned above, the precise movements are com-

puted based on the available skills, and could be a com-

position of linear and rotational movements, with

preference given to linear movements. For example, the

equational specification for the moveDown operation

consists of the two conditional equations depicted below,

the first used when linear movement skills are available,

while the second when only rotational skills can be used.

The moveDown takes as argument a three-dimensional

position but only moves on the vertical axe, from the

current position (dz) to the one specified (Z). The equations

first detect a skill which can be used for the movement

R. Frei et al.

123



(signified by the side condition of the equation) and then

they create a new variant of the skill constituting the actual

operation, in which the range made available by the skill is

replaced by the concrete range and direction required for

the specific move operation. The equations defining the

moveUp and moveFromTo operation follow a similar

pattern.

The Maude implementation also includes definitions for

the concrete conveyors movements, as well as for the

humans loading/unloading the final product.

Without going into additional gory details here, the

interface for deriving the LSAI is specified in Maude as

follows:

The first equation defines the deriveLSAI function

taking as arguments the set of agents obtained after the

layout generation has completed and the remainder of the

configuration, containing the specifications for parts,

modules, and the assembly plan. This function delegates

work to an auxiliary function (named deriveLSAI as

well), which takes as arguments the list of agents sorted by

task identifiers and the configuration, and uses the addi-

tional two arguments to hold the agents which have already

been associated LSAIs to, as well as for dynamically

constructing the final products. Once the processing has

completed, making use of rules as those for the pick&place

operation mentioned above to associate LSAI information

to all agents, then the second equation applies, presenting

the resulting agents and the final product as a result.

5.5 Example of an execution result

For the case study presented in Sect. 3 and the modules

listed in Sect. 5.1, Maude generates 47 possible solutions in

just a few seconds. The final product generated by Maude,

including the concrete positioning of all parts is presented

in Appendix A.

Each solution also includes the coalition formed to solve

each task, with their concrete positioning on the shop floor,

and the conveyors linking them. The LSAI procedures are

also represented in these agents, including the movements

of the carrier and loading/unloading the product. The

Maude generated output for the first solution describing

these agents and their corresponding LSAI procedures is

presented in Appendix B. Additionally, Fig. 9 illustrates

the procedure to assemble the product:

It associates a person to load the carrier on the conveyor,

satisfying task 1. Then a conveyor carries the carrier

eastward, where the coalition associated with task 1 picks

the body-case from the feeder and places it on top of the

carrier to complete task 2. The another conveyor carries the

product eastward where the coalition associated with task 2

picks the tape-roll from the feeder and places it on

top of the body case to complete task 3. Again, the product

is carried eastward by another conveyor, where the coali-

tion associated with task 3 picks the body-case from the

feeder and places it on top of the tape roll to complete task

4. Given that the eastward end of the shop floor is about to

be reached, the direction of movement is changed first

northward by using a corner conveyor, then a regular

conveyor is used to move the product north to create

enough separation space from the existing coalitions, and

then again Sa corner conveyor is used to change the

direction westward. A conveyor then transports the product

westward, where a coalition associated with task 4 (and

thus containing a gripper that is able to insert a screw)

picks the screw and uses it to connect the existing parts on

top of the carrier to complete task 5. Finally, the product is

carried away westward by a conveyor at the end of which a

person awaits to unload it.

As mentioned above, Maude generates 48 solutions for

this GAP. The solutions differ from each other in that the

available modules compose different coalitions, which then

also reflects in the generated LSAI. For example, one dif-

ference between the first and the 25th solution is that in the

25th solution, the coalition addressing task 2 contains robot

r3 instead of robot r1, and thus the skills used for

movements have to be rotational instead of linear; simi-

larly, for task 3, robot r1 is used instead robot r2,

changing the movement type from rotational to linear;

finally, for task 4, r2 is used instead of r3, again changing

the movement type to linear from rotational.

6 Discussion and conclusion

The original formal specifications of Self-organising

assembly systems (SOAS) have been refined and improved;

they are now richer, more detailed, and more realistic.

Given a generic assembly plan (GAP), a set of manufac-

turing resource agents (MRA) as well as user preferences,

the Maude software produces a self-organising shop-floor

layout that is able to execute the required assembly oper-

ations, together with the layout-specific assembly instruc-

tions (LSAI).

The execution traces serve as a proof that Maude was

able to find a solution, meaning that the manufacturing
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resource agents (MRAs) can arrange themselves in a suit-

able way to execute the required assembly operation and

thus to assemble the final product.

A valid question which the informed reader might ask is

how to make sure that the obtained solutions are correct,

and whether all possible executions are obtained. With

respect to the first issue, we assume all of our rules,

implemented as equations and rewrite rules in Maude, are

faithfully modeling the rules and the intuition described in

the paper. Moreover, given the constructive nature of the

problem being addressed, any solution given by Maude can

first be traced (to check that each rule applied correctly)

and validated by effectively checking that the solution

conforms to the problem. With respect to the technique

being exhaustive, we do not see this as being crucial, as

plenty of solutions are found nevertheless. The Maude

rewrite engine does guarantee that all the behaviors of a

rewrite specification are being explored using its search

command if the rewrite system associated to it by orienting

equations from left to right is confluent and terminating on

its equational part, while its rules are coherent with regard

to the equations (Clavel et al. 2007). Confluence of the

equational part comes from the fact that the equational part

is deterministic. This can be syntactically checked by

noticing that equations are non-overlapping, i.e., no more

than one left-hand-side matches the same part of a term to

be rewritten concurrently. Termination is harder to prove,

requiring decreasing orders; however, the specifications

describe terminating processes, so intuitively rewriting by

equations should converge. Moreover, if the equations

were non-terminating, there are high chances that the

rewrite process would be non-terminating too, and thus not

able to produce any solution, which clearly is not the case.

Finally, coherence itself is nontrivial to prove in general;

however, it can be checked that the patterns used by our

rewrite rules are normal forms with regard to the equations,

which is a strong syntactic criterion for coherence.

While the current work is only preliminary, it could be

transformed into a user-friendly software system that

manufacturing companies could use to verify if their

manufacturing resources are sufficient to assemble a

product, and to generate one or many suggestions for how

to arrange the shop-floor layout, as well as to produce a

rough sketch of the necessary assembly movements of each

robotic module. Refinements would then be made using the

individual control software of each robot or existing system

integration tools. An advantage from using the approach

we suggest is that it considerably shortens and facilitates

the assembly system design phase, both when setting up a

new system (which may take up to six months) and when

modifying an existing one.

In the current version of the specification, the first step is

to generate the layout for a given GAP, and then to derive

the corresponding LSAI. This is suitable for a proof of

concept, that such specifications and rules are capable of

generating a layout. The currently implemented model is

simplified and only searches for a viable solution, without

giving any importance to performance characteristics or

efficiency.

If the goal is to produce an optimised solution, the

procedure could also be done the other way round: more

specific assembly instructions could be specified or derived

first, and then a suitable layout generated. The best results

would be received iteratively: having a rough concept of a

suitable layout, deriving suitable assembly instructions,

then improving the layout, and adapting the instructions,

and so forth.

The currently used sequence of movements for a

‘pick&place’ operation is very simple; it is described in

Sect. 5.2. In a more realistic implementations, more

sophisticated sequences and algorithms could be used to

produce movements that are optimised for each robot and

its kinematic characteristics.

For the sake of simplicity, the system currently only

generates a linear layout for a linear GAP; given a depen-

dency graph for a more complicated assembly, potentially

with several sub-assemblies to produce first, a suitable

layout could be generated as well. Again, user preferences

would guide what kind of layout would be designed.

The main accomplishment of this work is that an

assembly system is able to design itself, that is, to select

suitable modules, create coalitions to provide all composite

skills needed to assemble the product, to arrange the

coalitions in a shop floor layout, and to produce the robotic

modules’ movements (i.e. to derive the LSAI). Future work

is directed towards mechanisms for self-management while

the system is executing the assembly.

For this work to be useable in an industrial setting, it

requires for the specifications to be translated into a multi-

agent system that is able to communicate with the robots

and the order processing system used by the manufacturing

company. Suitable multi-agent manufacturing shopfloor

control systems exist, with CoBASA (Barata 2005) being

the basis on which this work was developed. CoBASA has

been augmented over the last few years, adding more

autonomy at the module level and including features for a

variety of self-* properties, including self-adaptivity, self-

diagnosis and self-learning (Barata et al. 2010; Candido

et al. 2012; Frei 2010; Ribeiro et al. 2008).

In terms of the formal specifications, future work

includes the preparation of a template for the user to

comfortably specify any type of desired layout as well as

other preferences, and the specification of the self-man-

agement process that governs the actual production exe-

cution, as opposed to the creation of the assembly system,

which was covered in this article.
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A: The product as generated by the Maude specification

Self-organising assembly systems formally specified in Maude

123



B: A solution for the generation of the LSAI as being

by Maude
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