
Mobile Netw Appl
DOI 10.1007/s11036-012-0411-1

Injecting Self-Organisation into Pervasive Service
Ecosystems

Sara Montagna · Mirko Viroli · Jose Luis Fernandez-Marquez ·
Giovanna Di Marzo Serugendo ·
Franco Zambonelli

© Springer Science+Business Media, LLC 2012

Abstract Pervasive service ecosystems are a new par-
adigm for the design of context-aware systems featur-
ing adaptivity and self-awareness. A theoretical and
practical framework has been proposed for address-
ing these scenarios, taking primary inspirations from
natural ecosystems and grounding upon two basic ab-
stractions: “live semantic annotations” (LSAs), which
are descriptions stored in infrastructure nodes and
wrapping data, knowledge, and activities of humans,
devices, and services; and “eco-laws”, acting as system
rules evolving the population of LSAs as if they were
molecules subject to chemical-like reactions. In this
paper, we aim at deepening how self-organisation can
be injected in pervasive service ecosystems in terms

This work has been supported by the EU-FP7-FET
Proactive project SAPERE Self-aware Pervasive Service
Ecosystems, under contract no.256873.

S. Montagna (B) · M. Viroli
Alma Mater Studiorum–Università di Bologna,
Via Venezia 52, 47521 Cesena, Italy
e-mail: sara.montagna@unibo.it

M. Viroli
e-mail: mirko.viroli@unibo.it

J. L. Fernandez-Marquez · G. Di Marzo Serugendo
University of Geneva, Battelle, Batiment A, Route de Drize
7, 1227 Carouge, Switzerland

J. L. Fernandez-Marquez
e-mail: joseluis.fernandez@unige.ch

G. Di Marzo Serugendo
e-mail: giovanna.dimarzo@unige.ch

F. Zambonelli
Università di Modena e Reggio Emilia,
Via G. Amendola 2, 42122 Reggio Emilia, Italy
e-mail: franco.zambonelli@unimore.it

of spatial structures and algorithms for supporting the
design of context-aware applications. To this end, we
start from an existing classification of self-organisation
patterns, and systematically show how they can be
supported in pervasive service ecosystems, and be com-
posed to generate a self-organising emergent behav-
iour. A paradigmatic crowd steering case study is used
to demonstrate the effectiveness of our approach.

Keywords Self-organising systems ·
Bio-inspired mechanisms · Pervasive computing ·
Context awareness

1 Introduction

A pervasive service ecosystem is a computing system
immersed in our everyday environment, made of actors
and components of various kinds, which we refer to
as individuals. They can be mobile users, their smart-
phones, software services, pervasive displays, sensors
and devices spread across the environment, sources
of knowledge, data and events. They all interoperate
opportunistically to achieve individual goals, but are
also globally guided and governed by some “laws”
enacted by the infrastructure. The pervasive service
ecosystem (pervasive ecosystem in short) paradigm is
aimed at tackling context-awareness of components
and processes, and handling adaptivity without hu-
man or supervised control. This scenario has notable
relations with natural ecosystems, and, in particular,
it shares with them the need of an intrinsic self-
organisation by which the globally intended behaviour
emerges out of the local interaction of individuals,
driven by the local manipulations enacted by those



Mobile Netw Appl

laws. Examples of application contexts include provi-
sioning of visualisation services on adaptive displays,
services for smart cities, intelligent traffic control, and
augmented social reality [41].

To address the engineering of this kind of systems,
which will soon emerge due to the increasingly wide-
spread diffusion of pervasive computing technologies,
we adopt a framework of self-organising coordina-
tion [35] tailored to spatially distributed, context-
dependent, and open systems—as pervasive computing
systems are. Drawing on existing works in the field
of coordination models and languages [6, 33, 34, 36],
middlewares for context-aware applications [5, 16, 24],
and on models of concurrency and bio-inspired com-
puting [9, 22, 25], we adopt a model based on the idea
of continuously reflecting the presence and activities of
components in the pervasive computing system through
Live Semantic Annotations (LSAs), which are stored
across computational devices, and altogether form a
global network of annotations representing the virtual
counterpart of the ecosystem. Ecosystem behaviour is
regulated by a set of laws, called eco-laws, which act
locally on each node and its neighbourhood, combining
and manipulating annotations using a chemical style
and semantic pattern matching [37, 39].

In this paper we study the problem of supporting
self-organising mechanisms on top of this model. Self-
organisation is known to be an effective source of
mechanisms for supporting applications that require
adaptivity and toleration of unpredictable changes, by
ensuring that spatial and temporal patterns of behav-
iour emerge out of local interactions and without a
central authority that imposes pre-defined plans. Such
patterns are usually inspired by natural systems, and
show appealing characteristics for pervasive scenarios,
since they are, first of all, able to adapt to environmen-
tal changes and able to achieve complex behaviours
using a limited set of basic rules [10].

To this end, we adopt the classification of self-
organising patterns provided in [11], in which a set of
basic functioning behaviours is discussed which can be
used in isolation or composed together to form more
complex patterns. In order to equip a pervasive ecosys-
tem with self-organisation we here propose a set of eco-
laws enacting fine-grained processes of LSA diffusion,
interaction, composition and decay: they will be shown
not only to support basic self-organising patterns, but
also their seamless composition into more articulated
ones.

The proposed approach is exemplified by a perva-
sive computing scenario of crowd steering, in which
groups of people are guided (by signs appearing in pub-
lic/private displays) towards locations based on their

preference, along optimal paths and taking into ac-
count contextual information describing the presence
of crowded areas which should be dynamically inter-
cepted and circumvented.

The remainder of the paper is organised as follows:
Section 2 introduces the pervasive service ecosystem
framework (detailing the outlined version appeared in
[37] and refining the eco-law language presented in
[39]), Section 3 discusses the problem of injecting self-
organisation in it, Section 4 presents the corresponding
solution we propose, Section 5 presents the case study,
Section 6 discusses related works, and finally Section 7
concludes providing final remarks.

2 Scenario, requirements, motivations and concepts

One notable application scenario of pervasive ecosys-
tems is that of crowd steering, which we here introduce
to describe the general requirements of situation-
awareness and adaptivity that our approach faces. The
idea is to guide people towards locations hosting events
of interest in a complex and dynamic environment
(using semantic matching with people’s interests),
avoiding obstacles that can dynamically appear and dis-
appear, such as crowded rooms or corridors, and with-
out any supervision—namely, in a self-organised way.
In particular, we consider a museum with a set of rooms
connected by corridors, whose floor is covered with
a network of computational devices (sensor nodes).
These devices exchange information with each other
based on proximity, sense the presence of visitors, and
hold information of various kinds (e.g., about exhibits
currently active in the museum). Visitors exploring the
museum are equipped with a smartphone that holds
their preferences. By interaction with sensor nodes,
a visitor can be guided towards rooms with a target
matching his/her interest, thanks to signs dynamically
appearing on the smartphone or on public displays.

2.1 Pervasive system requirements

Pervasive ecosystems deal with spatially-, temporally-
and socially-situated activities of users, and should
therefore be able to interact with the surrounding world
and adapt their behaviour accordingly. In the museum
infrastructure, local information from crowd sensors
has to be exploited and propagated around to create
a global awareness of crowd distribution over the expo-
sition. Situation-awareness is hence a key requirement,
and it is generally achieved by infrastructures reifying



Mobile Netw Appl

data/knowledge/events in the precise point (or region)
of space where they pertain, promoting interactions just
based on proximity.

Another complementary requirement is adaptivity:
pervasive ecosystems and their infrastructures should
inherently exhibit properties of autonomous adapta-
tion and management to survive contingencies without
human intervention and/or global supervision. In the
museum infrastructure, the direction towards the point
of interest has to be defined according to the current
state of the surrounding physical and social environ-
ment, e.g., circumventing dynamically forming crowded
places. Namely, when new devices are deployed, new
information is injected, or new people arrive, a spon-
taneous re-distribution and re-shaping of the overall
system information should take place. For instance:
the route towards an exhibition could be automatically
computed by self-organisation so as to dynamically
avoid overcrowded rooms or corridors, or alternative
exhibitions may be selected if one has reached (or
will shortly reach) its maximum capacity. Adaptivity is
often achieved by designing coordination rules that by
acting locally (namely, on a given network neighbour-
hood) make global properties emerge dynamically—
following e.g. a natural inspiration as in [36].

Finally, to support openness, pervasive ecosystems
should feature standard technologies for the descrip-
tion of services, and for the rules by which we manipu-
late such descriptions. This has the twofold goal of
supporting open models of production of services, as
well as the possibility of reusing existing languages,
tools and engines for developing a common infrastruc-
ture for pervasive service ecosystems. Candidate frame-
works to reach this goal include the suite of standards
of the Semantic Web [26, 40, 42].

2.2 Abstract architecture

Having introduced the scenario and its requirements,
we now define the set of core components that consti-
tute our pervasive ecosystem architecture.

Agents Any software component whose services act to
make the pervasive system working is here modelled as
an agent. It can be for instance a sensor, a web-service,
the software handling a user profile into a smartphone,
a situation-recogniser, a display driver or a full-fledged
application.

LSA Because of the need of coordinating different
kinds of entities in an open way and without global su-
pervision, a cornerstone of pervasive ecosystems is that

a uniform representation is required for agents, expos-
ing any information about the agent (state, interface,
goal, knowledge) that is pertinent for the ecosystem
as a whole or for any subpart of it. This is called a
“Live Semantic Annotation” for it should continuously
represent the state of its associated component (live),
and it should be implicitly or explicitly connected to
the context in which such information is produced,
interpreted and manipulated (semantic)—relying on
standard languages for the description of resources, like
RDF [26, 40].

LSA-space To handle situation-awareness, the behav-
iour of each agent should be strictly affected by the
local context in which it runs, that is, on the state of
other agents living in the same locality (intended as
network neighbourhood). As such, the LSAs of each
agent are reified in a distributed space (called an “LSA-
space”) acting as the fabric of the ecosystem, where
“context” is simply defined and represented as the set
of LSAs stored in a given locality.

LSA bonding Additionally, and in order to make any
agent act in a meaningful way with respect to the
context in which it is situated, special mechanisms are
needed to provide a fine-tuned control of what is vis-
ible to/modifiable by each agent and what is not. We
tackle this issue by allowing an LSA to include bonds
(i.e., references) to other LSAs in the same context.
It is only via a bond that an agent can inspect the
state/interface of another agent and act accordingly,
while modifications are allowed only to the LSAs an
agent injected itself.

Eco-laws Because of adaptivity, while agents enact
their individual behaviour by observing their context
and updating their LSAs, global behaviour (i.e., global
system coordination) is enacted by manipulation rules
of the LSA-space, called eco-laws. They can execute
deletion/update/movement/re-bonding actions applied
to a small set of LSAs in the same locality. They
are structured as chemical-resembling reactions over
LSAs, similarly to other approaches like [4, 34, 36]—
and their definition should leverage standard languages
for the manipulation of resource descriptions, like
SPARQL [1, 40].

Figure 1 shows an architectural view, based on the
above abstractions, of a portion of an ecosystem fea-
turing: two smartphones (carried by people) and two
public displays forming a network of 4 computational
nodes; a local LSA-space and some agents running in
each node (e.g., recommendation agents, advertising
agents, visualisation agents in displays, profile agents
and sensor agents in smartphones); LSAs through



Mobile Netw Appl

Fig. 1 An architectural view of a pervasive ecosystem

which agents manifest (in colour); additional LSAs rep-
resenting data, knowledge, and contextual information
like the existence of neighbouring nodes (in white);
bonds between LSAs; and a set of eco-laws executed
by an underlying engine working over the global LSA-
space.

In a more general case, one should think at a
very larger and mobile set of devices connected to
each other based on proximity creating a distributed
“space”—ideally a pervasive continuum—where LSAs
form spatial structures evolved over time.

2.3 Operational model

We now describe in more detail the model of LSAs and
eco-laws, focussing on the dynamics of their interaction
and grounding it on standard frameworks and tech-
nologies for the Semantic Web, due to their support
for openness (supporting interactions with third party
software and data) and semantic reasoning (relying on
ontologies and semantic matching) [40]. As already
mentioned, we shall use RDF as language for struc-
turing LSAs, and rely on SPARQL/SPARUL query
languages for coding eco-laws: the main advantage of
this choice is that off-the-shelf query engines (support-
ing execution of SPARQL queries and updates over
RDF stores) and reasoners [29] can be used to support
scheduling and execution of eco-laws locally.

2.3.1 LSAs

LSAs have a unique, system-wide identifier (LSA-
id), needed to support a notion of identity that is
key both to uniquely identify the agents that injected
an LSA and to properly support a bonding mecha-
nism based on reference rather than on value/copy.
We refer to the content of an LSA as its description,
which includes all the information the agent wants to
manifest to the ecosystem. We realise an LSA as an
RDF-like [26] set of triples that consist of a subject
(an LSA-id), a predicate (the property name) and
an object (the assigned value). By adopting a nota-
tion resembling N3 [18], in which the list of triples
is provided in a more compact form, an LSA is rep-
resented, for example, as “id p v; q w1 w2 w3.”
where id is the LSA-id, property p is assigned to
value v, and property q is assigned to values w1,
w2, and w3. Concretely, each element of a triple is
an URI (a term qualified by a universally-accessible
namespace as in namespace:term); additionally, a
value can be an RDF literal (a string), or a description
included into square brackets, recursively having the
form of an LSA without identifier and trailing dot, e.g.,
“[p v; q w1 w2 w3]”. Concrete examples of LSAs
will be given in Section 5 (e.g. in Fig. 4).

2.3.2 Contextualisation and LSAs

In order to support situation-awareness, LSAs should
be contextual, i.e., carry some information about their
current context, and/or the context in which they have
been created. Accordingly, either implicitly (enacted
by the middleware) or explicitly (coded by the agent
creating it) an LSA’s semantic description includes,
among the others, information like: current location,
location of creation, creation time, last update time,
creator, and so on. We call these synthetic properties:
e.g., we shall use synthetic property eco:location to
hold the id of the node in which the LSA is currently
stored.

Contextual information not related to any specific
agent is reified as a new LSA (which we call a syn-
thetic LSA), which some middleware component is in
charge of creating and updating. These LSAs contain
information concerning the physical situation, such as
current time, neighbouring nodes, and so on. In each
node, we shall assume that for each neighbouring node
there is one LSA of type eco:neighbour holding
information such as orientation and estimated distance
to it, and a single LSA of type eco:time holding
information about the local time—the rate at which



Mobile Netw Appl

they are actually updated, or whether they are updated
only when accessed, is not prescribed by our model.

2.3.3 Eco-laws

Eco-laws are structured as chemical-resembling
rules [4] with the syntactic structure:

P+..+P --r--> Q+..+Q SideConditions

Elements P and Q are patterns of LSAs, expressed like
LSAs but with the following changes: (i) in place of
each element of a triple one can use a variable ?V;
(ii) constraints on such variables are specified into an
unordered sequence of side conditions, which are either
“FILTER(exp)” or “BIND(exp as ?V)” (following
the syntax of SPARQL FILTER and BIND constructs
[1]); (iii) each predicate in a triple can be prepended
by either symbol +, - and =, the former assumed by
default—respectively meaning that the triples with this
object should exist, should not exist, should be the
only that exists for that subject and predicate. Note
that we may use external functions to add computation
abilities to the eco-law language, by using them into exp
expressions of FILTER and BIND constructs.

An eco-law consumes a set of reactant LSAs based
on left-hand side patterns and produce a set of prod-
uct LSAs based on right-hand side patterns. It also
obeys a numeric transformation rate r representing
a Markovian rate in a continuous-time Markov chain
(CTMC) system—though the underlying infrastructure
may rely on approximations of this stochastic model for
efficiency purposes. Rate eco:asap is used for eco-
laws to be executed with “as soon as possible” seman-
tics, namely, with infinite rate—namespace eco will be
used for all concepts related to the pervasive ecosys-
tems in general. An eco-law can apply in many different
locations of the ecosystem, and to different sets of
LSAs. We call reaction the pair consisting of a set of
reactant LSAs and corresponding product LSAs that an
eco-law can trigger. Execution of a reaction amounts to
atomically remove reactant LSAs from the LSA-space
and insert product LSAs back. Among all reactions that
an eco-law can trigger, a node n schedules only those
that are ef fective (reactant and product LSAs do not
coincide, i.e., execution has a neat effect), consistent
(do not invalidate uniqueness of LSA-ids), and local
(reactants are located in n, products possibly in n’s
neighbourhood—so that a reaction can also ultimately
move or diffuse some LSA from its current location
to a neighbouring one, and by repeated application, to
larger regions).

3 Self-organisation for pervasive systems

Several recent works exploit the lessons of adaptive
self-organising natural systems to enforce situation-
awareness and adaptation in distributed and pervasive
computing systems [3, 16, 27]. In natural systems (at
the physical, chemical, biological, or social level), all
the activities of the system components are inherently
situated in space and driven by local interactions only.
Such interactions are not ruled by pre-defined orches-
trated patterns. Rather, interactions are simply sub-
ject to a limited set of natural laws, from which even
complex patterns of interactions dynamically emerge
via self-organisation. In this way, adaptivity becomes
an inherent characteristic deriving from the existence
of self-organising interactions patterns, whose struc-
ture can flexibly and robustly re-shape in response to
contingencies. Typical self-organising mechanisms are
those using stigmergy, like ant foraging for coordinat-
ing behaviour, schooling and flocking for coordinating
movements, or gradients based systems [7, 10, 28, 41].

3.1 Self-organising patterns

To make self-organising mechanisms applicable more
systematically, different authors have focussed on
proposing descriptions of those mechanisms under the
form of software design patterns [13] and their clas-
sification. The idea of design pattern structure makes it
easy to identify the problems that each mechanism can
solve, the specific solution that it brings, the dynamics
among the entities and the implementation. In [14], a
set of design patterns is proposed for self-organising
systems all related with ant colonies behaviour, to-
gether with the idea that a mechanism can be composed
with others. The provided model, however, presents
too many constraints to be generalised and the exam-
ples of usage are not related to spatial and situated
computing systems as typically required. Based on the
set of mechanisms proposed in [17], [31] discusses how
the intended multi-agent systems (MAS) dynamics can
be modelled and refined to decentralised MAS design,
proposing a systematic design procedure that is exem-
plified in a case study. In [8] it is presented an ex-
tended catalogue of mechanisms as design patterns for
self-organising emergent applications. The patterns are
presented in detail and can be systematically applied
for engineering self-organising systems. However, rela-
tions among the patterns are missed, i.e., the authors do
not describe how patterns can be combined to create
new patterns or adapted to tackle different problems.

An approach more useful here was presented in [11],
which we shall adopt in this paper, where a set of



Mobile Netw Appl

Fig. 2 Self-organising
patterns, their relationships,
and their constituting
mechanisms

To
p 

La
ye

r

M
id

dl
e 

La
ye

r

B
ot

to
n 

La
ye

r

MorphogenesisQuorum Sensing

Aggregation

Gradient

Chemotaxis

SpreadingEvaporation

B
as

ic
 

M
ec

ha
ns

is
m

bio-inspired self-organising mechanisms are analysed,
classified and described, identifying their relations and
the recurrent problem they solve—see Fig. 2 including
a fragment of that catalogue. The result that comes
out from there is that most natural-inspired algorithms
presented in the literature can be designed and imple-
mented as extensions and compositions of low level
patterns of Spreading, Aggregation and Evaporation.
The spreading pattern allows entities to increment the
global knowledge of a system by periodically sending
information from one entity to another. To avoid an
explosion of information in the system, the aggregation
pattern synthesises this information, extracting meani-
ngful information. Finally, evaporation decreases
information’s relevance over time (i.e., making infor-
mation deposited recently more relevant than infor-
mation deposited previously). Moreover, in [11], it is
suggested that these low-level patterns can be mod-
elled by simple transformation rules, paving the way
towards design and implementation in general-purpose
platforms—as we develop in this paper.

3.2 Execution models for self-organising patterns

A previous proposal for supporting the patterns of [11]
into a general-purpose abstract architecture inspired
to the pervasive service ecosystems framework is pre-
sented in [12]. Such an abstract execution model is pre-
sented providing low-level functionalities for designing
and implementing self-organising systems. The corre-
sponding computational model includes: (i) agents—
autonomous and pro-active software entities running in
a host; (ii) infrastructure—a set of connected hosts and
infrastructural agents; (iii) environment—the physical
space where the infrastructure is located. It is then
composed of: (i) a core’s Data Space, where agents

deposit and retrieve data; (ii) a set of basic bio-inspired
services implementing low-level patterns through rules
applying on data deposited in the data space; and (iii)
core interfaces providing primitives for the infrastruc-
tural agents to access neighbouring nodes, and sensors
and actuators of the local node.

In this paper we follow this idea, and develop it
to full extent in the context of the pervasive service
ecosystems framework as described in Section 2.

4 Self-organisation for pervasive ecosystems: a model

Following the above described approaches, we here
show how self-organising patterns can be mapped into
the framework presented in Section 2.3. Accordingly,
we will identify (i) a set of basic chemical-like rules
in the form of chemical reactions (Table 1), (ii) the
constituting relations of these basic rules with low-level
patterns (Fig. 2), and (iii) a model for basic patterns in
terms of LSAs and eco-laws whose details are given in
the next section.

Table 1 Set of basic rules

Bio-chemical reaction Name

X → X ′ Evolution
X → Ø Decay
X → X∗ + X Diffusion
X + Y → X + Y ′ Contextualisation
X + Y → Z Composition
X → X + Y Synthesis

The chemical representation is rather standard—we marked by a
“*” those LSAs whose locations will be changed by the reaction,
namely, which will be spread in neighbours



Mobile Netw Appl

4.1 A set of basic rules and eco-laws

Relying on the ecosystem model, we equip each LSA-
space with a minimal set of eco-laws that model
chemical-like reactions as in Table 1. We shall demon-
strate that by a simple composition of these basic
rules, Spreading, Aggregation and Evaporation au-
tonomously emerge as low-level patterns for providing
thereby systems with higher level ones, such as Gradi-
ent. Note that the set of basic rules that we identified is
not intended to be complete with respect to real-world
phenomena, but sufficient for supporting the low-level
patterns of Fig. 2. The representation of these rules in
terms of eco-laws is formalised in Fig. 3.

In particular, LSAs that once injected are meant
to be subject to one of such eco-laws feature a non-
empty property sos:request—namespace sos will
be used for all concepts related to the support of self-
organisation. Such a property has, as values, descrip-
tions that define all the elements that are necessary to
identify which eco-law should apply and its parameters,
such as rate, operators/predicates (in the form of URIs
or strings, as usual), and the property that is going to

be evaluated and possibly changed by the eco-law exe-
cution. Hence, the sos:request property can specify
more descriptions, if the LSA is expected to be part of
more then one eco-law.

Consider eco-law [EVOLUTION]. It expresses the
fact that if an LSA with id ?LSA (namely, whose id gets
binded to variable ?LSA) features a sos:request for
evolving the content of property ?P by operator ?E_op
with rate ?R, and it has property ?P assigned to value
?C, then the eco-law will actually fire with rate ?R. Its
effect would be to update property ?P, which will be
assigned to the result of applying ?E_op to ?C—this
is achieved by a BIND side-condition, in which library
function eco:exec is used to apply operator ?E_op to
value ?C.

Note that ?E_op will have to bind to an URI or
string that the eco-law engine in the middleware can
interpret as a function over values (primitive ones or
descriptions). As an example, by a request of the kind:

[ev:rate "1.0"; ev:prop ex:p;

ev:op ex:dividebytwo]

Fig. 3 Eco-laws for the basic rules in Table 1



Mobile Netw Appl

where ex:dividebytwo represents the functions that
divides a real number by two, we make the LSA halving
its property ex:p once per time unit—we typically
use seconds as time units. We shall assume that inside
the middleware (e.g., enconded in the ex ontology),
URI ex:dividebytwo is associated with a function
whose evaluation provides the required result. To this
end, in this paper, we describe also such functions by
mathematical expressions, and denote arguments of
the function orderly as #1, #2 and so on, such that
ex:dividebytwo would be described also by string
expression “%1/2”—other notations will be explained
as needed in the following. Also, when application of
an operator yields the special value eco:error, then
the eco-law is not triggered at all for that LSA, in that
function eco:exec will fail.

The [DECAY] eco-law is similar, but it makes ?LSA
disappear (note the 0 on the right-hand side) at rate
?R if the content ?C of its property ?P is such that
predicate ?D_pr holds for it—function eco:check
in construct FILTER is used to perform this test.
E.g., we could make an LSA be disposed if a certain
property ex:p reaches (for instance because of the
above [EVOLUTION] eco-law) a value smaller than
0.01—the content of dec:prop is to be set to ex:p
and dec:predicate to expression “#1<0.01” to this
end.

The other eco-laws are a bit more involved for they
manipulate more than one LSA, but their behaviour is
similar. Eco-law [DIFFUSION] continuously diffuses
an LSA in neighbouring locations, one at a time. Let
?NG be a synthetic LSA reifying information about
the existence of a neighbouring node at location ?L1
and estimated distance ?D. Also, let ?DIF be an LSA
which, at rate ?R, is aimed at diffusing clones of it with
an updated value of property ?P, namely, obtained by
applying operator ?D_op. Then, at rate ?R we create
a new LSA ?NEI (?DIF and ?NG are not changed),
obtained by cloning ?DIF (using function eco:clone
in the BIND construct), locating it at ?L1, and chang-
ing property ?P to the result of applying ?D_op to
current value ?C and to the estimated distance ?D—
we use value ?D since often diffusion depends on the
distance from the chosen neighbour, and rely on func-
tion eco:exec3 as a ternary version of eco:exec.
By iterative application, this eco-law is used to diffuse
copies of ?DIF in all neighbours.

By eco-law [CONTEXTUALISATION], LSA ?LSA
is updated by the presence of an LSA ?CTX nearby: the
content of its ?P property is updated by the result of
applying ?C_op to the old value ?C and to the current
value of property ?P2 in ?CTX. The [COMPOSITION]
eco-law works similarly, but the result of its application

is that the two originating LSAs are removed, and a
new one cloning ?LSA is created with an update value
of ?P. Finally the [SYNTHESIS] eco-law allows for the
creation of a new LSA cloning an existing one (?LSA)
featuring a new property ?P2 assigned to the content
of ?LSA’s ?P, and property synth_time assigned to
the current time ?T as extracted by the synthetic LSA
?TIME. In this case, function eco:cloneprop in the
FILTER construct is used to transfer all the values
assigned to a property into another LSA’s property.

4.2 Basic patterns

This section is meant to describe how we intend to
model low-level patterns upon the basic rules de-
scribed. As shown in Fig. 2, constituting relations have
been identified: arrows indicate how these patterns
result from the composition of basic laws. A dashed
arrow indicates that using the below eco-law is actual
optional, i.e., the pattern itself can be realised also
without that basic rule.

Spreading Pattern

“The Spreading Pattern is a basic pattern for in-
formation diffusion/dissemination. The Spreading
Pattern progressively sends information over the
system using direct communication among agents,
allowing the agents to increment the global knowl-
edge of the system by using only local interac-
tions” [12].

Therefore Spreading mainly relies upon the Diffusion
rule, but it can also require the Synthesis rule when
the diffusing data has to be synthesised by an original
LSA. The Synthesis rule is a specific instance of the
one shown in Fig. 3, where the synthesised LSA has to
contain the sos:request property value enabling the
diffusion.

Aggregation Pattern

“The Aggregation Pattern, is a low-level pattern
for information fusion. The dissemination of in-
formation in large-scale systems deposited by the
agents or taken from the environment may pro-
duce network and memory overload, thus, the
necessity of synthesising the information. The
Aggregation Pattern reduces the amount of in-
formation in the system and assesses meaningful
information” [12].

In our model the Aggregation Pattern firstly results
from the application of the Composition rule where two
data in input are aggregated into a new information
through an operator that can take many forms, such



Mobile Netw Appl

as filtering, merging, transforming. This rule can also
be composed with the Contextualisation rule, by which
aggregation can be affected also by some contextual
LSA present in the LSA-space but which is not to be
changed or removed. These two basic rules provide a
minimal set of functions for the Aggregation Pattern
working. The idea is that they are fired repetitively (and
typically with a very high rate) until aggregation can no
longer be applied, namely when it leads to an atomic
information.

Evaporation Pattern

“Evaporation is a pattern that helps to deal with
dynamic environments where information used by
agents can become outdated. In real world sce-
narios, the information changes with time and its
detection, prediction, or removal is usually costly
or even impossible. Thus, when agents have to
adapt their behaviour according to information
from the environment, information gathered re-
cently must be more relevant than information
gathered a long time ago” [12].

In our model the Evaporation Pattern is mainly ob-
tained through the Evolution rule, that ensures the
reduction of relevance of information through a proper
operator. It can be composed with the Decay rule once
the relevance of the information is null or very low and
must be disposed of.

Gradient Pattern The Gradient Pattern is an exam-
ple of computational field: a data-structure distributed
in a networked system based on spatial abstractions
(distance, region, paths, and so on). Computational
fields are a remarkable self-organisation mechanism,
as demonstrated by their wide adoption in literature
[5, 16, 23, 36]. The Gradient Pattern in particular maps
each node to the minimum distance from a source.
It is a very important pattern in pervasive computing
systems, for it makes a possibly large set of nodes that
surrounds a single one (the gradient source) be aware
of its state (or parts of it), and aware also of how it
can be reached efficiently (i.e., along the optimal path
crossing nodes with decreasing distance)—hence sup-
porting long-distance interactions in ad-hoc networks.

“The Gradient Pattern focuses on large systems
that suffer from lack of global knowledge to esti-
mate the consequences of the actions performed
by other agents beyond their communication
range. Using the Gradient Pattern, information
spreads from a location it is initially deposited
and aggregates when it meets other information.
Thus, agents that receive gradients have informa-

tion that come from beyond their communication
range, increasing the knowledge of the global sys-
tem not only with gradient’s information but also
with the direction and distance of the information
source” [12].

According to our model the Gradient Pattern emerges
from the composition of the Spreading and Aggrega-
tion Patterns (as shown in Fig. 2), properly instantiated.
In particular the Diffusion rule, in charge of diffusing
data, has a specific operator that increases the dis-
tance value depending on the estimated distance of the
neighbour, while the Composition and Contextualisa-
tion rules work respectively for merging gradient values
coming from the same source but through different
paths, so as to ensure that the smaller distance from the
source is stored in each node, and for contextualising
the gradient value to the actual node state, so as to
advantage or penalise nodes/regions according to their
actual context—as we will exemplify in detail in next
section.

5 A crowd steering application

We here present the model for the crowd steering
scenario described at the beginning of Section 2 to
exemplify the approach and demonstrate how the eco-
laws presented in previous section can be used to use
and compose self-organisation patterns. In one recall-
ing sentence, the goal of the scenario is to guide people
inside a museum towards their preferences, following
the shortest, and possibly quickest path, as can be dy-
namically computed from the structure of the environ-
ment and the presence of people making certain rooms
or corridors too crowded.

We here model the whole ecosystem as the set of
LSA-spaces hosted in the sensor nodes covering the
museum floor, displaced in a grid-like manner. Nodes
are connected to the four adjacent ones, following the
structure of the environment. Steering of people can
be done using computational gradients injected from
sources of a point of interest (POI), diffusing around
such that each node holds the minimum distance from
source along an optimal path, and matching with some
user preferences [5, 36]. We do not focus here on
the details by which a user can decide to follow the
gradient of a given POI among the many that can exist
around—she can explicitly select one by interaction
with the smartphone, or a match can be implicit. Once
this has been selected, simply following the directions
descending the gradient (as provided by private/public
displays) leads to a proper path for the situation at



Mobile Netw Appl

hand. If we want the gradient to be dynamically com-
puted taking into account also the presence of crowd,
the gradient value (estimated distance to the source)
should be contextualised considering the presence of
people, becoming higher in nodes detecting a bigger
number of people around.

In the following we show how we are able to create
such a contextualised gradient through the patterns and
eco-laws presented in Section 4.1.

5.1 Specific LSAs

According to the proposed framework, all the infor-
mation exchanged is encapsulated by LSAs, namely:
(i - source LSAs) representing POIs currently active;
(ii - field LSAs) representing diffused copies of source
LSAs and carrying an updated estimated distance from
the source along the best path available; (iii - pre-field
LSAs) temporary copies of field LSAs, used as interme-
diate ones to enact aggregation and contextualisaton,
and to establish the final gradient; (iv - user LSAs) rep-
resenting presence and state of a user (stored in their
smartphone); and (v - crowd LSAs) representing the
presence of a crowded area by a sensor node. The shape
of source LSAs is the most important to show here, for
it is by its injection that field and pre-field LSAs get
automatically created. The source LSAs shown in Fig. 4
exemplifies the POI of a Michelangelo’s sculpture ex-
hibition in a museum. Other than namespaces eco (for
general concepts related to pervasive ecosystems) and
sos (for those related to self-organisation patterns),
we shall use museum for application-specific concepts.
In a source LSA, eco:type keeps track of a general
declaration about the kind of LSA, eco:location is
the synthetic property (automatically generated by the
middleware) holding the location id for the LSA, and
museum:poi_desc holds a list of keywords describing
the POI (used to match with a user preferences). The
other properties will be described in the following.

The injection of a source LSAs fires the Synthe-
sis basic mechanism because of the content of prop-
erty sos:request, by which at rate 1 a new LSA
is created locally, which—according to the [SYN-
THESIS] eco-law—is similar to the source LSA but
reassigns sos:request to the actual content of
museum:exh_request. This new LSA represents
the gradient at the source location: the new prop-
erty syn_time records the time at which it has been
generated, museum:desc holds the information to be
propagated, and museum:grad_state the informa-
tion about how one can retrieve the source. The latter
is a description with a pair of a distance value (initially
set to 0) and a pre-field flag tagging pre-fields—this is
initially set to false, meaning this is not a pre-field,
but a field LSA.

The resulting LSA includes now four requests into
sos:request: one for diffusing, two for aggregating
and one for contextualising, which we will describe in
turn. Initially, diffusion rule spreads copies of that LSA
around, updating the property museum:grad_state
according to the museum:diffsum operator which
has the following definition:

Definition of operator

This function is applied to two arguments, the
old museum:grad_state content, and the distance
of the selected neighbour. Ternary operator ?: has
the same meaning of Java programs, while notation
“#1.museum:pre” stands for the content of property
museum:pre in the description passed as first argu-
ment. Hence, this function checks whether the property
museum:pre into first argument is true: if it is, then we
return an error since pre-fields are not to be diffused,
otherwise we return a new description with updated
distance (old distance plus neighbour distance) and
setting it as a pre-field.

Fig. 4 LSA for the museum case study



Mobile Netw Appl

To a pre-field, shipped into neighbours by this eco-
law, aggregation and contextualisation eco-laws can
then be applied to remedy the inevitable divergence
(an increasingly number of copies of a pre-field will
be spread in neighbours). Eco-law for composition is
fired which matches two LSAs and aggregate them into
one in two ways: one keeps the most recent LSA (hav-
ing greater syn_time), as computed by the operator
museum:youngest, while the other keeps the one
with smaller distance from the source, as computed by
the operator museum:shortest. Such two operators
are as follows:

Definition of operator

Definition of operator

Note that the rates of application of aggregation
with youngest is eco:asap, while aggregation with
shortest has a finite rate: stochastically, this ensures
that we first keep most recent information, and then we
consider better paths.

Before such an aggregate LSA can be diffused again,
it should contextualise with a crowd LSA, so as to make
sure that the distance from the source gets increased
(i.e., penalised) when the crowd level is locally greater
than 0. Such an information is carried into a crowd LSA
of the kind:

where museum:crowd_level set to 1.0 means that
the sensor perceived the highest crowd. The eco-law
for contextualisation is then triggered which takes a
pre-field LSA and a crowd LSA, and updates property
museum:distance in the former according to the
function:

Definition of operator

museum:crowd_factor is a multiplication factor dic-
tating how museum:crowd_level should penalise es-
timated distance.

5.2 Simulation

By the structure of the LSAs and eco-laws described
above, we are able to maintain and contextualise a
stable gradient. As a proof-of-concept for the proposed
solution, we rely on simulations of the evolution of
the population of LSAs. As such, once the initial state
of LSAs and eco-laws are fixed, the evolution of a
service ecosystem can be simulated using any available
framework for CTMCs, typically working via Stochastic
Simulation Algorithms (SSA) based on [15].

We performed simulations conducted over an expo-
sition of nine rooms connected via corridors. A first
set of tests was aimed at testing the effectiveness of
gradients in the process of steering to a destination,
even in an averagely-crowded situation. Four snapshots
of a simulation run are reported in Fig. 5, where we
considered four different targets located in the four
rooms near environment edges. People (each having
interest in one of the targets chosen randomly) are
initially spread randomly in the museum, as shown in
the first snapshot, and they eventually reach the room
in which the desired target is hosted, as shown in the
last snapshot.

Fig. 5 A simulation run of the reference exposition (top–left, top–right, bottom–left, bottom–right): from random positions people move
to 4 targets



Mobile Netw Appl

Fig. 6 Dark visitors occupy a central room: others move left to right by a longer, less crowded path circumventing the central room
on top

A second set of tests was aimed at verifying the
management of overcrowding, and in particular, how
the behaviour of the ecosystem can dynamically and au-
tomatically become self-aware of crowding conditions,
and react accordingly. Figure 6 shows another simula-
tion run: two groups of people, each with a common
interest in an exhibition—denoted with empty (light)
and filled (dark) circles—are initially located in two
different rooms, as shown in the first snapshot. The
target for the dark visitors is located in the central
room of the second row, while the others’ is in the
right room of the second row. In the simulation, dark
visitors reach their target first because it is closer, how-
ever, the resultant crowded area formed intersects the
shortest path towards the other visitors’ target. Due to
this jam the latter visitors are guided along a different
path, which is longer but less crowded. Also note that
people do not all follow the same path to a destination,
but rather spread and take several different paths to
the POI by an emergent “self-crowding” phenomenon:
people dynamically tend to follow different paths to
avoid themselves to make some corridor or room too
crowded.

Both tests show qualitative effectiveness of the pro-
posed eco-laws, and suggest that our simulation
approach can be used for additional experiments

Fig. 7 Time units of convergence time with different values of
crowd parameter and different percentages of people

focussing on tuning system parameters (crowd factor k)
or alternative strategies (e.g., diffusing crowd informa-
tion) to optimise paths to destinations. For instance, in
the context of the second case, Fig. 7 shows how factor k
can influence the time for (sub)groups of (light) people
to reach the destination, by which we can see that even
small values of k lead to a significant improvement—
which slowly decreases as k grows.

6 Related work

We already surveyed the existing approaches to self-
organisation patterns in Section 3.1. In this section we
review the existing coordination models and middle-
wares that could be used to support those patterns, as a
possible alternative to the ecosystem model presented
here as an extension to [37]. Most of them are based on
tuple space architectures, which we describe in terms
of how they support basic mechanisms of diffusion and
management of tuples.

As described in [19], applications of coordination
models and languages—and especially space-based
ones—are inevitably entering the realm of self-
organisation, where complexity of interactions be-
comes the key to make desired properties appear by
emergence. Given the intrinsic difficulty of design-
ing emergence, most approaches simply mimic nature-
inspired techniques to organise and evolve tuples
according to specified rules. Anthill [2] is a framework
built to support design and development of adaptive
peer-to-peer applications. It consists of a dynamic net-
work of peer nodes, each one provided with a lo-
cal tuple space, in which distributed mobile agents
can travel and can indirectly interact and cooperate
with each other by leaving and retrieving tuples. Self-
organisation in Anthill is realised by agents, without
additional mechanisms “in the space”. A similar idea
is applied in [38], in which tuples can create spatial
processes defining evolving regions to be used for co-
ordination in mobile networks. SwarmLinda [32] is a



Mobile Netw Appl

middleware that exploits the idea of the collective intel-
ligence displayed by swarms of ants for guiding agents
in charge of tuple storage and efficient tuple retrieval.
Tuples are handled as sort of pheromones or items
that ants (agents) relocate in order to improve overall
efficiency. TOTA (Tuples On The Air) [16] is a tuple-
based middleware supporting field-based coordination
for pervasive-computing applications. In TOTA each
tuple, when inserted into a node of the network, is
equipped with a content (the tuple data), a diffusion
rule (the policy by which the tuple has to be cloned and
diffused around) and a maintenance rule (the policy
whereby the tuple should evolve due to events or time
elapsing). The evolving tuples model, presented in [30],
is an extension to traditional Linda tuple spaces with
the goal of supporting resource discovery in a perva-
sive system, relying on ideas inspired to TOTA. The
extension allows tuples to evolve so to be context-aware
and able to adapt to environmental changes. Evolution
is firstly embedded in tuples by adding, to each field
of the tuple, a name and a formula that specifies the
field behaviour over time. Formulas support if-then-
else construct and arithmetic and boolean operators.
Secondly a new operation evolve() is introduced in
tuple space: it is responsible for applying formulas to
tuples using context information.

Finally, it is worth noting that the pervasive ecosys-
tem model originates from previous work of ours [34,
36], where a bio-chemical tuple spaces model has been
presented. There, tuples are associated with an activ-
ity level, which resembles chemical concentration and
measures the extent to which the tuple can influence
the state of system coordination—e.g., a tuple with low
activity level would be rather inert, hence taking part
in coordination with very low frequency. Chemical-
like reactions, properly installed into the tuple space,
evolve activity level of tuples over time in the same way
chemical concentration is evolved in chemical systems.

Differences of the above models with that of per-
vasive ecosystems is as follows. Behaviours that allow
system evolution and adaptation are not embedded in
tuples but in space so to guarantee multiple behaviours
in different locations of the network. Moreover our
model introduces probability in the selection of which
rule to execute, enabling the reproduction of a wider
range of mechanisms for modelling system evolution.
More in detail, and concerning [30], our model lets two
or more tuples be part of an eco-law that changes one
or more tuples according to the state of the others,
while in [30] each tuple evolves independently from the
others. Concerning TOTA, which is the model more
similar to ours also from the viewpoint of application
domain, we observe that while eco-laws are meant to be

fixed for the application domain and apply to all LSAs
(depending on semantic matching criteria), in TOTA
each tuple is responsible for carrying its behavioural
rules. So, while we call for specifying the evolution
rules of tuples at design-time, when the application
goals are identified, TOTA instead promotes a run-
time approach: diffusion behaviour is defined by an
agent before injecting the tuple in the system. Embed-
ding the behaviour in the tuples, rather than in the
space, makes difficult and basically impractical the task
of predicting overall ecosystem behaviour in advance.

Finally, we note that the approach presented in this
paper might be connected with a more general view of
agent-based systems, provided we rely on agent meta-
models tackling the environment as a first-class notion,
as developed in [20, 21].

7 Conclusion and future work

To support situation-awareness and adaptivity in per-
vasive computing applications, in this paper we propose
to exploit the lesson of self-organisation in natural sys-
tems, that—by grounding solely on distributed, locally-
scoped interactions—autonomously brings self-*
properties in the whole system. Recent works identified
a set of self-organising patterns and classified them into
a hierarchy where patterns at lower level represent
the constituting behaviours for self-organisation to
emerge. To model these patterns and show how they
can be composed to obtain higher level patterns, we
adopt a new framework of pervasive ecosystems based
on the eco-law and LSA abstractions—the former
regulates the overall ecosystem by basic mechanisms
of spatial coordination; the latter regulates agent
autonomy, controlling how the single agent is affected
by the ecosystem and manifests to it. In particular
we modelled eco-laws in terms of basic chemical-like
mechanisms of diffusion, decay, composition and
contextualisation. An example application in the
context of pervasive computing is provided to clarify
the concepts. Simulations of the associated CTMC
semantics have been conducted to qualitatively and
quantitatively validate the resulting behaviour.

Future works of this research include: (i) studying
connection with Web technologies for representing and
reasoning about state and behaviour, as well as to sup-
port information matching as in the Semantic Web; (ii)
integrate in the system external software entities that
perform more elaborated forms of situation recogni-
tion, relying on self-organising patterns for shaping data
within the network of pervasive devices; (iii) investigate
upon use cases of pervasive computing other design



Mobile Netw Appl

patterns with the goal of identifying a minimal set of de-
sign patterns required for supporting such applications;
(iv) studying analysis techniques, such the ones from
complex system sciences, to predict and control the sys-
tem emergent behaviour such that to avoid undesirable
effects; and (v) develop a prototype infrastructure to
support LSA-spaces.

Acknowledgements This work has been supported by the EU-
FP7-FET Proactive project SAPERE Self-aware Pervasive Ser-
vice Ecosystems, under contract no.256873.

References

1. ARQ (2012) A SPARQL processor for Jena. http://jena.
sourceforge.net/ARQ/

2. Babaoglu O, Meling H, Montresor A (2002) Anthill: a frame-
work for the development of agent-based peer-to-peer sys-
tems. In: Proceedings of the 22nd international conference
on distributed computing systems (ICDCS’02), ICDCS ’02.
IEEE Computer Society, Washington, DC, USA, pp 15–22.
http://dl.acm.org/citation.cfm?id=850928.851860

3. Babaoglu O, Canright G, Deutsch A, Caro GAD., Ducatelle
F, Gambardella LM, Ganguly N, Jelasity M, Montemanni R,
Montresor A, Urnes T (2006) Design patterns from biology
for distributed computing. ACM Trans Auton Adapt Syst
1(1):26–66. doi:10.1145/1152934.1152937

4. Banâtre JP, Priol T (2009) Chemical programming of future
service-oriented architectures. J Softw 4(7):738–746

5. Beal J, Bachrach J (2006) Infrastructure for engineered
emergence on sensor/actuator networks. IEEE Intell Syst
21(2):10–19. doi:10.1109/MIS.2006.29

6. Bonâtre JP, Le Métayer D (1996) Gamma and the chemical
reaction model: ten years after. In: Coordination program-
ming. Imperial College Press London, UK, pp 3–41

7. de Castro LN (2006) Fundamentals of natural computing:
basic concepts, algorithms, and applications (Chapman &
Hall/Crc Computer and Information Sciences). Chapman &
Hall/CRC

8. De Wolf T, Holvoet T (2007) Design patterns for decen-
tralised coordination in self-organising emergent systems. In
4th international workshop, ESOA 2006. Hakodate, Japan,
May 9, 2006. LNCS, vol. 4335. Springer, pp 28–49

9. Di Pierro A, Hankin C (2005) Wiklicky H continuous-time
probabilistic klaim. ENTCS 128(5):27–38

10. Dressler F, Akan OB (2010) A survey on bio-inspired net-
working. Comput Networks 6:881–900

11. Fernandez-Marquez J, Di Marzo Serugendo G, Montagna S,
Viroli M, Arcos J (2012) Description and composition of bio-
inspired design patterns: a complete overview. Nat Comput
1–25. doi:10.1007/s11047-012-9324-y

12. Fernandez-Marquez JL, Serugendo GDM, Montagna S
(2012) BIO-CORE: bio-inspired self-organising mechanisms
core. In: Hart E, Timmis J, Mitchell P, Nakamo T, Dabiri F,
Akan O, Bellavista P, Cao J, Dressler F, Ferrari D, Gerla M,
Kobayashi H, Palazzo S, Sahni S, Shen XS, Stan M, Xiaohua
J, Zomaya A, Coulson G (eds) Bio-inspired models of net-
works, information, and computing systems. Lecture notes
of the institute for computer sciences, social informatics and
telecommunications engineering, vol 103. Springer, Berlin
Heidelberg, pp 59–72. doi:10.1007/978-3-642-32711-7_5

13. Gamma E, Helm R, Johnson R, Vlissides J (1995) De-
sign patterns: elements of reusable object-oriented software.
Addison-Wesley, Reading, Mass

14. Gardelli L, Viroli M, Omicini A (2007) Design patterns
for self-organising systems. In: Burkhard HD, Verbrugge
R, Varga LZ (eds) Multi-agent systems and applications
V. LNAI, vol 4696. Proceedings 5th international central
and eastern European conference on multi-agent systems
(CEEMAS’07), Leipzig, Germany, 25–27 Sep 2007. Springer,
pp 123–132

15. Gillespie DT (1977) Exact stochastic simulation of coupled
chemical reactions. J Phys Chem 81(25):2340–2361

16. Mamei M, Zambonelli F (2009) Programming pervasive and
mobile computing applications: the tota approach. ACM
Trans Softw Eng Methodol 18(4):1–56. doi:10.1145/1538942.
1538945

17. Mamei M, Menezes R, Tolksdorf R, Zambonelli F (2006)
Case studies for self-organization in computer science. J Syst
Archit 52:433–460

18. Notation3 (n3) (2011) A readable rdf syntax. http://www.w3.
org/TeamSubmission/n3/

19. Omicini A, Viroli M (2011) Coordination models and lan-
guages: from parallel computing to self-organisation. Knowl
Eng Rev 26(1):53–59. doi:10.1017/S026988891000041X. Spe-
cial issue 01 (25th Anniversary issue)

20. Omicini A, Ricci A, Viroli M (2006) Coordination artifacts
as first-class abstractions for MAS engineering: state of the
research. In: Garcia AF, Choren R, Lucena C, Giorgini
P, Holvoet T, Romanovsky A, (eds) Software engineering
for multi-agent systems IV: research issues and practical
applications. LNAI, vol 3914. Springer, pp 71–90. doi:10.
1007/11738817_5. http://www.springerlink.com/link.asp?id=
t710627571v4256h (Invited Paper)

21. Omicini A, Ricci A, Viroli M (2008) Artifacts in the
A&A meta-model for multi-agent systems. Auton
Agent Multi-Ag 17(3). doi:10.1007/s10458-008-9053-x.
http://www.springerlink.com/content/l2051h377k2plk07/

22. Paun G (2002) Membrane computing: an introduction.
Springer-Verlag New York, Inc., Secaucus, NJ, USA

23. Pianini D, Montagna S, Viroli M (2011) A chemical inspired
simulation framework for pervasive services ecosystems. In:
Ganzha M, Maciaszek L, Paprzycki M (eds) In: Proceedings
of the federated conference on computer science and in-
formation systems. IEEE Computer Society Press, Szczecin,
Poland, pp 675–682

24. Picco GP, Murphy AL, Roman GC (1999) LIME: Linda
meets mobility. In: The 1999 international conference on soft-
ware engineering (ICSE’99), May 16–22, Los Angeles (CA),
USA. ACM, pp 368–377

25. Priami C (1995) Stochastic pi-calculus. Comput J 38(7):578–589
26. RDF primer (2012) http://www.w3.org/TR/rdf-primer/
27. Ricci A, Omicini A, Viroli M, Gardell, L, Oliva E (2007)

Cognitive stigmergy: towards a framework based on agents
and artifacts. In: Weyns D, Parunak HVD, Michel F (eds)
Environments for multiagent systems. LNAI, vol 4389. 3rd
international workshop (E4MAS 2006), Hakodate, Japan,
8 May 2006. Springer, pp 124–140 (Selected revised and in-
vited papers)

28. Serugendo G, Gleizes M, Karageorgos A (2011) Self-
organising software: from natural to artificial adaptation.
Natural computing. Springer

29. Sirin E, Parsia B, Grau BC, Kalyanpur A, Katz Y (2007)
Pellet: a practical OWL-DL reasoner. Web Semant 5:51–53

30. Stovall D, Julien C (2007) Resource discovery with evolving
tuples. In: International workshop on engineering of software
services for pervasive environments: in conjunction with the

http://jena.sourceforge.net/ARQ/
http://jena.sourceforge.net/ARQ/
http://dl.acm.org/citation.cfm?id=850928.851860
http://doi.acm.org/10.1145/1152934.1152937
http://dx.doi.org/10.1109/MIS.2006.29
http://dx.doi.org/10.1007/s11047-012-9324-y
http://dx.doi.org/10.1007/978-3-642-32711-7_5
http://doi.acm.org/10.1145/1538942.1538945
http://doi.acm.org/10.1145/1538942.1538945
http://www.w3.org/TeamSubmission/n3/
http://www.w3.org/TeamSubmission/n3/
http://dx.doi.org/10.1017/S026988891000041X
http://dx.doi.org/10.1007/11738817_5
http://dx.doi.org/10.1007/11738817_5
http://www.springerlink.com/link.asp?id=t710627571v4256h
http://www.springerlink.com/link.asp?id=t710627571v4256h
http://dx.doi.org/10.1007/s10458-008-9053-x
http://www.springerlink.com/content/l2051h377k2plk07/
http://www.w3.org/TR/rdf-primer/


Mobile Netw Appl

6th ESEC/FSE joint meeting, ESSPE ’07. ACM, New York,
NY, USA, pp 1–10. doi:10.1145/1294904.1294905

31. Sudeikat J, Renz W (2008) Engineering environment-
mediated multi-agent systems. Springer-Verlag

32. Tolksdorf R, Menezes R (2004) Using swarm intelligence in
linda systems. In: Omicini A, Petta P, Pitt J (eds) Engineering
societies in the agents world IV. Lecture notes in computer
science, vol 3071. Springer, Berlin/Heidelberg, pp 519–519.
doi:10.1007/978-3-540-25946-6_3

33. Tolksdorf R, Nixon LJB, Simperl EPB (2008) Towards a
tuplespace-based middleware for the semantic web. WIAS
6(3):235–251

34. Viroli M, Casadei M (2009) Biochemical tuple spaces for
self-organising coordination. In: Coordination languages and
models. LNCS, vol 5521. Springer, pp 143–162

35. Viroli M, Casadei M, Omicini A (2009) A framework for
modelling and implementing self-organising coordination. In:
24th annual ACM symposium on applied computing (SAC
2009), vol III. ACM, Honolulu, Hawai’i, USA, pp 1353–1360

36. Viroli M, Casadei M, Montagna S, Zambonelli F (2011)
Spatial coordination of pervasive services through chemical-
inspired tuple spaces. ACM Trans Auton Adap 6(2):14:1–
14:24. doi:10.1145/1968513.1968517

37. Viroli M, Nardini E, Castelli G, Mamei M, Zambonelli F
(2011) A coordination approach to adaptive pervasive ser-
vice ecosystems. In: IEEE international conferences on self-
adaptive and self-organizing systems – workskop AWARE

38. Viroli M, Pianini D, Beal J (2012) Linda in space-time:
an adaptive coordination model for mobile ad-hoc environ-
ments. In: Sirjani M (ed) Coordination languages and mod-
els. LNCS, vol 7274. Proceedings of the 14th conference
of coordination models and languages (Coordination 2012),
Stockholm, Sweden, 14–15 June. Springer, pp 212–229

39. Viroli M, Pianini D, Montagna S, Stevenson G (2012) Per-
vasive ecosystems: a coordination model based on seman-
tic chemistry. In: Ossowski S, Lecca P, Hung CC, Hong J
(eds) In: 27th annual ACM symposium on applied comput-
ing (SAC 2012). ACM, Riva del Garda, TN, Italy, pp 295–
302

40. Viroli M, Zambonelli F, Stevenson G, Dobson S (2012) From
soa to pervasive service ecosystems: an approach based on
semantic web technologies. In: Cubo J, Ortiz G (eds) Adap-
tive web services for modular and reusable software develop-
ment: tactics and solution, chap 8. IGI Global, pp 207–237.
doi:10.4018/978-1-4666-2089-6.ch008

41. Zambonelli F, Viroli M (2011) A survey on nature-inspired
metaphors for pervasive service ecosystems. Int J Pervas
Comput Commun 7(3):186–204

42. Zhang W, Hansen KM (2008) Semantic web based self-
management for a pervasive service middleware. In: Proceed-
ings of the 2008 second IEEE international conference on
self-adaptive and self-organizing systems. IEEE Computer
Society, Washington, DC, USA, pp 245–254. doi:10.1109/SASO.
2008.14. http://dl.acm.org/citation.cfm?id=1475691.1475960

http://doi.acm.org/10.1145/1294904.1294905
http://dx.doi.org/10.1007/978-3-540-25946-6_3
http://doi.acm.org/10.1145/1968513.1968517
http://dx.doi.org/10.4018/978-1-4666-2089-6.ch008
http://dx.doi.org/10.1109/SASO.2008.14
http://dx.doi.org/10.1109/SASO.2008.14
http://dl.acm.org/citation.cfm?id=1475691.1475960

	Injecting Self-Organisation into Pervasive Service Ecosystems 
	Abstract
	Introduction
	Scenario, requirements, motivations and concepts
	Pervasive system requirements
	Abstract architecture
	Operational model
	LSAs
	Contextualisation and LSAs
	Eco-laws


	Self-organisation for pervasive systems
	Self-organising patterns
	Execution models for self-organising patterns

	Self-organisation for pervasive ecosystems: a model
	A set of basic rules and eco-laws
	Basic patterns

	A crowd steering application
	Specific LSAs
	Simulation

	Related work
	Conclusion and future work
	References


