A Metadata-Based Architectural Model for Dynamically
Resilient Systems

Giovanna Di Marzo
Serugendo
School of Computer Science
and Information Systems
Birkbeck College, London, UK

dimarzo@dcs.bbk.ac.uk

John Fitzgerald,
Alexander Romanovsky
School of Computing Science

University of Newcastle
NE1 7RU Newcastle upon
Tyne, UK

Nicolas Guelfi
Laboratory for Advanced
Software Systems
University of Luxembourg
Luxembourg

Nicolas.GuelfiQuni.lu

John.Fitzgerald@newcastle.ac.uk
Alexander.Romanovsky@newcastle.ac.uk

ABSTRACT

Designing open and distributed systems that can dynami-
cally adapt in a predictable way to unexpected events is a
challenging issue still not solved. Achieving this objective is
a very complex task since it implies reasoning at run-time,
explicitly and in a combined way, on a system’s functional
and non-functional characteristics. This paper proposes a
service-oriented architectural model allowing the dynamic
enforcement of formally expressed metadata-based resilience
policies. It also describes preliminary dynamic resilience ex-
periments acting as proof of concept.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures—
data abstraction, patterns

General Terms

Verification, Experimentation

Keywords

Metadata, dynamic reconfiguration

1. INTRODUCTION

Large network-enabled computing systems are becoming
integral to society, security and economy [18] and are likely
to become more pervasive as technology is embedded in a
wider range of products in the environment [9]. The open-
ness and flexibility of such systems pose challenges to the
maintenance of predictable levels of dependability, but also
provide opportunities for dynamic resilience in response to
threats.

Permission to make digital or hard copies of all or part of this work for

Future systems, based on network capabilities, wireless
and nano-technologies, will be open and dynamic. A key
characteristic is that they will allow dynamic binding, i.e.
the selection and use of components and services at run-
time. They will therefore not consist simply of components
selected during an off-line design activity. Instead, they will
be open to components arriving, departing or being modi-
fied. They will be dynamic in order to provide services on
a continuous basis, and to do so even when components or
the environment change.

Current techniques and tools used to develop dependable
systems largely rely on design-time analysis. For example,
the decision to use a particular fault tolerance technique
such as n-version programming, and its particular configu-
ration (the choice of the particular version components and
their number n) is governed by the characteristics of the
components that are available to the developer, their devel-
opment costs, reliabilities and other factors [2]. The analysis
underpinning this design decision is done at design time be-
cause the set of possible components and configurations is
relatively fixed. When a component evolves, or changes,
or requirements change, part of the design process must be
repeated to verify characteristics of the adapted solution.
However, next generation systems open the possibility of
making dependability-maintaining adaptations at run-time.
Consider an example scenario:

Emergency services use information and commu-
nication technologies in the environment to coor-
dinate a response to a major road crash. Many
different components are involved including on-
board computers in rescue vehicles (and maybe
in the crash vehicles), communications providers
and sources of data (GPS, UMTS, GPRS, GSM).
In this highly volatile environment, one compo-
nent, a GPS data source, for example, may de-
grade, perhaps by losing availability.

One classical approach [3, 15] to the provision of depend-
ability here would involve a design-time decision to use a

personal or classroom use is granted without fee provided that copies arefault tolerance strategy such as deploying a fixed number of
not made or distributed for profit or commercial advantage and that copies diverse but compatible GPS sources instead of relying on a
bear this notice and the full citation on the first page. To copy otherwise, to gingle one. The selection of the component services would

republish, to post on servers or to redistribute to lists, requires prior specific 1, 1,.<0q4 on information about the available services such
permission and/or a fee.

SAC'07, March 11-15, 2007 Seoul, Korea
Copyright 2007 ACM 1-59593-480-4/07/00035.00.

as known availability levels and failure rates, and formal de-
scriptions of the functionality provided by the components.



Such classical approaches, when applied in a more open and
dynamic environment, restrict dynamic flexibility. In the
scenario, for example, the architectural decision to employ
several diverse GPS services has to be made using the in-
formation available at design time. However, at run-time, a
different set of compatible services may be available (includ-
ing services not known at design-time) allowing the service
to be maintained either at lower cost or with reduced degra-
dation.

In an alternative, more resilient, approach the components
that rely on the GPS service could reconfigure dynamically.
There are many options, and they could pursue a policy of
trying various alternatives: they could switch to an alter-
nate GPS with higher availability, or use another service in
parallel with the low availability one, or ultimately signal
a failure. The main point is that the system could evolve
dynamically to offer continued, if necessary (predictably)
degraded, service using the resources available at the time
the negative event is detected. Components are not owned
by a single central authority, but may be supplied and with-
drawn, at any time, by independent providers.

We are concerned with predictable dynamic resilience of
open systems built from components that interact via a
network-based infrastructure. By dynamic resilience we de-
note a system’s capacity to respond dynamically by adapta-
tion in order to maintain an acceptable level of service in the
presence of impairments. By predictable dynamic resilience
we mean the capacity to deliver dynamic resilience within
bounds that can be predicted at design time.

In this paper we present an architectural approach to the
achievement of predictable levels of dynamic resilience in
distributed systems of the kind described above. Section 2
gives an overview of an architectural model that exploits
component metadata to support decision-making and recon-
figuration based on the dynamic enforcement of explicitly
expressed resilience policies. We indicate the need for formal
specifications for achieving predictability in such a model in
Section 3. Section 4 presents two proof of concept studies
in which we have performed preliminary implementations of
core parts of our architecture. A discussion is provided in
Section 5. Related work is discussed in Section 6.

2. ARCHITECTURAL MODEL

As suggested by the example scenario above, certain fea-
tures are essential to providing dynamic resilience in the
open and flexible systems that are envisaged in the future.
The system architect requires architectural patterns that use
run-time information to maintain resilience through adap-
tation, e.g. by dynamically composing a satisfactory service
from lower-specification components. We will refer to such
patterns as dynamic resilience mechanisms (DRMs). A key
feature is the availability at run-time of resilience metadata
— information about system components, sufficient to gov-
ern decision-making about dynamic reconfiguration. Such
metadata can be used to guide reconfiguration in accordance
with resilience policies (e.g. to increase the number of al-
ternate services if availability starts to decline). Finally, we
require a run-time environment for the acquisition, main-
tenance and publication of metadata, including reasoning
services for performing reconfigurations in accordance with
policies. These four main features are summarised in Fig-
ure 1. Each component is considered in more detail below.

2.1 Architecture Components

Dynamic Resilience Mechanisms

Dynamic resilience mechanisms (DRMs) are generic, not
application-specific, but are realised in application-specific
designs as resilience policies. In our scenario, the pattern
allowing dynamic selection and parallel composition of ser-
vices to maintain availability is an example of such a mecha-
nism. The DRM in Figure 1 describes a very simple pattern
allowing a dynamic adaptation in response to component
availability falling below a specified threshold. It describes
the architecture of the Assembly A (a sub-system made in
this case of a single component S generating a data stream),
names the threshold T to be maintained by that Assembly
and describes the adaptation that takes place, in this case
a simple replacement of S by a functionally substitutable
S’. A precondition on the adaptation is that S’ should sup-
ply at least the same functionality as S and provide a level
of availability higher or equal to the threshold T. In order
to perform design-time reasoning (and hence predict levels
of resilience), DRMs require theories describing the effects
on resilience characteristics of the system. In our example,
the theory is just an assertion about the availability of this
simple assembly after the adaptation has taken place. In
practice, such theories would consist of several assertions.
Note that the DRM is a specification for a reconfiguration
rather than a detailed description of how it should be im-
plemented — this latter role is performed by the resilience
policies executing in the run-time system. The theory al-
lows the prediction of the run-time resilience characteristics
of a system containing policies that correctly implement the
DRM'.

Resilience Policies

Resilience policies are descriptions of changes to the running
system based on metadata, which may include structural
alterations. Resilience is achieved by the enforcement of a
resilience policy, defined according to a dynamic resilience
mechanism. For example, a policy may specify to provide a
replacement component for one whose failure rate exceeds a
threshold, or if none exists to find two components of lower
reliability that can be composed. Such policies include (re- )
configuration aspects, as described above, they may as well
include security related policies, such access constraints, or
service delivery conditions. Resilience policies, when en-
acted, use reasoning and adaptation services provided by
the underlying run-time environment.

Metadata

Resilience policies, executed at runtime in an open and dy-
namic system, require appropriate metadata - data describ-
ing functional and non-functional properties of components,
as distinct from the data used by components in the course
of their normal operation, and distinct from the code that
implements component services. We will use the term re-
silience metadata to refer to metadata that is relevant to
system dependability and resilience.

Examples of non-functional resilience metadata include:
availability or reliability measures (e.g. mean time to fail,

!This is only an example of a possible DRM description,
more work is needed to actually define a complete language
for expressing DRMs.



Dynamic Resilience Mechanism:
Architecture: /*1 component
Assembly A = (S —data stream-> output)
Static Metadata: /* required availability (threshold)
T:availability
Dynamic variables:
/* may change component identity at run-time
S:Identity
Precondition: S << S' and availability(S') >= T
Adaptation: replace(S,S’)
Theory: /* Assembly availability (invariant)
availability (A) >=T

pplication System Requirements
Resilience, Functional, QoS ... A

Application System Design

Resilience Policy Program:
Event availability(GPS) < 0.6
Respond
Try
Search
new_GPS: equivalent(GPS) and
availability(new_GPS) >= 0.6
Replace GPS with new_GPS
Try ...

Run-time Environment

‘ Metadata ‘ Reasoning‘

a
L 8 J
System
Architect
(o]
ﬂSynthesis& E
Validation g
I3
Application e
I bt
ORCICNIE
Adaptation | () () O

Figure 1: Enabling technologies for dynamic resilience

mean time to repair); description of needed resources (CPU,
network bandwidth, memory) for the component to work
properly; or trust-based information on other components.

Examples of functional resilience metadata include logi-
cal specifications of component behaviour, characterisation
of known component failure modes, formal specifications of
pre-conditions on the use of a service and post-conditions
characterising the service response to a valid input. These
metadata are similar to the information used to make design-
time decisions, but here we consider them as data that may
be published and maintained at run-time.

Reasoning and Adaptation Services

Figure 2 expands the run-time environment part of Fig-
ure 1. The run-time environment itself follows a service-
oriented architecture. The Metadata Registry stores pub-
lished trustworthy metadata and maintains the link with
the corresponding component. The run-time environment
receives requests for components based on metadata infor-
mation; retrieves and determines the list of components cor-
responding to a specific metadata request on the basis of the
information available in the Metadata Registry. On the basis
of those requests, the Run-time Reasoning Service provides
different tasks related to the processing of metadata stored
in the metadata registry, such as comparison/matching of
metadata, determination of equivalent metadata informa-
tion, composition of metadata. This service encompasses
automated reasoning over the policies, and any ontology of
specific keywords used to express the metadata. The Archi-
tecture Adaptation Service manages the list of components,
seamlessly activates or connects the ones that will be used
according to a specified resilience policy program. This ser-
vice encompasses automated reasoning on formal resilience
policy programs.

2.2 Example

Figure 2 shows the GPS example discussed above: three

GPS services have been registered in the run-time envi-
ronment (GPS_1, GPS_2 and GPS_3); their corresponding
metadata are available in the metadata registry. Metadata
labelled “functionality” are functional resilience metadata
that characterise the type of component. Metadata labelled
“availability” are non-functional resilience metadata report-
ing the actual availability of the component. In this exam-
ple, metadata labelled “availability” are permanently up-
dated (by the components themselves or by some underly-
ing systemQ) in order to reflect the actual availability of the
different GPS services. The functionality labelled “GPS”
is first provided by the GPS_1 service, but at some point,
its availability falls below the required 0.6 threshold (the
availability of the GPS_1 service shows a value of 0.5). The
Dynamic Resilient Mechanism displayed on Figure 1, estab-
lished at design time, enforces a change of GPS service if the
availability of the service is below a certain threshold. The
corresponding resilience policy program, used at run-time,
(shown on Figure 2), expresses this resilience constraint. It
is based on metadata labelled “availability”. The run-time
environment then looks for an equivalent service in the meta-
data registry: it looks for any other service that displays the
same functionality (functionality=GPS), and which has an
availability greater than 0.6. Service GPS_3 is the only one
that satisfies these criteria (availability=0.8), therefore, the
run-time environment replaces on-the-fly component GPS_1
by GPS_3.

In this example, metadata are essentially a series of key-
words (“GPS”, “availability”, and “functionality”) and nu-
meric values (0.5, 0.6, etc). Reasoning occurs on the logical
formulae of the resilience policy as well as on the actual val-
ues associated to metadata. Dynamic adaptation consists
in replacing on-the-fly the faulty service.

2The exact way how metadata is obtained is out of the scope
of this paper. We assume here that the run-time environ-
ment is fed with the necessary metadata.



Resilience Policy Program

Event

Respond
Try
Search

Try ...

availability(GPS) < 0.6

new_GPS: equivalent(GPS) and
availability(new_GPS) >= 0.6
Replace GPS with new_GPS

GPS_1: functionality=GPS, availability = 0.5
GPS_2: functionality=GPS, availability = 0.3
GPS_3: functionality=GPS, availability = 0.8

Run-time environment

new_GPS: equivalent(GPS) and Run-time Reasoning /

[
Metadata Acquisition

availability(new_GPS) >= 0.6 | Architecture Adaptation

Metadata Registry

found
new_GPS = GPS_3

replace
GPS_1 with GPS_3

’—g GPS 2 GPS_3

Application
Components O

Figure 2: A run-time environment supporting dynamic resilience

3. ON THE NEED FOR FORMAL
SPECIFICATIONS

Formal descriptions play a significant role in the model de-
scribed above. Respecting the separation of concerns princi-
ple, we identify a need for formal descriptions of dependabil-
ity metadata, composition and resilience policies. A descrip-
tion is regarded as formal if both its syntax and semantics
are defined to a very high level of rigour, enabling machine-
assisted analysis of properties up to and including formal
mathematical proof.

Describing Metadata

It may be helpful to distinguish between value-based meta-
data, such as availability distributions, probabilities of fail-
ure etc., and functional description metadata such as pre-
conditions, post-conditions and descriptions of known fail-
ure modes. Value-based metadata typically quantify some
non-functional property and may be expressed as structured
values drawn from a possibly ordered collection. Resilience
mechanisms employing such metadata will allow explicit
reasoning about reliability, performance, quality of service,
availability of each component followed by system run-time
evolution. This includes retrying after a dynamically-chosen
period of time, signalling a failure when the component does
not deliver the service of the required quality, switching from
the less reliable component to a more reliable one, and, more
generally, applying dynamic mechanisms based on the recov-
ery block scheme [15] or employing a dynamic set of com-
ponents as versions in n-version programming [2].
Component specifications may likely change as compo-
nents evolve, but resilience may be maintained if it is pos-
sible to reason dynamically about the functional properties
of components, including abnormal behaviours. Dynamic
resilience mechanisms require component specifications as
metadata, including both specifications of services offered
and services required. These can be given by logical expres-
sions of pre-/post-conditions (in some cases rely/guarantee
conditions [8]), potential failure behaviours and responses

when the components are used outside their pre-conditions.
These are a very different form of metadata from the value-
based examples. In particular, the on-line reasoning re-
quired to deal with such functional description metadata
requires more complex logic than may be the case for value-
based metadata.

Describing Composition

Within an architecture, system components are composed
by connectors. In a Web services environment, for example,
the individual service invocations that make up an appli-
cation are composed by means of combinators defined in a
workflow language (e.g. parallel or serial composition). If
a reconfiguration is to take place, it is necessary to know
what the effects of the reconfiguration may be on the de-
pendability properties of interest. In our GPS example, it
is necessary to be able to predict the effects of parallel com-
position on service availability, in order to determine how
many GPS services should be used, and which ones. This
implies that the composition mechanism should have a se-
mantics, at least in terms of the metadata of interest. This
semantics is built in to the metadata reasoning tool, and so
should be formal. For some existing architectural descrip-
tion languages [20, 1], such theories already exist, although
they tend to deal primarily with the composition of func-
tional rather than QoS properties.

Describing Policies

For many applications, we require that systems should be
predictably dependable in the sense that degraded modes
of operation and the circumstances in which they occur are
understood in advance of deployment. This requirement for
predictable dependability tends to lead towards the use of
formal descriptions of system requirements, structural and
security policies, as well as specifications of components. Re-
silience policies bring together metadata and composition
theories to describe the trigger conditions under which re-
configurations occur, and the reconfigurations themselves.



Policies should be formal in the sense that their behaviour
may be analysed in advance of deployment. In particular,
the effects of interactions between multiple policies should
be susceptible to some level of prediction.

Potential and limits

The use of dynamically updated metadata at run-time be-
comes increasingly useful for a wide range of open systems
particularly for ambient intelligence systems (e.g. rescue
scenario, tag-based systems for entertainment or road traffic
monitoring). Services or components participating in such
systems may be: data service providers (GPS example, sen-
sor networks, videos or music files providers, etc.); or man-
aging service providers (network routing in mobile ad hoc
network - MANET, file system provider in a P2P system,
task and resource allocation in Grid computing system, or
dynamic access control).

The use of resilience policies in combination with meta-
data provides an even powerful tool for supporting these
applications when facing the dynamic changes of the envi-
ronment in which they evolve, e.g. by choosing the best
adapted service at any time, receiving data despite failures
from an original sender, maintaining networks functional-
ities or security constraints, or realising and maintaining
Grid computing resource allocation.

On the one hand, formal specifications allow ensuring pre-
dictability when designing the applications. However, on the
other hand, they may limit the efficiency of the approach
since the complexity and overhead introduced by underly-
ing reasoning tools are directly related to the expressiveness
of the formal specification language: the more expressive the
language, the more difficult and inefficient at run-time the
reasoning tool will be.

4. PROOF OF CONCEPT STUDIES

We describe two studies realised in the above context.
Study 1 focuses on the gathering of metadata and its use
to reconfigure workflows in e-Science. Study 2 concentrates
on the issues of dynamic reconfiguration using the run-time
environment services described in Section 2.

4.1 Study 1: Acquisition and Use of Metadata

In this preliminary work we have developed a tool that
records in a database the dependability metadata derived
from continuous observations of Web services. The tool mea-
sures the dependability of Web services by acting as a client
to the Web service under investigation. It monitors a given
Web service by tracking the following characteristics:

Awailability: the tool periodically makes dummy calls to
the Web service to check whether it is running. Function-
ality: the tool makes calls to the Web service and checks
the returned results to ensure the Web service is function-
ing properly. Performance: the tool monitors the round-trip
time of a call to the Web Services producing and displaying
real time statistics on service performance. Faults and ex-
ceptions: the tool logs faults and exceptions during the test
period of the Web Service for further analysis.

We have applied this tool for monitoring two services im-
plementing an algorithm used in the bioinformatics domain
to search for nucleotide or protein sequences that are similar
to a given query sequence.

We have been analyzing existing workflow languages used
for composing e-science Web service applications and shown

that it is possible to perform a simple reconfiguration of a
workflow (specifically a SCUFL workflow developed in the
Taverna environment®) by selecting a service or composition
of services on the basis of availability metadata, to achieve
the desired probability of successful completion of the task
specified in the workflow. The metadata were collected and
updated by the monitoring tool*.

4.2 Study 2: Reconfigurable Service-oriented
Architecture

A restricted version of the run-time environment in Sec-
tion 2 has been implemented in a service-oriented frame-
work. It supports essentially functional description of ser-
vices, and a very limited form of non-functional QoS de-
scription. The underlying infrastructure is a service-oriented
middleware allowing registration of service descriptions and
services request, matching of these descriptions, and seam-
less binding of components.

Principle. A service registers its specification (or meta-
data) to the run-time middleware that stores the specifi-
cation in some repository. An entity requesting a service
specifies this service through a specification, and asks the
run-time middleware to execute a service corresponding to
the specification.

Once it receives an execute request the run-time infras-
tructure activates a specification matcher that determines
which of the registered services is actually able to satisfy
the request (on the basis of its registered specification). The
specification matcher establishes the list of all services whose
semantics corresponds to the request.

Implementations. Two different implementations of the
above architecture have been realised. The first implemen-
tation has been realised for specifications expressing: sig-
natures of available operators whose parameters are Java
primitive types; and required quality of service. Both oper-
ators name and quality of service are described using pre-
defined keywords [13]. In order to remove the need for in-
teracting entities to rely on pre-defined keywords, a second
implementation of the above architecture has been realised.
This architecture allows entities to carry specifications ex-
pressed using different kinds of specification language, and
is modular enough to allow easy integration of additional
specification languages [7]. This prototype supports speci-
fications written either in Prolog, or as regular expressions.
However it cannot check together specifications written in
two different languages. In the case of Prolog, the middle-
ware calls SWI Prolog tool to decide about the conformance
of two specifications, in the case of regular expressions we
have implemented a tool that checks two regular expressions.
In our current implementation using Prolog, specifications
are registered as Prolog facts and rules, while specification
requests are Prolog queries. In the case of regular expres-
sions, the registered specification must match as a regular
expression the specification request (but not necessarily the
opposite).

4.3 Dynamic Resilience Experiments

The above described implementations, even though serv-
ing as a proof of concept, have been turned to be useful
to carry on the following preliminary experiments on some
dynamically resilient functionalities.

3http://taverna.sourceforge.net
“http://www.students.ncl.ac.uk /yuhui.chen/#Download



Dynamic Re-Configuration

Study 1, about the acquisition and use of metadata rep-
resenting the dependability of diverse Web services in the
bioinformatics domain, has paved the way to building a
dynamically re-configurable architecture which will be able
to deal with new services by observing them and collecting
metadata describing their characteristics for some period of
time before they become available for use. When supported
by the appropriate middleware services this feature will al-
low all basic activities related to dynamic re-configuration
to be conducted seamlessly and without any involvement of
the e-Scientist. In addition, Study 1 has shown the interest
of the approach of separately describing execution flows and
resilience policies to dynamically adapt the system to high-
level user needs, in this case the needs of the scientist using
the system.

For the particular case of automatic and seamless inte-
gration of new components, initial experiments with Study
2 have proven useful for dynamic run-time evolution of code.
Indeed, without stopping any specific entities or the whole
system, it has been possible: to add in the system and seam-
lessly use additional features; to seamlessly replace updated
entities without the calling entities noticing the replace-
ment (even during a call [13]). Since a specification request
is the only element necessary for activating a service, insert-
ing a new functionality then simply consists in registering
its corresponding service to the middleware. Replacing an
updated entity consists in having both the old and the new
entities present at the same time in the system, and if nec-
essary to transfer the state of the old entity to the new one
before stopping the updated entity.

Dynamic Optimisation

Study 1 demonstrated that it was possible to choose the
most suitable Web service or to employ/combine several
Web services if the availability of individual Web services
was not good enough. In addition, in Study 1 we extend
the workflow language with an additional functionality to
support a search for the most dependable service out of the
set of the service which are now monitored by the tool. This
will allow us to add some degree of self-optimisation to the
existing bioinformatics systems.

The architecture described for Study 2 implies that for
each request, the middleware searches for all possible ser-
vices realising the request. This turns out to be useful for
dynamic optimisation. Indeed, as soon as a service realising
a request is available (it simply needs to register itself), it
can be selected by the middleware. If the request specifies
that the most updated service is required, then the new ser-
vice will be chosen. It is interesting to note that if the new
service itself requires updated services to satisfy its needs,
by a cascading effect a large part of the system will then use
updated functionalities.

5. DISCUSSION

The successful application of our architecture is predi-
cated on certain assumptions about the supporting tech-
nologies and their future development.

Accuracy of collected metadata

Our approach relies to some extent on the accuracy of dy-
namically acquired metadata. We believe that developments

in this area are capable of providing sufficiently accurate
metadata for useful applications. In addition, the reason-
ing tool may take accuracy into account, reasoning within
certain tolerances.

In Study 1, the accuracy of metadata used depends on
some factors outside of the composed application’s control
as the probe requests are sent over the Internet. Never-
theless, we believe that the claim about their accuracy is
correct because the mechanism used to collect and process
them allows their accuracy to be improved by dynamic or
static adjustment of the probing frequency. In addition,
the metadata accuracy requirement is not very stringent for
this application, as the main decision about reconfiguration
is made using metadata collected over long period of time
(e.g. availability and performance).

Predictability

The reasoning tool described above is intended to work as
a matching and replacement tool using automated reason-
ing on specifications, but is not meant to work as an artifi-
cial intelligence tool. Therefore, predictability is primarily
obtained by the enforcement of explicitly defined policies.
However, in a large-scale environment with many compo-
nents from various suppliers, it may be difficult to ensure
conformance. There may be a need for a kind of “meta-
policy” spanning the whole system (or application) and to
which individual policies would need to adhere; an alter-
native would be to consider hierarchical policy schemas. In
addition to conflicting policies, it may also happen that some
non-expected (emergent) configuration, possibly non ideal,
is actually the chosen one. This is an issue of further re-
search and study.

Component Reconfiguration and Replacement

In general, reconfiguration or replacement of a faulty or
degraded component may require the restoration of state.
Such restoration may not be tractable at certain times. Our
approach assumes that we can time such changes so as to
minimize the restoration costs. It is worth noting that we
are not proposing dynamic adaptation as a form of fault-
tolerance, but as a technique for helping long-living appli-
cations to meet their quality requirements. Thus a failure
event does not necessarily trigger an instant reconfiguration.
The current configuration deals with failures by means of
whatever fault tolerance strategies are built into it. Dy-
namic reconfiguration permits to switch to a solution with
longer-term benefit, but which may need more time to be
completed.

We realise that in some situations (e.g. when the compo-
nents have state) switching between various fault tolerance
schemes should be supported by a number of dedicated ser-
vices, one of which is state recovery/restore and another
one is state mapping between diverse components. There is
some useful background work on recovery of the failed ver-
sions in n-version programming which can be applied here
(e.g. [16]).

Study 2 has addressed the state change problem, and a
state capture facility has been implemented allowing transfer
of state to a replacing component. Study 2 also identified
the different cases where a replacement (and consequently
the state change) could be carried out.



6. RELATED WORK

Predictable Resilience by Policies

Architecture adaptations are mainly seen as component re-
configurations, generally governed by policies described ei-
ther at the general level (as guidelines, directives, or con-
straints on actions or states) or at the detailed level of tech-
nical reconfiguration actions [21]. Work on the analysis of
policies is more limited, the main approaches being based
on quality of service (QoS) awareness [5] and arithmetic on
QoS attributes. Architectural reconfiguration using evolu-
tion has been described using architecture description lan-
guages (ADLs) [11, 12]. Several approaches have been pro-
posed for compositional reasoning based on formal meth-
ods [4, 17] but not linked with component models and re-
silience metadata. Our proposed model aims to integrate
design of resilience policies (using component metadata and
dynamic resilience mechanisms) and application design, and
to provide a general approach to the architectural design of
the non functional requirements of distributed systems using
explicit metadata.

Trustworthy Resilience Metadata

Research on Web Services and Grid computing systems heav-
ily studies metadata. Among others, we can cite Astro-
labe [22] and the Grid Monitoring and Discovery System
(GMDS) [19]. Astrolabe uses a relational database to mon-
itor the dynamic state of a set of distributed resources on
which it is installed. GMDS uses interfaces within the Web
Services Resource Framework to allow resources to publish
information and provide querying; the Grid Index Service
collates such information and makes it available in one place.
Such systems assume homogeneity: they are required to be
running on the participating computer nodes. This can not
be guaranteed when application components are provided
dynamically by various suppliers in open, boundaryless, dis-
tributed systems. Our proposed model aims to permit colla-
tion and run-time analysis of metadata from such disparate
sources.

Reasoning and Adaptation Services

Formal reasoning tools (theorem provers and model check-
ers) have been developed for off-line reasoning in design;
they require human guidance in certain situations, and are
not suitable for run-time usage. Attempts to use lightweight
run-time reasoning include: reasoning over ontologies us-
ing description logics such as [23], or dynamic model check-
ing supporting interaction among autonomous agents [14].
In this latter work the goal is to check automatically and
at run-time if a given property (such as a security con-
straint) can be verified given the local constraints of individ-
ual agents (e.g. access control, payments constraints, etc.)
are compatible with the multi-agent interaction model (i.e.
protocol) the agents want to participate in.

In the context of sensor networks, the Semantic Streams
framework [24] allows users to introduce (high-level /semantic)
queries over real-time data provided by existing sensors lo-
cated at diverse position throughout the world. At run-time,
the system responds to queries by automatically combin-
ing the different (most appropriate) data provided by the
sensors. The Semantic Streams framework encompasses a
markup and query language working over SICStus Prolog
for encoding sensor data description. Automated reason-

ing is then applied on these descriptions in order to answer
queries. The approach is very similar to Study 2 presented
in this paper, while Study 2 focuses on the description of ser-
vices and on semantic queries requesting available services,
Semantic Streams focuses on queries over real-time sensor
data and allows composition of different data in order to
answer possibly complex queries. The architectural model
proposed in this paper goes a step further since: it allows
any service (data provider services, managing services, etc.)
to join the system, reasoning is applied on requested ser-
vice functionalities as well as on service resilience (through
the resilience policy programs), dynamic replacement or re-
configuration of the system is supported by the underlying
run-time environment.

7. CONCLUSION

There has been so far relatively little examination of re-
silience mechanisms that exploit component specifications
as metadata in the dynamic system. However, the potential
for publication of component specifications as metadata ex-
ists in several modern system architectures (such as service-
oriented architectures [10]). Furthermore, advances in au-
tomated reasoning such as model-checking techniques [6],
although generally only applied to design-time evolution,
raise the potential for dynamic reconfiguration based on this
metadata, at least for constrained cases, and make this an
area well worth studying as basic research.

In this paper we present a novel approach to the develop-
ment of dynamically resilient systems using a specific archi-
tectural model. Its basic idea is to separate functional and
non-functional descriptions of the individual components, to
explicitly and formally express various resilience policies on
the basis of metadata, and to enforce the policies by using
a dedicated service-oriented middleware.

We have shown the viability of the approach through two
preliminary proof of concept experiments. Building on these
results, future work will essentially focus on: 1. defining
an appropriate formal specification language for expressing
resilience policies, metadata and component descriptions; 2.
developing the corresponding run-time reasoning tools.

8. ACKNOWLEDGEMENTS

We are grateful to the anonymous reviewers for their com-
ments and to Yuhui Chen for his work on Study 1. Alexan-
der Romanovsky is supported by IST FP6 Project on Rigor-
ous Open Development Environment for Complex Systems
(RODIN).

9. REFERENCES

[1] R. Allen and D. Garlan. A formal basis for
architectural connection. ACM Transactions on
Software Engineering, 6(3):213-249, 1997.

[2] A. Avizienis. The N-Version Approach to Fault
Tolerant Systems. IEEE Transactions on Software
Engineering, 11(12):1491-1501, 1985.

[3] A. Avizienis, J.-C. Laprie, B. Randell, and
C. Landwehr. Basic concepts and taxonomy of
dependable and secure computing. IEEE Transactions
on Dependable and Secure Computing, 1(1):11-33,
2004.

[4] M. Caporuscio, P. Inverardi, and P. Pelliccione.
Compositional Verification of Middleware-Based



[5]

Software Architecture Descriptions. In International
Conference on Software Engineering (ICSE’04), pages
10-24, 2004.

H. Cervantes and R. S. Hall. Autonomous Adaptation
to Dynamic Availability Using a Service-Oriented
Component Model. In International Conference on
Software Engineering (ICSE’04), pages 614-623, 2004.
S. Chaki, N. Sharygina, and N. Sinha. Verification of
evolving software. In Proc. Workshop on Specification
and Verification of Component-based Systems, 12th.
ACM Symposium on Foundations of Software
Engineering 2004, 2004.

G. Di Marzo Serugendo and M. Deriaz.
Specification-carrying code for self-managed systems.
In J.-P. Martin-Flatin, J. Sventek, and K. Geihs,
editors, IEEFE International Workshop on
Self-Managed Systems and Services, 2005.

C. H. C. Duarte and T. Maibaum. A rely/guarantee
discipline for open distributed systems design.
Information Processing Letters, 74:55—63, 2000.

D. Estrin, editor. Embedded, Everywhere: A Research
Agenda for Networked Systems of Embedded
Computers. Computer Science and
Telecommunications Board, National Academy of
Sciences, Washington, D.C., 2001.

J. S. Fitzgerald, S. Parastatidis, A. Romanovsky, and
P. Watson. Dependability-explicit computing in
service-oriented architectures. In Supplementary
Volume of Proceedings of International Conference on
Dependable Systems and Networks, pages 34-35, 2004.
H. Gomaa and M. Hussein. Software Reconfiguration
Patterns for Dynamic Evolution of Software
Architecture. In 4th Working IEEE/IFIP Conference
on Software Architecture (WICSA 2004), pages 79-88,
2004.

R. Morrison and al. Software Architectures in the
ArchWare ADL. In 4th Working IEEE/IFIP
Conference on Software Architecture (WICSA 2004),
pages 69-78, 2004.

M. Oriol and G. Di Marzo Serugendo. A disconnected
service architecture for unanticipated run-time
evolution of code. IEE Proceedings-Software, Special
Issue on Unanticipated Software FEvolution, 2004.

N. Osman, D. Robertson, and C. Walton. Run-Time
Model Checking of Interaction and Deontic Models for
Multi-Agent Systems. In Autonomous Agents and
Multi-Agents Systems, 2006.

B. Randell. System Structure for Software Fault
Tolerance. IEEE Transactions on Software
Engineering, 1(2):221-232, 1975.

A. Romanovsky. Class diversity support in
object-oriented languages. Journal of Systems and
Software, 48(1):43-57, 1999.

H. Schmidt. Trusted Components - Towards
Automated Assembly with Predictable Properties. In
ICSE Workshop on Component-Based Software
FEngineering, 2001.

F. Schneider, editor. Trust in Cyberspace: Report of
the Committee on Information Systems
Trustworthiness, Computer Science and
Telecommunications Board, Commission on Physical
Sciences, Mathematics and Applications, National

Research Council. National Academy Press,
Washington, D.C., 1999.

[19] J. Schopf, M. D’Arcy, N. Miller, L. Pearlman,

I. Foster, and C. Kesselman. Monitoring and
Discovery in a Web Service Framework: Functionality
and Performance of the Globus Toolkits MDS4.
Technical Report ANL/MCS-P1248-0405, Argonne
National Laboratory, 2005.

[20] M. Shaw and D. Garlan. Software Architecture:
Perspectives on an Emerging Discipline. Prentice-Hall,
1996. 242p. ISBN 0-13-182957-2.

[21] E. Turkay, A. S. Gokhale, and B. Natarajan.
Addressing the Middleware Configuration Challenges
using Model-based Techniques. In ACM Southeast
Regional Conference, pages 166—170, 2004.

[22] R. Van Renesse, K. Birman, and W. Vogels. A robust
and scalable technology for distributed system
monitoring, management, and data mining. ACM
Transactions on Computer Systems, 21(2):164-206,
2003.

[23] P. Weinstein and W. P. Birmingham. Service
Classification in a Proto-Organic Society of Agents. In
1JCAI Workshop on Artificial Intelligence in Digital
Libraries, 1997.

[24] K. Whitehouse, F. Zhao, and J. Liu. Semantic
Streams: A Framework for Composable Semantic
Interpretation of Sensor Data. In 3rd European
Workshop on Wireless Sensor Networks (EWSN
2006), pages 5-20, 2006.

Giovanna Di Marzo Serugendo is Lecturer at the
School of Computer Science and Information Systems, Birk-
beck College, University of London. Her main interests are
in the software engineering of decentralised systems with
self-organising and self-adaptive capabilities. She has re-
cently been appointed Editor-in-Chief of ACM Transactions
on Autonomous and Adaptive Systems.

John Fitzgerald is Reader in Computing Science at New-
castle University. His main area of work is on formal meth-
ods, particularly industry application of model-oriented tech-
niques and proof. He is currently leading work on metadata-
based description of resilience mechanisms within the EU
ReSIST Network. He is Chairman of Formal Methods Eu-
rope.

Alexander Romanovsky is Professor at the School of
Computing Science, Newcastle University. The main focus
of his work is on fault tolerance and exception handling. In
recent years he has been involved in a number of EU and
EPSRC projects on various aspects of dependability. Now
he is coordinating the EU RODIN project.

Nicolas Guelfi is Professor at the Faculty of Sciences,
Technology and Communications of the University of Lux-
embourg. His main research activities concern the engineer-
ing and evolution of reliable and secure distributed and mo-
bile systems based on semi-formal methods and transforma-
tions. He is a leading member of the Laboratory for Ad-
vanced Software Systems (LASSY). He has been involved
in several European projects and is chair of the ERCIM
working group on rapid integration of software engineering
techniques (RISE).



