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ABSTRACT

This paper proposes a software architecture and a develop-
ment process for engineering dependable and controllable
self-organising (SO) systems. Our approach addresses de-
pendability by exploiting metadata to support decision mak-
ing and adaptation based on the dynamic enforcement of
explicitly defined policies. Control is obtained by actively
modifying metadata, policies or components. We show how
this applies to two different systems: (1) a dynamically re-
silient Web service system; and (2) an industrial assembly
system with self-adaptive and SO capabilities.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architecture

General Terms

Design-time and run-time adaptation, control loop

Keywords

Self-organisation, self-adaptation, metadata, policies

1. INTRODUCTION

Self-organisation is the ability of a system to organise
itself without explicitly being instructed to do so. Self-
organisation principles, as observed in natural systems (e.g.
ant colonies, flocks of birds) are increasingly applied to ar-
tificial systems. They provide robustness to systems that
must cope with volatile environments, while retaining sim-
plicity in individual system components. Most of the re-
sults achieved to date focus on ad hoc implementations in
domains such as optimisation problems, robotics, services,
or MANETSs. Though displaying great potential, artificial
self-organising (SO) systems are not yet trustworthy (in the
sense of being dependable and displaying evidence to sup-
port claims of dependability) or controllable. Their actual
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(emergent) behaviour is often difficult to predict and con-
trol (e.g. stop, reset or guide); they show latency when
adapting to changes, sensitivity to initial conditions and
instability. Approaches to dependable SO systems range
from multi-layer reference architectures for self-adaptive sys-
tems [10], to analysis guidelines and specific collaborative
agents solutions for SO systems [14], and design of SO sys-
tems through information flows [5]. Despite the large body
of work in this area, there are as yet no systematic tech-
niques for engineering (designing and implementing) trust-
worthy and controllable SO systems. To overcome these
limitations, we have been working on a software architec-
ture and development method combining design-time and
run-time features which permit the definition and analysis
at design-time of mechanisms that both ensure and constrain
the run-time behaviour of a SO system, thereby providing
some assurance of its self-* capabilities.

Our approach, called MetaSelf, involves loosely coupled
autonomous components which are the building blocks of
the SO system, dynamically updated and retrieved meta-
data, rules for self-organisation, and dependability policies
instantiating generic SO and resilience mechanisms. At de-
sign time, SO mechanisms are identified and correspond-
ing generic dependability policies specified. At run-time,
both the components and the run-time infrastructure ex-
ploit metadata to support decision-making and adaptation
based on the dynamic enforcement of instantiated policies.

In this paper, we present the MetaSelf software architec-
ture and development method. Section 2 briefly reviews SO
systems and dependability. Sections 3 and 4 describe the
MetaSelf architecture and development process respectively.
Section 5 discusses how MetaSelf supports dependability and
control in the SO systems. T'wo examples are presented in
Sections 6 and 7. Related works are discussed in Section 8.

2. SELF-ORGANISING SYSTEMS

Self-organising applications are generally made of multi-
ple autonomous components that locally interact (directly
or indirectly) with each other to produce a result. Typical
examples of natural self-organisation are swarms (ant, flocks
of birds, wasps, etc.). Artificial (engineered) systems include
unmanned vehicles, swarms of robots, P2P systems, immune
computer or trust-based access control. Leveraging from [6],
we consider that the design elements of a SO system are:
the environment in which the system evolves; the autono-
mous components that constitute the system itself (software
agent, robots, peer nodes, services); self-organising mech-



anisms governing the interactions among the components
(generally defined by rules for self-organisation that each
component applies); and artifacts — passive entities main-
tained by the environment, created, modified and/or sensed
by the agents (e.g. digital pheromone spread in the environ-
ment or information exchanged among agents). Faults in a
SO system arise from faults or changes in one of the four
design elements listed above. For instance, changes in the
environment, malicious components, design errors in the SO
mechanism, etc. Dependability in the SO context means
that a system satisfies its properties (invariants, conver-
gence, stability, availability, etc.) in the face of such faults.
Dependability in SO systems is obtained either through the
SO mechanism itself, by devising an enhanced SO mecha-
nism (better design), or by applying dependability policies.

3. METASELF ARCHITECTURE

MetaSelf follows a service-oriented architecture (Figure 1).
It exploits metadata to support decision-making and adap-
tation based on the dynamic enforcement of explicitly ex-
pressed policies. Metadata and policies are themselves man-
aged by appropriate services. The main elements of the
MetaSelf architecture are the following:

Self-Describing Components/Services/Agents. As
we have seen above, autonomous components (e.g. software
agents, robots, peers, services) are the active entities at the
heart of a SO system. Interoperability is fundamental when
different service providers are involved in the same system.
Decoupling components (software programs) from descrip-
tions of their capability, QoS, requirements and constraints
is thus a solution for solving interoperability and deriving
run-time solutions in case of unexpected condition.

Acquired, Updated & Monitored Metadata. Sens-
ing and acting is a fundamental activity in SO systems.
This requires appropriate metadata that may be published;
that is permanently acquired, updated and monitored at
run-time by both the system’s components (for sensing, act-
ing) and the supporting infrastructure (for monitoring ac-
tivities). Different types of metadata are available: compo-
nent descriptions (possibly including interface information),
environment related metadata (possibly supporting coordi-
nation and self-organisation), metadata related to either in-
dividual components (e.g. availability level, efficiency) or to
groups of components (supporting dependability policies).

Self-* Mechanisms. Self-* mechanisms describe how
adaptation is triggered on the basis of metadata. It consists
of both the SO mechanism driving the interactions among
the autonomous components and any self-adaption required
for ensuring dependability, e.g. replacement of a compo-
nent with a functionally equivalent one if the performance
of the first deteriorates; an adaptive fault tolerance struc-
ture in which replicas are dynamically configured; what co-
ordination action to take next on the basis of locally sensed
information (stigmergy). These patterns are implemented
through rules for self-organisation or through dependability
policies. Rules for self-organisation are followed by all com-
ponents and applied regularly. Dependability policies apply
punctually to recover from or anticipate an error by taking
appropriate steps. Dependability policies are available at
run-time to both the run-time infrastructure and the com-
ponents themselves. Policies come in different categories,
and may apply at system level (guiding policies), compo-
nent level (monitoring policies), or refer to environmental
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constraints (bounding policies).

Enforcement of Policies. The run-time infrastructure
is equipped with services responsible for enforcing policies
on the basis of current metadata values and changes in meta-
data values. These services may act directly on components
by performing replacements and reconfigurations. Each ser-
vice provides tasks related to processing of metadata, such
as comparison/matching, determination of equivalence and
metadata composition. They also encompass automated
reasoning over policies and metadata.

Coordination/Adaptation. This service manages the
list of components, seamlessly activates or connects the ones
that will be used according to the specified rules for self-
organisation (coordination) or dependability policies (adap-
tation). It encompasses automated reasoning on adaptation
policies.
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Figure 1: Run-time Generic Infrastructure

It is worth noting that the architecture is not necessarily
centralised; the services providing access to the description
of components, or monitoring and acquisition of metadata
can reside at different locations and work autonomously. In
addition, metadata and policies have either a local or global
scope, and can be locally attached to a component. The
actual implementation depends on the application.

4. METASELF DEVELOPMENT METHOD

The MetaSelf development process consists of 4 phases
(Figure 2). The Requirement and Analysis phase iden-
tifies the functionality of the system along with self-* re-
quirements specifying where and when self-organisation is
needed or desired. The required quality of service is de-
termined. The Design phase consists of two sub-phases:
D1: the designer chooses architectural patterns (e.g. auto-
nomic manager or observer/controller architecture) and self-
* mechanisms (governing the interactions and behaviour of
autonomous components (e.g. trust, gossip, or stigmergy).
Generic rules for self-organisation and dependability policies
are defined. In the second part; D2: the individual autono-
mous components (services, agents, etc.) are designed. The
necessary metadata and policies are selected and described.
The self-* mechanisms are simulated and possibly adapted
or improved. The Implementation phase produces the



run-time infrastructure (Figure 1) including agents, meta-
data and executable policies. In the Verification phase,
the designer makes sure that agents, the environment, arte-
facts and mechanisms work as desired. Potential faults and
their consequences are identified, similar to the way failure
modes and effects analysis (FMEA) [11] works. Corrective
measures (redesign or dependability policies) to tolerate or
remove the identified faults are taken accordingly.
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Figure 2: MetaSelf Development Process

5. DEPENDABILITY AND CONTROL

Dependability. Means for achieving dependability en-
compass prevention of faults, fault tolerance, fault removal
and fault forecasting [2]. MetaSelf supports dependability
in the following ways. Prevention of faults is provided by
simulations (phase D2 of the design) that allow designers to
establish rules for self-organisation and dependability poli-
cies. Fault tolerance is provided by the SO mechanism and
by setting any additional and punctual dependability policy
that complements it. Fault removal is achieved by revised
design of rules for self-organisation and dependability poli-
cies. Finally, fault forecasting is obtained through depend-
ability policies and monitored metadata (an action is taken
before an error occurs, the decision is based on metadata
values).

Control and feedback loop. Figure 3 shows the differ-
ent levels of control supported by the architecture. Internal
or low-level control is a result of the activity of the compo-
nents. Components sense and retrieve metadata and poli-
cies. Their behaviour causes metadata changes which in turn
causes components to individually adapt to the new situa-
tion. External or high-level control is provided in three ways.
The run-time infrastructure itself is active and through rea-
soning services enforces active external or human/admin
control by direct reconfiguration of components; modifica-
tion of the metadata used by the components to sense their
environment; and modification of the policies used by the
components for driving (changing) their behaviour on-the-
fly. Loose coupling is crucial. Dynamically changing a policy
or metadata occurs without modifying/stopping the compo-
nents, their new value immediately affects the components
behaviour. This is useful when devices change context (e.g.
a PDA moving around), or when global policies change (e.g.
rights are denied to some user).

6. DEPENDABLE WEB SERVICES

In this section we briefly show how the proposed architec-
ture has been applied in developing a Web Service architec-
ture called WS-Mediator intended as a novel approach to im-
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proving dependability of Web service composition [4]. WS-
Mediator relies on an off-the-shelf mediator solution imple-
menting run-time dependability monitoring and assessment,
resilience-explicit computing and fault tolerance mechanisms
used together to achieve dependable dynamic Web service
integration. A Java WS-Mediator framework has been de-
veloped and applied in experiments conducted in the bioin-
formatics and virtual organisation domains.

The WS-Mediator architecture is developed for the Web
service domain in which components, i.e. Web services,
meet our requirements for decoupling from their descrip-
tions and from the underlying coordination infrastructure.
Self-awareness is architected as an overlay network of ded-
icated components monitoring the application services and
collecting dynamic information about their behaviour as the
metadata (m,r, f) described below. The WS-Mediator sys-
tem consists of a set of interconnected functionally-identical
Sub-Mediators distributed over the Internet to monitor the
dependability of Web services and to provide accurate meta-
data, presenting Web service dependability characteristics
from the client’s perspective. Each service is periodically in-
voked and, if a valid result is returned, an availability score
(m) increases. The round-trip response time of the invoca-
tion is recorded for calculating the average response time (r)
of the service. If the service returns an invalid response, the
value of m decreases, and the error message is logged in the
database for statistic (f) recording types of failure. If the
service fails to respond, or if an exception arises during the
invocation, m also decreases, and the type of the exception
is also logged for f.

The collected metadata are dynamically analysed and used
to choose and enforce one of the fault tolerance policies.
These policies are statically defined by the system archi-
tect to represent the most efficient strategies of tolerating
a wide range of erroneous conditions in the application ser-
vices and of the communication media. The policies utilise
the types of redundancy available in such global setting, in-
cluding path diversity and application service diversity, and
allow synchronous and asynchronous invocation of the appli-
cation services. The most typical fault tolerance modes use
backward recovery (retry and try of a similar service [15]),
masking diversity (invoking several similar services concur-
rently [1]) and path diversity (routing the service invocation
through different routes). A basic reasoning engine is im-
plemented as part of each WS-SubMediator to ensure the
best choice for the current situation in the network and the
application services as observed from the location of this
WS-SubMediator.

The WS-Mediator architecture has been evaluated in two



major sets of experiments. First we verified the validity of
dependability monitoring using two Web services provided
to us by the GOLD project’. Second, in order to demon-
strate the applicability and effectiveness of the WS-Mediator
approach, we experimented with three Web services imple-
menting an algorithm which is commonly used in in silico
experiments in bioinformatics to search for gene and protein
sequences that are similar to a given input query sequence
(so-called BLAST services?3%).

Proof-of-concept: this example shows that a dynamically
resilient system can be implemented using the notions of
(monitored) metadata and policies. It is a self-adaptive sys-
tem, where globally available and up-to-date information
about Web services behaviour is used at run-time for over-
coming different types of errors (e.g. non responsive or over-

loaded Web service).

7. INDUSTRIAL ASSEMBLY SYSTEMS

This section shows how the MetaSelf approach has been
applied to enhance assembly systems with self-organisation
and self-adaptation. It also highlights the steps necessary
to produce the design of a SO and self-adapting system.
Additional descriptions of this example can be found in [8].

An assembly system is an industrial installation that re-
ceives parts and assembles them in a coherent way to form
a final product. It consists of a set of equipment items
(modules) such as conveyors, pallets, simple robotic axes
for translation and rotation as well as more sophisticated
industrial robots, grippers, sensors of various types, etc.

Our goal is to design self-organising assembly systems.
Given an order for a specified product, the system’s mod-
ules spontaneously select each other (preferred partners) and
their positions in the assembly system layout. They also pro-
gram themselves (instructions for robots’ movements). The
result of this SO process is a new or reconfigured assembly
system that will assemble the product ordered. The appro-
priate assembly system emerges from the self-organisation
process among the modules. This automated process does
not stop at layout formation. During production time, when-
ever a failure or weakness occurs in one or more of the
current elements of the system, either the current modules
adapt their behaviour (change speed, force, task distribu-
tion, etc.) in order to cope with the current failure, pos-
sibly degrading performance but maintaining functionality;
or may decide to trigger a reconfiguration to effect a repair.

Components. The components (and services) of the sys-
tem are provided by several agents. The order agent carries
the generic assembly plan for building the product. This is
a series of instructions specific to the products being assem-
bled, but independent of both the specific modules that will
carry the assembly and their positioning layout. The prod-
uct agents carry the layout-specific assembly instructions
(micro-instructions) which the visited resource modules will
be asked to execute. This is a translation of the generic as-
sembly plan specific to the modules that participate in the
layout and to their position. The manufacturing resource

"http://www.neresc.ac.uk/projects/GOLD/
projectdescription.html

http://www.ebi.ac.uk/
3http://he.ims.u-tokyo.ac.jp/JSBi/journal /GTW00/
GIW00P072/index.html

“http://pathport.vbi.vt.edu/main/home.php
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agents include the conveyor units, robots, grippers, feeders,
etc. and the part agents are the the parts to be assembled.

Self-* Requirements. Layout Formation. Any new as-
sembly plan triggers a self-organisation process leading to a
new configuration (layout), i.e. self-selection of modules and
their partners, and establishment of the layout-specific as-
sembly instructions. Task coordination at production time.
This encompasses task sequencing (modules coordinate their
work according to the current status of the product being
built); and collision avoidance (modules with overlapping
workspace must maintain a minimum separation while mov-
ing). Self-Adaptation. Self-healing: During production, if a
module failure is detected (blocked gripper, lost part), by
the module itself or one of its partners, either the mod-
ules can solve the problem by themselves (software restart,
open and close a gripper, etc.) or alert the user. Self-
optimization: During production, the speed of processing
the product parts is adjusted to the queuing level.

Self-* Mechanisms. Self-organisation mechanism. The
mechanism that allows modules and product parts to reor-
ganise when a new assembly plan arrives, or when a change
in a module is requested, is inspired by the chemical abstract
machine (CHAM) [3]. In this model components are parts
of a chemical solution, rules for self-organisation are chemi-
cal reactions for binding physically compatible modules and
for matching modules skills with expected services. Coor-
dination mechanism. During production, the coordination
of tasks for each individual product item is done through
indirect communication by storing the current advancement
of the assembly in a shared place (a RFID attached to the
product item). Self-adaptation mechanism / Dependability.
Self-adaptation, e.g. resilience to failures, to the effects of fa-
tigue and collision avoidance, is performed by modules mon-
itoring their own or their neighbour’s behaviour.

Policies and Metadata. CHAM rules for layout for-
mation include: matching of modules skills to requested as-
sembly task (rotation or vertical movement); physical com-
patibility among modules (shapes and sizes) and rewriting
of generic assembly tasks (screw) into specific ones (which
module performs the screwing operation and exact move-
ment positions). Some examples of self-healing policies in-
clude: if the target position after a movement has not been
reached correctly, take corrective measures (advance more or
less, ask for maintenance); in case of malfunctioning, request
a replacement from a coalition partner; if no replacement
found, ask for a re-configuration of the layout. Metadata
include: optimal speed of operation; own precision (move-
ments on every axis); precision of partners (neighbours):
quality of assembled product.

Implementation. A specific decentralized instantiation
of the architecture in Figure 1 has been developed [8]. The
CHAM rules are designed using K-Maude. Implementation
of this example is reported in [9]: an appropriate ontology
has been developed with Protégé and is loaded at run-time
using Jena, agents are developed with Jade, rules and poli-
cies are enforced with Jess.

Proof-of-concept: this example combines self-adaptation
(adaptation to production conditions) and self-organisation
(layout formation) features, for which different self-* require-
ments and mechanisms have been identified. This examples
demonstrates how to apply the MetaSelf approach when de-
signing such a system: identification and selection of self-*
requirements and corresponding self-* mechanisms.



8. RELATED WORK

The “Observer-Controller” is a generic paradigm architec-
ture [13] attaching to individual components or groups of
components, an “observer” component responsible for mon-
itoring events and states, and a “controller” component re-
sponsible for acting in response the observer’s results. Meta-
Self can be viewed as an instantiation of this paradigm. The
run-time enforcement of policies acts as a controller, while
acquisition and monitoring of metadata act as an observer.
White et al. [16] propose a uniform representation and com-
position of autonomic elements utilising a service-oriented
architecture supporting their interactions, preliminary de-
sign patterns and policies. The notions of registry, brokers
and monitoring are similar to those described in our architec-
ture. Self-Managed Cells (SMC) [7] consist of heterogeneous
hardware and software elements, and management services,
integrated through a common publish/subscribe event bus.
The SMC concept is very close to the approach advocated
in this paper. The main differences are that SMC elements
have well defined expected interfaces, limiting the possibility
for new elements to join the system, especially if they have
not been designed by the same team. SMCs do not specif-
ically use metadata, even though elements are monitored,
which implies that some metadata are collected about their
behaviour. A proposal in [12] is specifically intended for au-
tonomic systems, and shares with our approach the ideas of a
service-oriented architecture, of description of services, and
use of metadata. The proposed autonomic service-oriented
architecture is a three layer architecture (process, service,
and application) driven by the process layer, and services
are autonomous and monitored by the system.

9. CONCLUSION

We have discussed MetaSelf, a software architecture and
a development method for engineering dependable SO sys-
tems. The key point resides in combining both rules for
self-organisation that autonomous components abide to with
dependability policies enforced at run-time on the basis of
updated metadata. We have briefly described the key ele-
ments of the architecture and its application on two exam-
ples: dependable Web services and industrial assembly sys-
tems. Future works concentrate on actual implementation of
the industrial manufacturing system with actual industrial
modules and thorough investigation of dependability policies
addressing the different types of faults in SO systems.
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