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Abstract

Current solutions for industrial manufacturing assembly

systems do not suit the needs of Mass Customization indus-

try, which is facing low production volumes, many variants

and rapidly changing conditions. This paper proposes the

concept of Self-Organizing Evolvable Assembly Systems,

where assembly system modules and product parts to be as-

sembled self-organize and self-adapt (among others, choose

their coalition partners, their location and monitor them-

selves) in order to easily and quickly produce a new or re-

configured assembly system each time a new product order

arrives or each time a failure or weakness arises in the cur-

rent assembly system. This paper presents the design and

partial implementation of such a system following an archi-

tecture for self-organizing and self-adaptive systems based

on policies enforced at run-time on the basis of collected

and updated metadata. As a case study, the assembly of a

Adhesive Tape Roller Dispenser is considered.

1. Challenges in Manufacturing

In the era of Mass Production, companies needed op-

timal solutions to produce large quantities of an identical

product as fast and as cheap as possible; it was worth paying

the big investments for custom-made installations, which

would be disposed of once the product is out of production.

In the best case some of the equipment could be reused

but needed ”manual” re-programming. Any change (even

small) in the product design or any failure of a module im-

plied halting the production and eventually re-programming

the system, which is a work- and time-intensive as well as

error-prone procedure.

Nowadays, the market tends increasingly towards Mass

Customization, meaning that clients like to individually se-

lect from various product options. Companies require high

responsiveness and the ability to cope with a multitude of

conditions. Especially assembly is a critical area: due to

the high salaries in the Western Hemisphere, companies of-

ten have to off-shore manual work to low-wage countries

and run the risk of not only losing jobs but also knowl-

edge and finally the entire business. The only alternative

is automation. Robotic assembly systems have to become

able to cope with such dynamic production conditions: fre-

quent changes, low volumes and many variants. Indus-

trial systems need to be quickly reconfigurable, following a

Plug&Play approach and avoiding time- and work-intensive

re-programming. They need to perform according to spec-

ifications and have to maintain productivity also under per-

turbations.

Evolvable Assembly Systems (EAS) [8] specifically tar-

get the challenges encountered in Mass Customization in-

dustry. So far, EAS were based on a multi-agent control

solution called CoBASA [1], operational at Uninova, Por-

tugal. EAS are not yet self-organizing - configuration of

the agents, their positioning into an appropriate assembly

system layout, monitoring and re-configuration in case of

failure are still done manually. Applying an architecture

for Self-Organization and Self-Adaptation is a fundamen-

tal step towards realizing true self-organizing evolvable as-

sembly systems. A generic architecture for self-organizing

and self-adaptive systems has been proposed in [5]. This

architecture specifically addresses systems working under

dynamically changing conditions. It encompasses coordi-

nation of work among autonomous components, seamless

addition or removal of components at any time, and failures

of various types, while still maintaining a predictable level

of dependability. These are exactly the characteristics man-

ufacturing systems need to cope with in dynamic production

situations. The focus of this paper is on describing a design

accommodating both self-organizing and self-adapting is-

sues in an industrial assembly system.

Section 2 and 3 discuss respectively the notion of Evolv-

able Assembly Systems and our case study: the assembly

of an Adhesive Tape Roller Dispenser. Section 4 briefly

presents the generic self-organizing architecture. Sec-

tion 5 explains the design principles used for creating Self-

Organization in EAS. Section 6 reports implementation as-

pects. Finally, Section 7 discusses related works.
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2. Evolvable Assembly Systems

An assembly system is an industrial installation able

to receive parts and join them in a coherent way to form

the final product. It consists of a set of equipment items

(modules) such as conveyors, pallets, simple robotic axes

for translation and rotation as well as more sophisticated in-

dustrial robots, grippers, sensors of various types, etc. An

Evolvable Assembly System (EAS) is an assembly system

which can co-evolve together with the product and the as-

sembly process; it can easily undergo small and big changes

in product design and seamlessly integrates new modules

independently from their brand or model. Modules carry

tiny controllers for local intelligence. Thanks to wrap-

pers, every module is an agent, forming a homogeneous

society with the others, despite their original heterogeneity

(nature, type and vendor). Each module is carrying self-

knowledge information about its physical reality, especially

its workspace (the portion of the space that the module uses

when in action / that is accessible by the module), its inter-

faces and its skills (the capabilities of the module). Several

modules together can dynamically form a coalition in order

to offer complex skills.

Basic module types which are needed for executing as-

sembly operations are as follows (see Figure 1): An axis is

a module which can execute a movement along or around a

certain direction (axis). Its workspace is thus linear or cir-

cular. If combined with other linear axis, their combined

workspace can be square, or cylindrical in case of a rota-

tional axis. A gripper is a device which is mounted on an

axis and allows to grab a part, either with its fingers (mostly

2-3 of them), by aspirating it or by activating an electric

magnet. A feeder is a device which receives the parts to be

assembled and puts them at disposal of the respective mod-

ules which will treat them. For instance, tape rolls are con-

tained in a tube and pushed upwards, where a robot can grip

them. In case of screws, they are put into a vibrating bowl

(see Fig 1), which - due to the vibrations - delivers them

well-aligned on a rail, where a robot can pick them. A con-

veyor is a typically linear transportation device consisting

of several modules which can be arranged to move work-

piece carriers, or sometimes loose parts. Other instances of

conveyor modules are corner units and T-junctions.

The modules, even though actively transporting parts

while assembling product parts, cannot physically move

themselves without human assistance from one location to

another across the assembly system. Modules ask a human

operator to move them.

2.1. EAS and Self-Organisation

Our goal is to develop self-organizing evolvable as-

sembly systems, i.e. given a specified product order pro-

Figure 1. Selection of modules

vided in input, the system’s modules spontaneously select

each other (preferred partners) and their position in the

assembly system layout. They also program themselves

(micro-instructions for robots movements). The result of

this self-organizing process is a new or reconfigured as-

sembly system that will assemble the ordered product. In

the self-organizing jargon, the appropriate assembly sys-

tem emerges from the self-organization process going on

among the different modules of the assembly system. Any

new product order (seen as a global goal) triggers the self-

organizing process, which eventually leads to a new appro-

priate system - there is no central entity, modules progres-

sively aggregate to each other in order to fulfil the product

order. This automated process does not stop at the layout

formation. During production time, whenever a failure or

weakness occurs in one or more of the current elements

of the system, the process may lead to two different out-

comes: the current modules adapt their behavior (change

speed, force, task distribution, etc) in order to cope with

the current failure, eventually degrading performance but

maintaining functionality; or may decide to trigger a re-

configuration leading to a repaired system. The actual de-

cision will depend on the situation at hand and on specific

production constraints (cost/speed/precision).

A Self-Organizing Evolvable Assembly System is thus

an EAS with two additional characteristics: 1) modules self-

organize to produce an appropriate layout for the assembly

and 2) the assembly system as a whole self-adapts to pro-

duction conditions.

2.2. Agents and infrastructure

EAS consist of a set of different agent types explained

in this section; each of them can be instantiated as often as

required and according to the actual item to be represented.

Manufacturing system modules are agentified and we

thus speak about manufacturing resource agents. This

category of agents encompasses among others robotic mod-

ules, conveyors, work-piece carriers, feeders and axes.

A product order comes into the system as an order
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agent, asking for a certain number of instances of a specific

product to be assembled within a certain deadline. An order

agent carries the assembly plan instructions, called Generic

Assembly Plan, specifying in a general way how to assem-

ble which parts. The generic assembly plan says what to do

but not how and is thus independent from any layout; only

changes in the product design itself lead to changes in the

general assembly plan.

In order to build the actual assembly, the generic as-

sembly plan needs to be transformed into Layout-Specific

Assembly Instructions, which are in fact executable

programs for the robotic modules, also called ”micro-

instructions”. Using the Dynamic Map (see below) as a

support, the different agents - involved in the layout - trans-

form the generic assembly plan into layout-specific assem-

bly instructions. These instructions specify which module

executes what movement in which order; they are generated

for a certain layout - if the layout is modified, these instruc-

tions must be changed.

Product agents represent the instances of the product

to be made and are associated with an RFID on the work-

piece carriers. Product agents carry the micro-instructions,

and each of them exists until the product item it refers to is

finished.

Part agents represent the product parts which are deliv-

ered by the feeders and need to travel to their target position

in the final assembly. There is one part agent per part type

(not one per part). Part agents collaborate with feeder agents

to organise the delivery of the parts.

The Dynamic Map (DMap) is a registry where modules

currently being used in the layout register and update their

availability. The DMap is thus, order-specific and dynamic

- reflects the current status of the layout; each time the lay-

out changes or a module becomes unavailable, the DMap is

updated (the corresponding modules are unregistered from

the DMap).

The Directory Facilitator (DF) is a registry where all

the agents (including those that are not part of the layout,

i.e. those that are no in the DMap) register and may retrieve

services from other agents.

Here is an example of generic assembly instructions:

Pick part 1 and place it on the work-piece carrier, then pick

part 2 from its feeder and insert it into the hole in part 1 by

applying a force x. The generic assembly plan does not pro-

vide information about what module to use and what move-

ment to make. It only provides information about how the

different product parts must be assembled and in which or-

der. More details are included in the layout-specific assem-

bly instructions, which, for the generic assembly instruc-

tions given above, could look like this: Robot R1 with grip-

per G1 is at position P1 = (x1/y1/z1) and moves to position

P2 (above pallet), opens the gripper (if it was closed be-

fore), moves down to P3, closes the gripper, then moves to

P4 (location on the work-piece carrier), opens the gripper.

Then R1 moves on to P5 (feeder), closes the gripper, moves

to P6 (location of insertion) and moves down towards P7

with a force x, then opens the gripper and moves back to P1

and closes the gripper.

3. The Adhesive Tape Roller Dispenser Assem-

bly System

To illustrate the concept, we have chosen a simple prod-

uct: an adhesive tape roller dispenser (see Figure 2) consist-

ing of two body parts (Parts 1 and 3) locked by a screw (Part

4) and the tape roll (Part 2). In the rest of this paper we will

refer to this assembly system as the Tape Roller Dispenser.

The assembly is made on top of a work-piece carrier circu-

lating on the conveyors.

Figure 2. The Adhesive Tape Roller Dispenser

For reasons of simplicity, the choice of system modules

at hand will for now be very limited (examples shown in

Figure 1): a Z-axis moving in a vertical direction; an X-axis

working horizontally; a feeder receiving screws in bulk. In

reality, modules available at other places in the system, in

the storage or even in the system supplier’s catalogue can be

considered for joining the coalitions on request. For illustra-

tion, Figure 3 shows a combination of the two robotic axes

introduced in Figure 1, with additionally a 2-finger gripper

mounted on the Z-axis. This configuration can be used for

executing all the movements required to assemble the Tape

Roller Dispenser.

Layout. The Self-Organization process could produce

many different layouts and choose one depending on user

preferences and available modules. For this case study, we

consider that a circular layout, such as the one shown on

Figure 4, is produced, with all the robots being identical

and as shown on Figure 3.

This layout has some interesting characteristics: being

circular, work-piece carriers re-visit Robot R1, which exe-

cutes two different work-steps. In this example, Robot R1
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Figure 3. A simple robot made of 2 axes and

1 gripper and Part 1 placed on a work-piece

carrier circulating on the conveyor

works faster than Robots R2 and R4, and thus assembles

Part 1 as well as Part 3. The letters A, B, C and D on Fig-

ure 4 refer to the respective feeding of the Parts 1, 2, 3 and

4, while ”IN” represents the entry of the empty work-piece

carriers and ”OUT” means that the carrier with the finished

product leaves the system. The screw (Part 4) is fed by a

feeder such as on Figure 1 and picked up / transported by

a magnetic screw driver. The tape roll is fed from a tube,

while the body parts are conditioned on pallets.

Figure 4. Circular layout where Robot 1 treats

Part 1 and later also Part 3

Agents. The agents in this case study are: the order

agent - carries the generic assembly plan for Tape Roller

Dispensers; product agents - carry the layout-specific as-

sembly instructions, which the visited resource modules

will be asked to execute; manufacturing resource agents - 5

linear conveyor units, 2 corner units and 1 T-junction unit;

Robots R1, R2 and R4: each needing 1 X-axis, 1 Z-axis and

1 gripper (G1, G2, G4) with 2 fingers; 2 Feeders (tape rolls

and screws - B and D); 2 Pallet feeders (1st and 2nd body

part - A and D); part agents - Part 1 to Part 4, work-piece

carriers.

Scenarios. We will consider the following scenarios

triggering a self-organization process in our assembly sys-

tem:

New product order: carried by an Order Agent in input

to the system, it triggers the building of the corresponding

layout as a result of a self-organizing process. (User prefer-

ences considered: circular system, morphologically identi-

cal robots with one being faster than the others.)

Resilience during production: fatigue / failure of some

modules and re-organization of the remaining modules for

building a repaired / alternative system. (Concrete incident

considered: robot R2 shows decreasing performance; robot

R1 can take over until R2 has been replaced.)

Small change in product design followed by the recon-

figuration of the layout: some modifications have conse-

quences which affect resource attribution. (Change consid-

ered: the screw will be eliminated and replaced by a snap-

fit mechanism integrated on Part 3; as a consequence, robot

R4 is redundant and R1 (=R3) needs a new gripper which is

able to apply a force F in the center of Part 3.)

4. Generic Self-Organizing Architecture

The self-organizing and self-adaptive framework [5] that

we apply follows a service-oriented architecture (see Fig-

ure 5 for its run-time infrastructure), where the services are

provided by components or agents. The architecture ex-

ploits metadata to support decision-making and adaptation,

based on the dynamic enforcement of explicitly expressed

policies. Metadata and policies are themselves managed by

appropriate services. The main point is that the compo-

nents, the metadata and the policies are all decoupled from

each other and can be dynamically updated (or changed).

The run-time infrastructure is not necessarily central-

ized, the different services providing access to the de-

scription of components, or monitoring and acquisition of

metadata can reside at different locations and work au-

tonomously. Metadata and policies have either a local or

global scope, and can be locally attached to a component.

The actual implementation depends on the application.

Components are the different agents of the system

(product agents, order agents, manufacturing resource

agents, etc.)

Metadata is data about functionality and performance

characteristics, as opposed to data which is treated di-

rectly by components. Metadata is stored, published and

updated at run-time by the run-time infrastructure (moni-

toring activities) or by the components themselves (sens-

ing/acting). Different types of metadata are available: self-

description of the components (possibly including inter-

faces information, location, conditioning, etc.), environ-

ment related metadata (possibly supporting coordination,

e.g. through stigmergy), self-* properties metadata refer to

resilience and non-functional metadata related to either in-
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Figure 5. Run-time infrastructure

dividual components or to groups of components (such as

level of ”fatigue” of a component of the assembly system).

Policies are also available at run-time to both the run-

time infrastructure and the components themselves. Poli-

cies can be subject to dynamic changes. They come in dif-

ferent categories, and apply to different levels (system-level

policies vs. component level policies). Guiding policies

stand for both high-level goals the system as a whole has

to reach and for individual components goals. Coordina-

tion policies refer to rules which components have to ad-

here to when coordinating their different tasks (for instance

scheduling of tasks or overlapping of work spaces). Bound-

ing policies are intended to prevent the system going be-

yond its limit: these are limits set by the designer to avoid

the system going out of control (too many failures), as well

as limits imposed by the environment on the system (e.g. a

particular type of modules cannot be placed on the lower left

corner of the assembly plan). Finally, sensing/monitoring

policies are lower level policies, where individual compo-

nents react to on-going activities in the system. There is

no restriction on the policies, they can be action-, goal- or

utility-based policies [10].

Enforcement of Policies. Low-level policies attached

to specific components trigger a reaction in those compo-

nents based on the corresponding metadata value (for in-

stance, monitoring metadata about position allows to take

corrective measures if necessary). The run-time infrastruc-

ture itself is equipped with specific services responsible to

enforce the policies (given the current metadata values) by

directly acting on the components (e.g. replacing, recon-

figuring), the metadata values or the policies. It provides

different tasks related to the processing of metadata stored

in the metadata registry, such as comparison/matching of

metadata, determination of equivalent metadata informa-

tion, composition of metadata; it encompasses automated

reasoning over the policies and the metadata.

Coordination / Adaptation. This service implements

the self-adaptive and/or self-organization pattern chosen for

the particular application (at design-time). For instance, it

is responsible to support digital pheromone (concentration,

volatility) if this is the chosen adaptation mechanism.

Generic services. Additionally necessary services to

build such a run-time infrastructure encompass: a reg-

istry/broker that handles the service descriptions and ser-

vices requests supporting dynamic binding; an acquisi-

tion and monitoring service for the self-* related meta-

data; a registry that handles the policies; a reasoning tool

that matches metadata values and policies, and enforces

the policies on the basis of metadata. Metadata is ei-

ther directly modified by components or indirectly updated

through monitoring. Metadata, together with the policies,

cause the reasoning tool to determine whether or not an ac-

tion must be taken. The Enforcement of Policies services

act on both components and metadata, impacting compo-

nents both directly and indirectly.

Self-Organisation and Self-Adaptation. For the spe-

cific case of Evolvable Assembly Systems, components are

the different actors of the assembly system: order agents,

product agents, resource agents (including those in store)

and part agents. Components register their services, skills

and constraints (self-description metadata). They have ac-

cess to global or local coordination metadata (e.g. assembly

status of current product item) and resilience metadata (e.g.

current level of precision or speed of a module itself or of a

partner module). Policies that the system as a whole has to

adhere to are global to all components (for instance ”‘ful-

fill the generic assembly plan”’ or ”‘no manufacturing re-

source agent is allowed to move outside the allowed global

workspace”’ or ”‘the user favors a circular layout”’) or lo-

cally attached to individual components (such as ”‘avoid

collisions”’ or ”‘adapt your own speed to the speed of your

partner”’).

Self-organization is mainly related to the creation of a

new layout (a new organization of the resource agents)

when a new generic assembly plan is given or when a failure

has occurred. This happens bottom-up, following the Tiles

model [15] (detailed later). Self-adaptation is related to

the production time (adaptation of speeds, tasks coordina-

tion and collision avoidance) and leads to self-organization

when it triggers a new re-configuration.

See [5] for a more detailed discussion of this framework,

in particular how it supports the design phase, how it al-

lows control to be inserted in the system, and how it unifies

self-adaptation (top-down: evaluate the global system be-
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haviour and adapt the agents’ behaviour accordingly) and

self-organization (bottom-up: local rules lead to a global

result) designs.

5. Design of Self-Organizing Evolvable Assem-

bly Systems

The architecture described in Section 4, when applied

to Evolvable Assembly Systems, requires (at design-time)

the determination of components, self-* requirements, a

self-organization and/or self-adaptation mechanism and the

choice of a coordination mechanism. On the basis of these

choices, corresponding metadata and policies are derived.

5.1. Components

As said above the components are: order agents, prod-

uct agents, manufacturing resource agents (including those

in store) and product parts. See Section 3 for more details

about these components.

5.2. Self-* Requirements

Layout Formation. Any new assembly plan triggers

a self-organization process leading to a new configuration

(layout). This encompasses self-selection of modules and

their partners, and establishment of the layout-specific as-

sembly instructions (micro-instructions).

Task coordination at production time. Tasks sequenc-

ing is done according to the specific assembly instructions.

Modules coordinate their work according to the current sta-

tus of the product being built. Collision avoidance is also

part of the self-organizing process. Modules with overlap-

ping workspace must maintain a minimum distance to each

other while moving.

Self-Adaptation. Self-healing: During production,

whenever a module failure is detected, by the module it-

self or one of its partners, either the modules can solve the

problem by themselves (software restart, open and close a

gripper, etc) or they alert the user. ”Module failure” can

mean many types of perturbations, for instance a blocked

gripper, a software problem, a lost part or anything else.

Self-optimization: During production, the speed of process-

ing the product parts is adjusted to the queuing level.

5.3. Mechanisms

Self-organization mechanism (1). The overall mecha-

nism for letting the different agents perform the appropriate

tasks at the different phases of the production (from product

order to finished product) is based on stigmergy by work-in-

progress, also called qualitative stigmergy [2]. The differ-

ent configuration states of the system trigger different re-

sponses from the agents; they represent the different phases

of production. Configuration states are: C1 - New generic

assembly plan in input; C2 - Production; C3 - Production

completed (stop); C4 - Re-configuration requested.

Self-organization mechanism (2). The mechanism cho-

sen for letting the different modules and product parts re-

organize whenever a new assembly plan arrives, or when a

change in one of the modules is requested, is inspired by the

tiles self-assembly model of crystal growth. In this model,

tiles progressively attach to each other following matching

rules and current configuration of the structure to build [15].

This is used in Configurations C1 and C4. In [3], the tiles

self-assembly model is used to calculate the result (a solu-

tion) of a mathematical function; analogously, in EAS, the

tiles (agents) self-assemble to provide a solution (a layout -

DMap), to the given function (Generic Assembly Plan).

Self-adaptation mechanism. Self-adaptation, e.g. re-

silience to failures, to the effects of fatigue and collision

avoidance, is performed by modules monitoring their own

behaviour or their neighbor’s behaviour. This is used in con-

figuration C2.

Coordination mechanism. During production, the co-

ordination of tasks for each individual product item is done

through indirect communication by storing the current ad-

vancement of the assembly in a shared place - a RFID at-

tached to the product item. This is used in configuration

C2.

Metadata and policies. We concentrate here on describ-

ing the metadata and policies related to the three categories

of self-* requirements described above. Figure 6 shows how

the policies and metadata relate to each other and to the

three use cases above. They are further detailed in Subsec-

tions 5.4 to 5.6.

5.4. Layout Formation (C1/C4)

5.4.1. Policies

Guiding Policies. These are high-level policies that mostly

take the form of a goal-based policy or a utility-function

policy. The generic assembly plan acts as a high-level goal

and triggers C1.

System-level policies. (P1)

• Build a continuous path from IN to OUT .

• Favor a layout with / without a circle .

• Minimize changes in the layout when re-configuring

due to failure or change in product design.

• When creating the path through the layout, the

workspaces of different module coalitions may not in-

terfere as this might lead to collisions (except for con-

veyors); inside a coalition however, workspace inter-

ference is necessary.

• If Layout is completed, change configuration to C2.
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Figure 6. Relations between Metadata and
Policies

Goals of order agents. (P2)

• Fulfill the generic assembly plan.

• Produce the specified number of products.

• If production finished, trigger configuration C3.

• Minimize travel from feeders to target positions on as-

sembly.

Goals of manufacturing resource agents. (P3)

• Find a compatible partner (matching skills, interfaces,

etc.) to work with in the given generic assembly plan.

For instance, a robotic axis needs to find a suitable

gripper.

Bounding Policies. (P4)

• Every module must always stay inside the allowed

area, defined as the general workspace.

• Grippers cannot be placed at any location except on the

axis holding it or in the tool warehouse. This policy

can be gripper-specific or general for the whole layout.

• Respect speed and force limits.

5.4.2. Metadata

Self-description metadata.

• For each manufacturing resource agent: all registered

skills, interfaces, workspace and constraints (e.g. pre-

ferred ways of combination with other modules, list of

preferred partners);

• For each product part: its location and the way it is

conditioned and gripped.

5.4.3. Tape Roller System Scenario

Establishment of a Circular layout (new product order).

The layout formation is progressively reached through a se-

ries of service requests including needed 3D movements

(x/y/z dimensions - micro-instructions). The first request is

the one from the order agent requesting to fulfil the generic

assembly plan (P2). Requests are progressively fulfilled by

resource agents (P3). Self-description metadata is matched

against the requests taking into account skills, constraints

and any system (P1) / bounding (P4) policy, and current

achieved configuration. This corresponds to the matching

rules of the tile self-assembly model. In the particular sce-

nario of the Tape Roller System, the set of robots at disposal

causes Robot R1 to be selected twice for two different tasks

favoring thus a circular layout. This happens to be also the

primary choice from the system-level policy (P1).

From screw to snap-fit (small design change). The screw

is not needed any more because a snap-fit is now integrated

with Part 3. The minimum change policy (P1) in case of

reconfiguration drives the selection of an additional gripper

G3 mounted on R1 able to apply the appropriate force on

Part 3. Robot R4 and its gripper are not needed anymore.

5.5. Coordination (C2)

5.5.1. Policies

Task Sequencing Policies. A task can start when the work-

piece carrier has reached its position next to the robotic axis.

The carrier can move on as soon as the robot has finished its

operation.

Product agent goals. (P5)

• Fully satisfy own list of (specific) assembly instruc-

tions.

• If current operation finished, move to next position in

the layout.

Individual parts agent goals. (P6)

• Travel from feeder to target position in the assembly.

• Communicate preferential and forbidden gripping po-

sitions.

Collision Avoidance Policies.

Resource agents policies. (P7)

• Distance with any other resource agent must always be

bigger than safety threshold.

103



• Always stay inside global workspace.

• If an undue object is detected inside the workspace

then stop. If the object remains there for more than

3 seconds, alert the user. Remark: some other modules

as well as the parts being treated are allowed inside the

respective workspaces of the active modules.

5.5.2. Metadata

Task Sequencing Metadata.

• For each product agent: current status of product

agent’s assembly - the result of any operation is always

written into the product’s RFID.

• For each resource agent: Modules’ log file - store

history of operations performed (for traceability pur-

poses).

• For each work-piece carrier: Work-piece carrier posi-

tion. Sensors provide exact position of the different

work-piece carriers (approaching robot, leaving robot,

etc.).

• For each resource agent: status / availability of re-

source agent (idle, reserved, working, failure, in stor-

age).

Collision Avoidance Metadata.

• For all resource agents: occupancy of its workspace,

including position of the modules in the workspace and

list of undue items (e.g. a loose screw is lying on the

workspace).

5.5.3. Tape Roller System Scenario

Task sequencing. A work-piece carrier circulates along the

layout. The product agent notices it passes twice on Robot

R1. According to its assembly plan it asks (P5) for the ap-

propriate assembly (Part 1 or Part 3) (P6). Similarly for

Robot R1, it accesses the RFID information to determine

which task to do next on the product agent on the carrier

that just arrived.

Collision avoidance. The workspaces of R1, R2 and R4 do

not interfere in this particular example; no danger of col-

lision between them. Whenever a collision sensor detects

something irregular in the workspace (a human hand or a

loose screw), the root operation is stopped until the intru-

sion has gone (P7).

5.6. Self-Adaptation (C2)

5.6.1. Policies

Self-optimization policies.

Feeder policies. (P8)

• Piece delivery speed is adapted to piece removal speed.

(Feeders always need to deliver pieces at their out-

put. If the pieces are taken away quickly, their delivery

speed should be high.)

Conveyor policies. (P9)
• Achieve requested throughput (1).
• Respect specified speed limits (2).
• (2) has priority over (1).
Resource agent policies. (P10)
• If queue of product agents is above the queuing thresh-

old, increase speed of operation.
• If quality decreases, decrease speed of operation in or-

der to increase quality.

Self-healing Policies. It is fundamental to report the state

or respectively the result of collaboration with other agents.

Every agent monitors its own state, especially with refer-

ence to critical parameters, and eventually alerts the user in

case of problems. E.g., modules need to monitor their own

precision, and eventually also their neighbor’s precision, in

order to detect the effects of fatigue or other kinds of distur-

bances and to take corresponding countermeasures.

Axes and conveyor policies. (P11)
• If the target position after a movement has not been

reached correctly, take corrective measure (advance

more / less, ask for maintenance, etc).

Resource agents’ policies. (P12)
• In case of malfunctioning, request a replacement from

a coalition partner.
• If no replacement found, ask for a re-configuration of

the layout.
• If queuing level is too high and speed is at maximum,

ask for a re-configuration of the layout.
• If gripper blocked then 1) open / close gripper again,

2) restart software, 3) reset power, 4) replace gripper

or 5) call user.

System-level policy (bounding policy). (P13)
• If one (or more) failure occur more than a certain num-

ber of times in a certain period of time, then alert user

and trigger configuration C4.

5.6.2. Metadata

Self-* Properties Metadata. For each resource agent:
• Maximal / optimal speed of operation
• Own precision - movements on every axis
• Precision of partners (neighbors)
• Queuing level of product agents (in input to that re-

source agent)
• Quality of assembled product

5.6.3. Tape Roller System Scenario

Self-adaptation.Robot R1 takes over from Robot R2:

Robot R2 experiences problems in reaching its target po-

sitions and asks for maintenance (P11). As a temporary

solution, R1 is asked to take over and the user is asked to

place feeder B close to R1 (P12).

Re-configuration triggered. After taking over from Robot

R2, Robot R1 experiences a high level of queuing. This

leads Robot R1 to ask a re-configuration (P1) (and triggers

configuration C4).

104



5.7. Design analysis and predictability of
dependability properties

Policies (further refined and enforced at run-time) turn to

be a useful tool for analyzing the correctness of the design

and determining (proving) properties using temporal logic

formulae. A first step is to prove that a layout will be found.

As another example, consider the safety property: ”Col-

lisions never happen”; the liveness property: ”The speci-

fied number of products has eventually been assembled”; or

the invariant: ”At all times, the quality of assembled prod-

ucts is above a specified threshold”. The safety property is

guaranteed by the collision avoidance policies (P7) and the

selected layout; the liveness property is a policy by itself

(goal of order agent - P2), while the invariant is provided by

the self-optimization/self-healing policies (decrease speed

/ increase movement precision - P11). Formal proofs of

these properties need formal specifications of the system,

the properties, the policies (and their potential conflicts) and

will be investigated.

6. Implementation

EAS are based on CoBASA [1], which has been contin-

uously growing during the last years. The currently imple-

mented system encompasses: a directory registration ser-

vice; dynamic coalitions of modules to provide complex

services; easy reconfiguration in case of failures or little

changes in process or product design. It does not include

self-organised layout creation from scratch yet.

Services Directory and Ontology: Modules and prod-

uct parts are all wrapped as agents and register their ser-

vices (self-description metadata) to a Directory Facilitator

(DF) storing relevant global knowledge such as the nature

of the exchanged messages, skills and skills’ composition

rules. The DF is an active entity incorporating an EAS On-

tology, which is currently being refined. It responds to re-

quests by returning the list of appropriate modules (skills,

speed, etc.). The ontology also serves as a support for the

automatic generation of complex skills out of simple skills

offered by single modules. Generic rules for their creation

are being elaborated.

Dynamic coalitions: In initial CoBASA, coalitions were

formed by the human user, and they were thus static.

The current new approach, enabling the system to execute

self-organization, is based on dynamic coalitions which

the agents form themselves and which can change at any

time without the user having to reconfigure the coalitions.

Knowledge about useful or problematic coalitions is kept

(instead of lost at coalition resolution) and can be re-used

any time the same complex skills are required again - com-

plex coalitions also register their services to the Dynamic

Map. Coalitions are formed through service requests and

matching provided by the Directory Facilator described

above and by exploiting the defined Ontology.

Layout formation and micro-instructions: the self-

organised layout formation will be based on the notion of

dynamic coalitions. It will be realized using a series of ser-

vice requests (incorporating the required moves - x/y/z val-

ues of the micro-instructions) in order to fulfill the given

generic assembly plan. If the generic assembly plan can-

not be fully realized, the current layout is abandoned and

a new one is re-built. The layout formation and the micro-

instructions are then progressively built together. These trial

and error constructions of layouts are performed in a virtual

space. Modules are not actually asking to be placed on a

layout before a complete satisfying solution is reached. To

this end, we are currently implementing a 3D simulation of

the assembly systems, respectively the modules and their

ways of aggregation.

Tasks coordination: a product item being assembled

moves along the layout on a work-piece carrier. An RFID

associated to the specific product being assembled stores all

historical data related to assembly. Based on this informa-

tion, the product requests the service of the next module as

established in the specific assembly plan and the work-piece

carrier then moves to the respective module.

Collision avoidance: the first level of safety is calculat-

ing the trajectories of the robots and making sure that they

never intersect at the same instant. The second level are col-

lision sensors which are being checked at operation time.

Self-adaptation: Self-diagnose of EAS is being investi-

gated; each module is responsible for diagnosing itself and

taking corrective measures if required (self-healing).

7. Related work

There are other concepts which currently address the

needs of Mass Customization industry. Flexible and Re-

configurable Manufacturing Systems [6] focus on machin-

ing and not on assembly. Holonic Manufacturing Systems

[14] concentrate on morphologic aspects (every item is a

whole as well as part of a bigger whole). The Architecture

for Agile Assembly [13] is probably one of the approaches

which come closest to providing a solution for reconfigura-

bility in assembly systems, but does not consider the mutual

interrelations between product, processes and systems.

Considering the applications of MAS in industry [11],

the evolution of agent technologies and manufacturing will

probably proceed hand in hand. Also Service-Oriented Ar-

chitectures [4] enjoy increasing popularity.

”Plug’n’Produce” can be achieved thanks to process-

oriented programming [12] instead of device-level pro-

gramming. This includes forming complex skills out of

simple ones, describing devices in detail, using Ontologies

and facilitating user interaction.
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The Pabadis’Promise project [7] has parallels with EAS

but is focused on a higher level inside the manufacturing

company, more at the level of production management (En-

terprise Resource Planning), while EAS work mainly at

shop-floor level.

Autonomy is fundamental for EAS, but it is also a highly

controversial topic in industry. The degree of autonomy

needs to be adjustable [9], and that the human always keeps

the control over the degree of autonomy of the robots.

8. Conclusions and Outlook

The work presented in this article still needs further de-

velopment and full implementation to be entirely validated,

but already at this stage, it shows a high potential for tack-

ling the challenges of modern manufacturing. Regarding

self-adaptation and self-organizing issues, this paper pro-

poses an innovative architecture for combining these two

concepts (top-down and bottom-up) when designing a sys-

tem. It shows the relevance of such an architecture in a

real-world industrial scenario, but does not (yet) provide

a ready-to-use recipe for building self-organising assembly

systems.

The current version of the designed system is self-

organizing and supports evolvability, but does not consider

a way of measuring the quality of the obtained solution: Is it

really the solution with maximum precision and minimum

resources that has been selected? How long does it take to

find a solution, if any? This could be further achieved by

inserting more utility functions into the policies.

There are several possibilities to use learning in layout

formation: once a solution is found, it could be remem-

bered, and further self-organization processes could take

profit of it. It also remains to be investigated what to do

in case of conflicting policies - consulting the human user is

always an option.

Future work encompasses: development of the run-time

infrastructure (Figure 5) supporting dynamic use of policies

and metadata; creation of the layout according to the tiles

self-assembly model; as well as formal study of the design

and proof of dependability properties.
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