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Abstract—The behaviour of self-* systems is complex to
model from an algorithmic point of view. Designing and
specifying self-* systems implies a great amount of work
that can be sensibly reduced if models can be reused and
composed in a modular way. This article discusses a chemically-
inspired architecture and formalisms that facilitate the creation
of modular, reusable models based on behavioural patterns
inspired by behaviours found in nature. The architecture is
based on chemical-like laws ruling the evolution of the system.
We show the reuse of general behavioural patterns using three
concrete examples of self-* systems from different domains.
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I. INTRODUCTION

Complex self-* pervasive systems often have non-trivial,

emergent behaviours which are not explicitly present in

their specifications, but appear as a result of interactions.

These behaviours can sometimes be seen as a composition of

simpler behaviours (or “patterns”) that are frequently found

in the domain. This can be a recursive composition: an

algorithm may be composed of patterns, which in their turn

are composed of simpler patterns. For example, a routing

algorithm may rely on a pattern for building gradients,

itself composed of a spreading and an aggregation pattern.

Thus gradient diffusion, spreading and aggregation can be

seen as a simple recurring patterns at different levels. The

design pattern paradigm, generally applied in other fields of

computer science like software design, software architecture

and human-computer interaction, can bring great benefits to

the design of self-* pervasive systems.

Traditionally, these systems are coded algorithmically.

This has some disadvantages, among others the fact that

algorithms are generally very specific to the system being

coded, limiting reusability and making their composition

difficult especially for what concerns concurrency. Since

a few years, approaches based on the original chemical

abstract machine paradigm try to solve this problem by mod-

eling systems using chemically-inspired formalisms, where

“reactions” between system components are specified by

rewriting rules. This is a step forward towards composition

of simple behavioural patterns: if a behaviour is specified as

a rewriting system, then it is possible to compose different

behaviours via rewriting system composition [1] (modulo

appropriate verification for keeping concurrency and con-

vergence properties).

The work presented in this paper is part of an EU-

funded project named SAPERE. The SAPERE approach

uses chemically-inspired models to specify system be-

haviours, with rules called eco-laws governing the evolution

of ecosystems of live semantic annotations (LSAs) that

reify agents, services and data. Behaviours are expressed in

terms of composition of simple behavioural patterns found in

nature. The contribution of SAPERE is a model for pervasive

systems that is scalable, modular, decentralised and easy to

verify. In this first phase of this project, we want to show

that the SAPERE model is expressive and general enough to

reproduce existing self-organising decentralised algorithms.

The goals of this article are: (i) showing how exist-

ing self-organising decentralised algorithms are modeled in

SAPERE; (ii) illustrating a few of the simple behavioural

patterns that have been classified until now using the

SAPERE model; and (iii) showing how patterns can be

composed to obtain more complex behaviours. We will start

with a brief description of the SAPERE model, followed

by a discussion of a few behavioural patterns. We will

then illustrate pattern reuse and composition with three

different examples (crowd steering, a routing protocol and

ant foraging).

II. THE SAPERE MODEL

The SAPERE approach is inspired by chemical mech-

anisms [2]. This section gives a general overview of the

approach; a complete description is available in [3].

SAPERE takes its primary inspiration from natural

ecosystems. Unlike the many proposals that adopt the term

“ecosystem” simply as a mean to characterise the complexity

and dynamics of modern ICT systems, SAPERE exploits

nature-inspired mechanisms for actually ruling the overall

system dynamics.

SAPERE considers modelling and architecting a perva-

sive service environment as a non-layered spatial substrate,

laid above the actual network infrastructure. The substrate

embeds the basic “laws of nature” or “eco-laws” that rule the

activities of the system. It represents the ground on which

the components of a pervasive service ecosystem interact

and combine with each other (in respect of the eco-laws and

based on their spatial relationships), so as to serve their own

individual needs as well as the sustainability of the overall

ecology. Users can access the ecology in a decentralised way
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to use and consume data and services, and they can also act

as prosumers by injecting new data or service components.

SAPERE adopts a common modelling and treatment

of services, data, and devices. All “entities” living in a

system (services, data, digital/network resources in general,

including devices) have an associated semantic represen-

tation called Live Semantic Annotation (LSA). This is a

very basic ingredient for enabling dynamic unsupervised

interactions between components. LSAs are evolving, live

entities, tightly associated to the component they describe,

and capable of reflecting its current situation and context.

They act as actual observable interfaces of resources, as well

as the basis for enforcing semantic and self-aware forms of

dynamic interactions (both for service aggregation/compo-

sition and for data/knowledge management). The dynamics

of the ecosystem are driven by eco-laws, defining the basic

policies to rule a sort of virtual “chemical reactions” among

the LSAs of the various individuals of the ecology. LSAs are

like chemical reagents in an ecology in which interactions

and composition occur via reactions, i.e., semantic pattern-

matching, between LSAs. Such reactions can contribute

to establish bonds between entities (e.g., relating similar

services with each other to produce a distributed service,

or mining related data items) as well as to produce new

components (e.g., a composite service orchestrating the

execution of atomic service components or a high-level

knowledge concept derived from the aggregation of raw

data items). The overall self-aware holistic adaptivity of the

system is ensured by the fact that any change in the system

(as well as any change in its components, as reflected by

dynamic changes in its LSA) will reflect in the firing of new

chemical reactions, possibly leading to the establishment of

new bonds and/or in the breaking of existing bonds.

A. Summary of eco-law language

A language has been developed to express LSAs and eco-

laws and is presented in [4]. For readability purposes, we

will only summarise it briefly and informally.

LSAs are tuples of typed values 〈v1, . . . , vn〉, where vi
can be of an arbitrarily defined type, e.g, numbers, strings

or structured values. For example, LSA 〈SEN1, temp, 30〉
may be the LSA representing a temperature reading of 30

degrees by a sensor SEN1.

Eco-laws are reactions on LSA templates1. A template

is any LSA, which may or may not have variables in the

tuple. An LSA L is said to match a template P if a

variable substitution S exists s.t. S(P ) = L. We conven-

tionally use typetext when writing LSA elements which

are concrete values, and italics when writing variables.

For example, template 〈id, temp, 30〉 both matches LSAs

〈SEN1, temp, 30〉 and 〈SEN2, temp, 30〉. An eco-law is hence

1In other works [4] these have been called LSA patterns; however, in
order not to generate confusion with the behavioural patterns, we will use
here the term template.

of the kind P1, . . . , Pn
r�−→ P ′

1, . . . , P
′
m, where: (i) the left-

hand side (reagents) specifies templates that match LSAs

L1, . . . , Ln, which are to be extracted from the LSA-space;

(ii) the right-hand side (products) specifies the LSAs which

are accordingly to be inserted back in the LSA-space (after

applying substitutions found when extracting reagents, as in

standard logic-based rule approaches); and (iii) rate r is a

numerical positive value indicating the average frequency at

which the eco-law is to be fired. An eco-law might not have

an associated rate; in this case, its firing can happen as soon

as the left-hand templates match.

In addition to local reactions, eco-laws can involve

reading/modifying LSAs in neighbouring nodes. For this,

a special syntax has been devised. Creating an LSA L
in an unspecified neighbouring node (to be chosen non-

deterministically at runtime) is indicated as +〈L〉 in the

right-hand side of an eco-law. The same notation can be

found in the left-hand side of an eco-law, meaning that L is

being read from the neighbour instead. If the eco-law needs

to create/modify an LSA in a specific node N instead of

choosing a random neighbour, we use the syntax N〈L〉. If

instead an eco-law needs to create/modify an LSA in all its

neighbours at once, the bcast〈L〉 syntax is used.

III. BEHAVIOURAL PATTERNS WITH ECO-LAWS

A number of behavioural patterns have been classified

and studied to-date. These range from elementary patterns

(e.g., aggregation, spreading, evaporation), to middle level

patterns (e.g., gradient, gossip) to higher-level behaviours

(e.g., chemotaxis, morphogenesis, quorum sensing). In pre-

vious works [5], [6] we described these patterns from a

general point of view, using an abstract notation (useful

for describing the theory, but not for creating models).

The eco-law language, described above, is a more concrete

notation we use to describe and implement these patterns

in the SAPERE model. The examples we will see in the

next section concentrate on showing reuse of four patterns:

spreading, aggregation, evaporation and gradient. We will

now briefly describe each of these patterns and give their

corresponding instantiation in the SAPERE model using eco-

laws.

A. Patterns and abstraction

There are several advantages to taking a modular, pattern-

based approach to specifying pervasive systems. First and

foremost, the reuse of previously defined patterns facilitates

the design of new systems, and reduces development time

and cost. Also, modularity supports evolution and maintain-

ability, and facilitates ensuring correctness and dependability

of a modular pervasive system with software verification

techniques like, e.g., model checking [7].

From a more specific system modeling point of view,

patterns enable us to describe a system with different levels

of abstraction. We can identify a set of core low-level
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patterns (described in the following), that express generic,

simple, nature-inspired behaviours not specific to any partic-

ular domain or application. Depending on the way they are

integrated, they can express different high level behaviours.

Moreover, these models abstract away certain aspects; for

example, in the AODV routing model illustrated in this

article, the sender and target could be either physically or

socially connected, however the patterns forming the model

remain the same.

B. The spreading pattern

The Spreading Pattern is a low-level pattern for infor-

mation diffusion/dissemination. It progressively sends infor-

mation over the system using direct communication among

agents. The spreading of information in a system allows the

agents to increment the global knowledge of the system by

using only local interactions.

In the SAPERE model, spreading an LSA L is achieved

with a simple eco-law:

L
Rspr�−−−→ L,+L (1)

This means that if L is present (precondition: the LSA is

written in the left-hand side), it can be consumed, and in its

place L itself is created locally (L) and in a neighbour node

(+L) chosen non-deterministically. Variants of this eco-law

exist with respect to the choice of the neighbour node,

namely using the N〈L〉 and bcast〈L〉 notations explained

in Section II-A. Note that L appears in the local node on

both sides of the law; this means it is “kept” locally as

well as being spread. However, it is possible to consider a

variant of spreading where the LSAs are just moving from

one node to the other (i.e., are consumed from one node and

are created in the other). An example of this pattern could

be an LSA representing an agent moving from one node to

another:

〈agent〉 Rspr�−−−→ +〈agent〉 (2)

C. The aggregation pattern

The Aggregation Pattern reduces the amount of informa-

tion in the system and assesses meaningful information. It is

useful for example when repeated application of the above

spreading pattern creates multiple copies of the same LSA

in a node. Aggregation can consist in applying mathematical

functions on LSA values, or on eliminating redundant LSAs.

An example eco-law for the latter case could be:

L,L′ Ragg�−−−→ L (3)

where L and L′ are two equivalent LSA; this eco-law

eliminates redundancy by only keeping one. For an example

where a mathematical function is applied, consider a node

having two LSAs, injected by different agents at different

times, indicating quantities q and q2 of a chemical chem.

We want the two to be aggregated in one LSA with the

maximum of the two values. The eco-law would be:

〈chem, q〉, 〈chem, q2〉 Ragg�−−−→ 〈chem,max(q, q2)〉 (4)

Here we apply the max operator to the quantities q and q2,

keeping the highest.

D. The evaporation pattern

Evaporation is a pattern that helps dealing with dynamic

environments where the information used by agents can

become outdated. Evaporation is generally modeled by eco-

laws consuming LSAs with a certain rate:

L
Revp�−−−→ L′ (5)

where L′ is generally an LSA with a smaller value. The

Revp rate might be tied to the age of the LSA (obtained, e.g.,

from its timestamp). For example, a chemical that evaporates

might be described by the following eco-law:

〈chem, q〉 Revp�−−−→ 〈chem, q ∗ EvFactor〉 (6)

The evaporation function can be arbitrarily complex;

here we simply multiplied the old value by a variable

EvFactor ∈ [0 − 1). Another variant of evaporation may

completely remove an LSA. For example, the chemical

might completely disappear:

〈chem, q〉 Revp�−−−→ (7)

E. The gradient pattern

The Gradient Pattern is an extension of the Spreading

Pattern where the information is propagated in such a way

that it provides an additional information about the source’s

distance. Either a distance attribute is added to the informa-

tion (the gradient increases with distance), or the value of the

information is modified such that it reflects its concentration

(the gradient decreases with distance). Additionally, the

Gradient Pattern uses the Aggregation Pattern to merge

different gradient values created by different agents.

In the SAPERE model, a gradient G initiates from a

source LSA S that is injected in a node:

S
RgrInit�−−−−−→ S,G0

(8)

where G0 is the LSA with the initial value of the gradient.

The gradient then spreads, using aggregation to eliminate

redundant LSAs:
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Gi

RgrSpr�−−−−−→ Gi,+Gj
(9)

Gi, Gj

RgrAgg�−−−−−→ Gi
(10)

where Gj has a higher distance (resp. lower concentration)

value than Gi. Since different types of LSAs are involved

in gradients, for the sake of clarity it can be useful to

mark source LSAs with a value source contained in the

LSA. A source LSA will often have a form similar to

〈source, gradient,max, annealing〉, where gradient is

the name for the gradient, max is the maximum value

the gradient LSAs can have, and annealing is a pa-

rameter for the gradient often used to tune the gradient

evaporation2. Gradient LSAs are instead marked as such:

〈grad, gradient, value,max, annealing〉. This is not to

say this is a general form for gradient LSAs, as more or

less parameters may be needed depending on the model;

however, we found this form to be recurrently useful in the

models we created.

To make an example, a gradient g (expressing distance in

increments of 1) initiates through the following eco-law:

〈source, g,max,A〉 RgrInit�−−−−−→
〈source, g,max,A〉, 〈grad, g, 0,max,A〉 (11)

where 0 is the gradient value at the source. The gradient

LSA is then diffused by the following couple of eco-laws

(a spreading, and an aggregation keeping the LSA with the

shortest distance):

〈grad, g, val,max,A〉 RgrSpr�−−−−−→
〈grad, g, val,max,A〉,+〈grad, g, val+1,max,A〉 (12)

〈grad, g, val,max,A〉, 〈grad, g, val+i,max,A〉
RgrAgg�−−−−−→ 〈grad, g, val,max,A〉 (13)

IV. EVALUATION CRITERIA FOR THE EXAMPLES

The following sections will show how to model three

different examples by modular composition of the above

patterns. To assess the quality of the model obtained with

eco-laws, we used the criteria we had already applied in

our previous work [8], comparing the model either to the

requirements (in the crowd steering example) or to exist-

ing standard algorithms (for the AODV and ants foraging

examples). The criteria are:

• Convergence — if the model reaches the desired goal;

• Speed of convergence — how quickly the model con-

verges;

2For example, an eco-law defining the evaporation of a gradient could
have a rate tied to the annealing value, e.g.:

〈g, value,max,A〉 Revp(A)�−−−−−−→ 〈g, value ∗ EvRate,max,A〉

• Stability — if the behaviour of system agents appears

to focus on goals;

• Scalability — how (and how much) convergence and

speed are influenced by the number of LSAs;

We chose not to concentrate too much on performance

at this stage, since this depends on implementation aspects.

However, performance is comparable between classic algo-

rithms and eco-law models.

The three examples have been chosen to show three

different contexts of application of the SAPERE model. The

crowd steering example shows how the eco-law instantiating

the patterns are put together to create a new model from

scratch. The AODV example shows how the SAPERE model

can be used to express a classic algorithm with static agents.

The ant foraging example, finally, also shows modeling

a classic algorithm with SAPERE, but with dynamically

moving agents.

V. EXAMPLE 1: CROWD STEERING

Our first example of reuse of patterns is taken from [4],

where it is discussed in detail. It is a crowd evacuation

application, in which a fire breaks out in a museum and

people have to evacuate based on indications received by

their PDAs. This example was built from scratch for [4]

(i.e., we did not build on an existing algorithm), and coded

directly with eco-laws.

The surface of the exposition is covered by sensors,

arranged in a grid, able to sense fire, detect the presence

of people, interact with other sensors in their proximity as

well as with PDAs that visitors carry with them. When a

fire breaks out, PDAs (by interaction with sensors) must

show the direction towards an exit, along a safe path. This

is achieved with three gradients: the exit gradient (expressing

distance from the exit), the fire gradient (expressing distance

from the fire); and the crowding gradient (expressing dis-

tance from possible crowds that might block escape paths).

These three gradients are diffused using the gradient (laws

14, 15 and 16) and evaporation (law 17) patterns discussed

above:

〈source, G,M,A〉 Rinit�−−−→
〈source, G,M,A〉, 〈grad, G, 0,M,A〉 (14)

〈grad, G, V,M,A〉 Rs�−−→
〈grad, G, V,M,A〉,+〈grad, G, min(V+1,M),M,A〉 (15)

〈grad, G, V,M,A〉, 〈grad, G,W,M,A〉 �→
〈grad, G, min(V,W ),M,A〉 (16)

〈grad, G, V,M,A〉 Rann(A)�−−−−−−→ 〈grad, G, V+1,M,A〉 (17)

Note that these eco-laws are parameterised on the gradient’s

name (the G variable). This lets a single set of eco-laws rule

the behaviour of all gradients (a further step towards efficient

reuse, thanks to parameterisation).
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These gradients are used to compute each node’s attrac-
tiveness value, an aggregation of gradient values expressing

the relative safety of a node as an escape path:

〈grad, exit, E,Me,Ae〉, 〈grad, fire, F,Mf ,Af 〉,
〈info, crowd,CR,TS〉 Ratt�−−−→
〈grad, exit, E,Me,Ae〉, 〈grad, fire, F,Mf ,Af 〉,
〈info, crowd,CR,TS〉, 〈info, attr, f (E ,F ,CR),#T 〉

(18)

where f is a calculation based on the gradient’s values

(f ∝ F
E×CR ). The attractiveness value is finally used for

choosing escape paths.

A. Evaluation

This example was made from scratch, and not as a re-

modeling of an existing algorithm. It was simulated with an

ad-hoc simulator called Alchemist [4], that models execution

of eco-laws as CTMC transitions, where the eco-law rate is

interpreted as a Markovian rate. We also introduced node

failures to assess resilience. With respect to our evaluation

criteria, it evaluates as follows:

• Convergence — the goal is all persons in the exposition

leaving through the exits; this was reached with dif-

ferent experimental conditions (number and position of

people and fires, node failures), up to nodes failing 80%

of the time (convergence was not guaranteed beyond

this limit);

• Speed of convergence — the metric is how quickly

all people leave the exposition; this was found to be

influenced by the weight of the crowding gradient (af-

fecting jam formation) and by failing nodes. We found

an optimum crowding weight for which the number of

ticks to convergence remained in an acceptable interval

up to 80% node failure.

• Stability — the persons should always focus on heading

towards the exits; this was also observed, within the

80% failure limits, using gradients as a guide;

• Scalability — convergence is not influenced by the

number of persons; the model converged even with

large crowds. Speed of convergence instead was influ-

enced in a considerable way due to crowding of the

exit and passageways. This was actually foreseen and

reflects real-world crowd dynamics.

VI. EXAMPLE 2: AODV ROUTING

A. Simulation environment

This and the next example were implemented using

a software framework for agent-based simulation called

Repast [9]. It provides an integrated library of classes for

creating, running, displaying and collecting data from an

agent-based simulation. At its heart, Repast behaves as a

discrete event simulator whose quantum unit of time is

known as a tick. The tick exists only as a hook on which

the execution of events can be hung, ordering the execution

of the events relative to each other. Therefore, a Repast

simulation is primarily a collection of agents of any type

and a model that sets up and controls the execution of these

agents’ behaviours according to a schedule. This schedule

not only controls the execution of agent behaviours, but also

actions within the model itself, such as updating the display,

recording data, and so forth.

1) Scheduling: In Repast we implemented each eco-law

as a specialized method. Each one is triggered according to

the following scheduling. At each tick t of the simulator, all

eco-laws are evaluated. Each executable eco-law at that tick

t is internally re-scheduled in Repast to execute at tick t+δt,
with δt smaller than the advancing step size of the global

simulator tick. An eco-law is executable if the left hand side

LSAs of the eco-law matches the LSAs in the space. All

internally scheduled eco-laws in Repast for tick t+δt, are

triggered concurrently in a random order. The Repast engine

ensures that each eco-law is picked up once and executed

concurrently along with the others.

The actual firing of an eco-law is additionally submitted to

the probability given by its rate r. For instance an executable

eco-law with probability rate of 50% will have 50% of

chance to actually execute. In addition, when the execution

rate is satisfied, the eco-law reagents are re-evaluated before

execution. This to ensure that concurrent eco-laws (e.g.

acting and modifying the same set of input LSA) take into

account the actual new state of the LSAs before triggering

their own actions. Algorithm 1 summarizes this scheduling.

Algorithm 1 Scheduling of eco-laws in Repast

1: EcolawList := List of all eco-laws
2: EcolawRateMap := Map holding the execution rate associated to each eco-law

in EcolawList
3: ToExecuteList := List holding executable eco-laws {Initially empty}
4: foreach ecolaw in EcolawList
5: if (ecolaw is executable) then
6: ToExecuteList := ToExecuteList ∪ ecolaw {Add the executable

eco-law to the list}
7: end foreach
8: if (ToExecuteList != ∅) then
9: do concurrently foreach ecolaw in ToExecuteList {Repast internal}

10: p := random uniform number between 0 and 1
11: r = EcolawRateMap[ecolaw] {get the rate associtated to ecolaw}
12: if (p ≤ r) then
13: if (ecolaw is executable) then
14: trigger 〈 Eco-law ecolaw 〉 {Executes eco-law with a rate r}
15: end do

B. AODV overview

Mobile ad-hoc network (MANET) is a self-configuring

infrastructureless network of mobile nodes. In MANET,

there is no centralised node to coordinate the flow of

messages to each node in the network.

The Ad-hoc On Demand Distance Vector Routing

(AODV) [10], [11] is a routing algorithm for the operation of

such ad-hoc networks. AODV allows mobile nodes to obtain

routes for new destinations quickly, and does not require
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them to maintain routes to destinations that are not in active

communication.

Route Requests (RREQs), Route Replies (RREPs), and

Route Errors (RERRs) are the message types defined by

AODV.

A node (called source) disseminates a RREQ when it

determines that it needs a route to a destination and does

not have one available in its cache. To do this, the source

generates the RREQ message and broadcasts it to its neigh-

bours. The RREQ contains the following fields:

{sourceAddress, sourceSequenceNumber,
broadcast id, destinationAddress,
destinationSequenceNumber, hopCount}

(19)

The node’s neighbours then forward the request to their

own neighbours, and so on until either the destination or an

intermediate node with a “fresh enough” route to the desti-

nation is located. The pair 〈sourceAddress, broadcast id〉
uniquely identifies a RREQ. The broadcast id is incre-

mented for new RREQs. RREQs from same node with the

same broadcast id will not be broadcast more than once.

The source sequence number is used to maintain freshness

of information about the reverse route to the source, and

the destination sequence number specifies how fresh a route

to the destination must be before it can be accepted by

the source. As the RREQ travels from a source to the

destination, it automatically sets up the reverse path from

all nodes back to the source. To set up a reverse path, a

node records the address of the neighbour from which it

received the first copy of the RREQ.
When a destination node or a node that has an active route

to the destination receives the RREQ, it generates a RREP
message. The RREP contains the following fields:

{sourceAddress, destinationAddress,
destinationSequenceNumber, hopCount, lifetime} (20)

Once created, the RREP is unicast to the next hop toward

the originator of the RREQ. As the RREP travels back to the

node that generated the RREQ message, the hop count field

is incremented by one at each hop. A node receiving an

RREP propagates the first RREP for a given source node

towards that source. If it receives further RREPs to that

source, it updates its routing information and propagates the

RREP only if the RREP contains either a greater destination

sequence number than the previous RREP, or the same

destination sequence number with a smaller hopcount. If the

generator of the RREP is the destination itself, it increments

its own sequence number by one if the sequence number

in the RREQ message is equal to its value. Otherwise, the

destination does not change its sequence number before gen-

erating the RREP message. On receiving the first RREP, the

source can begin data transmission. If the source discovers

a better route, the routing information can be updated.

If either the destination or some intermediate node moves

or fails, a RERR message is sent to the affected source

nodes. The node upstream of the break point initiates the

RERR by listing each of the destinations that are now

unreachable because of the broken link. It sends the RERR

to its precursor nodes. Each precursor nodes marks the route

to the destination as invalid, and sends the RERR further to

its precursor nodes. When the source receives the RERR,

it initiates the route discovery again if the route is still

necessary. The RERR contains the following fields:

{numberOfUnreachableDestinations(destCount),
unreachableDestinationAddress} (21)

C. AODV with Eco-Laws and LSA

The AODV algorithm has been modeled with eco-laws.

For simplification reasons, in order not to obtain a model

too large to be easily readable in the article, we did not

model the error mechanism and the RREQ refreshing using

the source sequence number. Note that, however, both these

mechanisms can also be modeled easily using the same

patterns described herein. We also simplified in assuming

that all eco-law rates are 1 (thus, they will always execute

when possible).
There are three types of LSAs in this model. One is for

the messages:

〈dest, MSG, sentRequest〉
where dest is the id of the destination node, MSG marks the

LSA type, and sentRequest indicates if a route request has

been already sent for this message.
The second LSA type is for route requests (RREQ):

〈reqID, RREQ, source, dest, senderID, processed〉
where reqID is the request id (corresponding to the

broadcast id in the description 19 of RREQ), RREQ is the

LSA type, source is the id of the source, dest is the

id of the destination of the message which triggered the

request, senderID is the id of the sender of the RREQ, and

processed is a boolean indicating if the request has already

been processed (i.e., if it has already been re-broadcast).
The third LSA type is for route replies (RREP):

〈RREP, source, dest, senderID,DSN, hopcount, expiry〉
where RREP is the LSA type, source is the ID of the source

node, dest is the ID of the destination node, senderID
is the ID of the node who created the RREP, DSN is

the destination sequence number, hopcount tracks the hop

number the reply went through, and expiry is a timestamp

marking the time at which the RREP should evaporate.

Eco-laws for the AODV algorithm are as follows. First,

if there is a message LSA in a node, and no RREQ was yet

created for it, it triggers the creation of an RREQ LSA:

〈t, MSG, 0〉 �→
〈t, MSG, 1〉, 〈nxtReqID(), RREQ, nId(), t, nId(), 0〉 (22)
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where: nxtReqID() returns the next available request ID;

nId() is the id of the current node (which is the source);

and t is the destination node taken from the message LSA.

Note that the message is tagged with a 1 in its sentRequest
element.

If a node has a non-processed request, it is tagged as
processed and broadcast to the neighbours:

〈reqID, RREQ, s, t, sen, 0〉 �→
〈reqID, RREQ, s, t, sen, 1〉, bcast〈reqID, RREQ, s, t, nId(), 0〉

(23)

Note that the broadcast request will have the current node

ID (returned by nId()) as a sender.

If a node receives an RREQ LSA that it had already

processed earlier, the new request is ignored:

〈reqID, RREQ, s, t, sen, 0〉, 〈reqID, RREQ, s, t, sen, 1〉 �→
〈reqID, RREQ, s, t, sen, 1〉

(24)

The attentive reader will have recognised that eco-laws 22,

23 and 24 conform to the gradient pattern.

When the request reaches the destination (coming from

another node sen), a route reply is sent to sen:

〈reqID, RREQ, s, nId(), sen, processed〉 �→
sen〈RREP, s, nId(), nId(), nxtDsn(), 1, time()+#LIFE〉

(25)

where time() is the current time in the system; #LIFE
is the life duration for RREPs (a system constant);

time()+#LIFE is thus the time at which the RREP must

expire (i.e., evaporate); nxtDsn() returns the next available

destination sequence number.

A node that receives an RREP to an RREQ it had received

earlier, forwards the reply to the neighbour node from which

the RREQ was received:

〈RREP, s, t, sen, dsn, hop, exp〉,
〈reqID, RREQ, s, t, sen2, 1〉 �→
〈RREP, s, t, sen, dsn, hop, exp〉,
〈reqID, RREQ, s, t, sen2, 1〉,
sen2〈RREP, s, t, nId(), dsn, hop+1, exp〉

(26)

If a node receives two RREPs for the same pair source-

destination, it keeps the one with the highest destination

sequence number (i.e., the most recent):

〈RREP, s, t, sen, dsn, hop, exp〉,
〈RREP, s, t, sen2, (dsn2 : dsn2>dsn), hop2, exp2〉 �→
〈RREP, s, t, sen2, dsn2, hop2, exp2〉

(27)

If the two RREPs have the same destination sequence

number, the RREP with the smallest hop count is kept:

〈RREP, s, t, sen, dsn, hop, exp〉,
〈RREP, s, t, sen2, dsn, hop+n, exp2〉 �→
〈RREP, s, t, sen, dsn, hop, exp〉

(28)

Again, eco-laws 25, 26, 27 and 28 conform to the gradient

pattern.

If a node contains a message to send and an RREP

indicating the path to the destination, the node sends the

message to a neighbour towards the destination — i.e., the

neighbour from which the RREP was received (spreading

pattern):

〈t, MSG, sent〉, 〈RREP, s, t, sen, dsn, hop, exp〉 �→
sen〈t, MSG, sent〉, 〈RREP, s, t, sen, dsn, hop, exp〉 (29)

where the message and reply are matched via the t param-

eter (i.e., the target identifier).

If an RREP is past its expiry time (i.e., if the expiry time

is smaller or equal to the current time), the RREP evaporates

(evaporation pattern):

〈RREP, s, t, sen, dsn, hop, (exp : exp ≤ time())〉 �→ (30)

Note that the RREP is completely removed from the node

(it does not appear in the right-hand side).

Listing 1 gives an example of code implementing an eco-

law (this is for eco-law 22).

Listing 1. Code for eco-law 22 that generates RREQs

/∗ ∗
∗ @param xMsg t h e LSA t r i g g e r i n g t h e
∗ g e n e r a t i o n o f t h e RREQ message
∗ /

p r i v a t e vo id msgToRreqLaw ( LSAs . Message xMsg ) {
r reqMsg . r e q I d = nxtReqID ( ) ;
r reqMsg . msgType = ”RREQ” ;
rreqMsg . s o u r c e I d = t h i s . n Id ( ) ;
r reqMsg . t a r g e t I d = xMsg . t a r g e t I d ;
r reqMsg . s e n d e r I d = t h i s . n Id ( ) ;
r reqMsg . p r o c e s s e d = f a l s e ;
/ / . . .

}

D. Evaluation

In order to evaluate the original AODV algorithm and

the eco-law version, we implemented both of them in

Repast. The original version, called simply AODV, follows

the description given in Section VI-B. The eco-law version,

called AODV with eco-laws, implements the eco-laws given

in Section VI-C, using the scheduling in Algorithm 1.

Figure 1 show a screenshot of AODV with eco-laws in

Repast.

In terms of our evaluation criteria, AODV and AODV with

eco-laws gave the following results:

• Convergence — both AODV and AODV with eco-laws

established a route from the source to the destination

for any couple 〈Source, Destination〉 chosen. In both

cases, the established route is always the one with the

smallest hop count among possible routes in the RREP

messages.

• Speed of convergence — the speed of convergence

in Repast for AODV and AODV with eco-laws was

measured by the number of ticks needed to establish a
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eco-laws uses wiggling not only when ants are looking

for food or are returning to the nest but also when they

pick up food or are in the nest.

• Stability—both models are stable: ants concentrate on

following the chemical trails when looking for food and

returning to nest when carrying food.

• Scalability—the number of ants was varied between

1 and 200. Both models converge in all these cases.

The speed of convergence in both cases has values in

the same order of magnitude and is proportional to the

number of ants.

VIII. CONCLUSIONS

In this article we showed that the SAPERE model, a

chemically-inspired model for self-* pervasive systems, is

expressive enough to model some existing self-* algorithms.

We used SAPERE to develop three different systems. The

behaviour has been coded by a set of eco-laws, resulting

in simple, clean, compact models with a clear separation

of concerns. Simulations showed that the eco-law models

behave in a comparable way to the original algorithms with

respect to convergence, speed, stability and scalability. How-

ever, trying to reproduce exactly the algorithms using eco-

laws probably introduced some less than efficient modeling

patterns. The crowd steering example showed us that when

modeling with eco-laws from scratch, the resulting model is

both cleaner and more efficient.

We also discussed how in SAPERE models are built as a

modular composition of simple patterns, which facilitates

scalability, maintainability and reuse. The three different

examples were all made by combination of four simple

patterns. The pattern classification and modeling activity

is still in progress; as new patterns are studied we will

establish a more complete library of abstract core behaviours

expressed with eco-laws. Also, the language and method-

ology associated with SAPERE shall evolve to become a

richer, easier to use base for systematic development of

self-* systems. In particular, the cognitive burden for the

adoption of this modeling paradigm should be evaluated.
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