
Augmenting the Repertoire of Design Patterns for Self-Organized Software by
Reverse Engineering a Bio-Inspired P2P System

Paul L. Snyder, Giuseppe Valetto

Drexel University
Department of Computer Science
Philadelphia, Pennsylvania, USA

Jose Luis Fernandez-Marquez,
Giovanna Di Marzo Serugendo

University of Geneva, CUI
Carouge, SWITZERLAND

Abstract—Investigations of self-organizing mechanisms, of-
ten inspired by phenomena in natural or societal systems,
have yielded a wealth of techniques for the self-adaptation of
complex, large- and ultra-large-scale software systems.

The principled design of self-adaptive software using prin-
ciples of self-organization remains challenging. Several studies
have approached this problem by proposing design patterns
for self-organization. In this paper, we present the results of
applying a catalog of biologically inspired design patterns to
Mycoload, a self-organizing system for clustering and load
balancing in decentralized service networks.

We reverse-engineered Mycoload, obtaining a design that
isolates instances of several patterns. This exercise allowed us
to identify additional reusable self-organization mechanisms,
which we have also abstracted out as design patterns: SPE-
CIALIZATION, which we present here for the first time, and
a generalized form of COLLECTIVE SORT. The pattern-based
design also led to a better understanding of the relationships
among the multiple self-organizing mechanisms that together
determine the emegent dynamics of Mycoload.

Keywords-self-organization; design patterns; bio-inspired al-
gorithms; design modeling.

I. INTRODUCTION

Modern computing and communications systems continue

to expand in scale. We witness more and more examples

of ubiquitous computing systems, social networks, wireless

sensor networks, peer-to-peer overlays, and many others,

which encompass huge numbers of components on hetero-

geneous devices, often under multiple ownerships.

While techniques of self-organization have proven ef-

fective in enabling system–wide adaptations of large-scale

software in such domains, it remains challenging to represent

and to reason about these mechanisms [1].

To address this problem, several attempts have been

made to identify and collect design patterns for self-

organization [2], [3]. Previous work by Fernandez-Marquez

et al. [4] has proposed a catalog of bio-inspired design pat-

terns, defining a hierarchy of patterns where basic patterns

are used as elements of composed, higher-level dynamics.

The motivation of that work is to organize the growing body

of knowledge in the area, and foster modular, reusable design

of self-organizing software.

To explore the practical implications and benefit of those

patterns, we modeled the design of a decentralized service

network, called Mycoload [5], running on top of a biolog-

ically inspired peer-to-peer network developed by Snyder

et al. [6]. This reverse engineering exercise has yielded

multiple contributions: (1) it has made evident how a number

of mechanisms that we have implemented in Mycoload

are instances of the patterns in our catalog, demonstrating

how design pattern abstractions can provide a greater un-

derstanding of a real-world, complex software system that

uses self-organization principles for its self-adaptation; (2)

it has shown how pattern-based decomposition can expose

otherwise implicit interactions among those patterns, inter-

actions that play an important role in determining the overall

dynamics of a system; and (3) it has allowed the isolation of

other reusable self-organizing mechanisms that we can now

introduce in our catalog as design patterns. Due to space

limitations, this paper focuses on the new patterns identified.

The full decomposition and discussion can be found in [7].

II. RELATED WORK

Researchers have repeatedly taken inspiration from natural

self-organizing systems, and have identified adaptive mech-

anisms that can be mimicked in computing systems. This

approach allows results that often go beyond the possibilities

of centralized control in many scenarios [8], [9]. However,

these self-organizing mechanisms are typically approached

in an ad-hoc or highly application-specific manner, which

prevents their systematic reuse, and hampers their applica-

tion to recurrent problems across different domains.

Among the works that attempt to define design patterns

for self-organizing software, some focus on the discovery

and definition of a single pattern [10], [11]; others propose

concrete implementation descriptions [12]; yet others catalog

multiple patterns [3], [13]. Our previous work [4], discussed

in Section III, is most similar to the latter. One feature

that sets our catalog of bio-inspired patterns apart from

other efforts is the organization of the patterns into layers,

and the documentation of composition relationships between

patterns in those layers. As pointed out by Parunak and

Brueckner [1], the definition of composition and decompo-

2012 IEEE Sixth International Conference on Self-Adaptive and Self-Organizing Systems

978-0-7695-4851-7/12 $26.00 © 2012 IEEE

DOI 10.1109/SASO.2012.23

199

sition relationships is important, because—while it seems

clear that certain self-organization mechanisms can be ob-

tained from finer-grained ones—which ones should be used

as primitives, and how they should be combined is often not

clear, and almost never explicitly codified. Some interesting

work on composition has been performed by Sudeikat and

Renz [14], who take the approach of looking for congruent

feedback loops among multiple self-organizing mechanisms.

In general, there is still a lack of guidance on how to use

identified self-organizing design patterns in the engineering

of larger self-adaptive systems that rely on multiple mech-

anisms. The work we present with respect to the reverse

engineering of Mycoload may be the first that tries to apply

patterns exhaustively to model an existing complex self-

organized system, in order to shed a better light on its self-

adpative dynamics. In that sense, it is similar to the work

by Ramirez et al. [15], which analyzed a list of adaptation

design patterns, and re-engineered an application using those

patterns. The authors could identify several advantages of

using such design patterns. Since that work focused on

adaptation design patterns, we consider that a similar effort

must be done also for specifically evaluating self-organizing

design patterns, and fostering their reuse.

III. SELF-ORGANIZATION DESIGN PATTERNS

In previous work, Fernandez-Marquez et al. [4], presented

a catalog of self-organization design patterns (largely in-

spired from mechanisms observed in biology), and analyzed

the relations between them. One contribution is a three-layer

classification (basic, composed and high-level patterns),

shown in Figure 1. This classification scheme also includes

relations among different self-organizing mechanisms, such

as composition and usage: patterns in the lower layers

provide building blocks for more sophisticated patterns at the

higher layers. A good example is the DIGITAL PHEROMONE

pattern, which uses a SPREADING mechanism to disperse

the pheromones over the environment, an AGGREGATION

mechanism to combine multiple pheromone concentrations

at a location, and an EVAPORATION mechanism to cause

pheromone concentrations to decay over time.

The catalog shows how a limited number of basic mech-

anisms are at the basis of a large set of powerful self-

organizing dynamics that have been examined in the litera-

ture (including gossip, gradients, and morphogenesis), which

can also be expressed as design patterns. Our classification

scheme thus offers a key to understand complex as well

as basic self-organization mechanisms. Most importantly, it

enables the design of self-organizing applications in terms

of well-defined, modular and reusable blocks.

IV. PATTERN-BASED REVERSE ENGINEERING OF

MYCOLOAD

Mycoload [5] is a self-organizing system for clustering

and load-balancing in unstructured peer-to-peer networks.

H
ig

h
Le

ve
l

P
at

te
rn

s

C
om

po
se

d
P

at
te

rn
s

B
as

ic
 P

at
te

rn
s

Foraging

Flocking

GossipDigital Pheromone

MorphogenesisQuorum Sensing

Evaporation AggregationRepulsion

Gradients

Chemotaxis

Spreading

Specialization

Composition InheritanceOptional Composition

Collective
Sort

Figure 1: Self-Organization Design Patterns

Mycoload is an extension to Myconet [6], a protocol

for constructing superpeer-based overlays, inspired by the

growth patterns of fungal root systems. It rapidly self-heals,

repairing damage caused by failed peers, and dynamically

adjusts the network topology to changing conditions. One

of its distinguishing characteristics is that superpeers move

through a hierarchical set of protocol states. Each state has

different roles and responsibilities in maintaining the over-

lay, and peers are promoted or demoted to those states based

on how well they are able carry out those responsibilities.

We reverse-engineered Mycoload using the pattern catalog

from [4] in order to decompose and identify the multiple

self-organizing mechanisms that collectively determine the

system’s dynamics. The system has four main functional

areas: discovery of non-neighbor peers; exploitation of het-

erogenous peer capabilities and optimization of their roles

within the overlay; collection of peers providing the same

type of services into clusters in the overlay network; and

load balancing of jobs between peers.

Across these functional areas, we identified several in-

stances of self-organization patterns: the low-level SPREAD-

ING, AGGREGATION, and EVAPORATION patterns, as well

as the higher-level GOSSIP and GRADIENT patterns. We also

isolated two important aspects of its self-organizing behavior

that are not encompassed by other patterns but can them-

selves become reusable mechanisms. We have abstracted

those mechanisms as instances of two design patterns: the

first one, SPECIALIZATION has not been presented as a self-

organization design pattern before in the literature, as far as

the authors know; the second one is a generalization of the

COLLECTIVE SORT in pattern [2]. Due to space limitations,

readers are referred to [7] for the full description of the

role of these patterns within the design and dynamics of the

Mycoload system.

In Sections V and VI, we present these patterns, following

the self-organization design pattern structure used in [4].

V. SPECIALIZATION PATTERN

Specialization is a mechanism widely used in complex

systems for achieving improved efficiency by exploiting

the natural heterogeneity of the entities taking part in the

system. Through SPECIALIZATION, each individual entity

is assigned a specific role depending on its capabilities and

contextual local information. A useful survey of specializa-

tion in self-organizing systems can be found in [16].

200

According to the SPECIALIZATION pattern, system enti-

ties change the rules under which they operate, depending

on features or properties of the entity itself, or contextual in-

formation from its environment and neighbors. For example,

a computer with high amounts of memory available could

store information on behalf of nodes with low memory; a

computer with sensors could provide sensed information to

other computers; a network node with a large amount of

bandwidth could be elected to act as a router for traffic

transmitted by other nodes, and so on. The assumption of

specialized roles may be influenced by other entities, or may

need to be further modulated by information from other self-

organizing mechanisms, in order to adapt to changing system

conditions and requirements in the system.

Name: SPECIALIZATION

Aliases: None to our knowledge.
Problem: Global optimization of system efficiency by

increasing or decreasing the contributions of individual

entities or by otherwise changing the rules under which those

entities operate.
Solution: Individual entities are assigned a specific role

or set of behavioral rules depending on their capabilities and

contextual local information. SPECIALIZATION optimizes

entities’ contributions in order to increase the overall per-

formance of the system.
Inspiration: The specialization process appears in many

macro- and micro-level systems. Some examples are the

specialization of cells in a human body or the specialization

of individual humans to fill particular roles in society.
Forces: Depending on how the contextual information

used for making decisions regarding specialization is ac-

quired and which patterns are used in transferring and main-

taining this information, different trade-offs can appear. The

most common patterns are SPREADING and AGGREGATION

(see the forces discussed in their pattern descriptions [4] for

more details.) In general, though, the information used by

SPECIALIZATION can come from any other self-organizing

mechanisms or a combination of those mechanisms, and

their dynamics will influence and possibly be mutually

influence the resulting specializations.
Entities: The entities participating in the SPECIALIZA-

TION pattern are: (1) software agents that modify their

behavior depending on their capabilities (or the capabilities

of their hosts) and environmental information (e.g. exter-

nal requirements); (2) hosts that provide sensors, memory,

communication capability, computational power, etc. to the

software agents; and finally (3) Environment, all that is

external to the hosts (e.g. the space where host are located,

external requirements that are injected in the system, etc.. . .)
Dynamics: Agents retrieve contextual information from

their own knowledge and from their neighbor agents, or
from the environment by using sensors or querying an
externally implemented environmental model. To describe
the dynamics we use the same notation as in [4], where

information contained in the system is modelled as a tuple
〈L,C〉, where L is the location where the information is
stored (possibly within an agent or maintained by an external
middleware), and C is its current content—e.g., in the form
of a list with one or more arguments of different types,
such as numbers, strings or structured data, according to
the application-specific information content. Transition rules
resemble chemical reactions between patterns of tuples,
where (i) the left-hand side (reagents) specifies which tuples
are involved in the transition rule: they will be removed
as an effect of the rule execution; (ii) the right-hand side
(products) specifies which tuples are accordingly to be
inserted back in the specified locations: they might be new
tuples, transformation of one or more reagents or even
unchanged reagents; and (iii) rate r is a rate, indicating the
speed/frequency at which the rule is to be fired (that is, its
scheduling policy).

state evolution :: 〈L, [cInf, State, C]〉 rsp−−→
〈L, [cInf, State′, C]〉

where State′ = π(cInf, State, C)

In the above rule, cInf is the contextual information ac-

cessible to the agent, State is its previous role before the

specialization occurs (i.e., the set of rules under which it

operates), State′ is the new role (and consequent set of

rules) adopted as a result of the specialization process, and

π is a function that produces this new state from the given

contextual information, current agent state, and any local

information.

Environment: The hosts must have different features or

the system must display other heterogeneities (for example,

in the distribution of agents in different locations) that allow

SPECIALIZATION to assign an appropriate role based on

those features and the contextual information.

Implementation: We have identified two different im-

plementations: (1) An agent decides to change its role in

the system by taking into account the capabilities of the

local environment where it resides and acquired contextual

information (e.g., the system’s requirements); and (2) An

agent is positioned to determine that one of its neighbors

should adopt a new role. An example of the second case is

when one node is providing services to other nodes in the

system but it is reaching the maximum number of clients; in

such a case the node can replicate the information served to

a new node (selected according to some suitability measure

from among other nodes in its neighborhood) and target it

to assume the role of an additional service provider.

Two types of rules can be used to drive the specializa-

tion of agents, determining which role an indivdual adopts

depending on its capabilities and context: fixed rules, and

adaptive rules. Fixed rules are defined by developers at

design time, agents switch among behaviors from a static

set. Adaptative rules may be changed by the agents during

run time in order to contribute to the optimization of

the global system behaviour. Evolutionary approaches have

been used in the field of autonomic computing to establish

201

sets of norms, policies or rules that drive the system to

the desired emergent behaviour, even when environmental

changes occur. A possible implementation was introduced

in [17], which uses a distributed genetic algorithm. In that

approach, each agent participating in the system performs

local evaluations and adjustments that are then shared with

other agents using spreading mechanisms.

Known Uses: Specialization has been used by a large

number of self-organizing applications. Examples include:

(1) Overlay networks where some nodes decide to become

routers based on their available resources and their connec-

tivity with other nearby nodes [18] (2) Aiming to localize

diffuse event sources in dynamic environments using large

scale wireless sensor networks, agents change their roles

in order to locate and track diffuse event sources [19]. (3)

To balance the load among nodes with different services,

Mycoload [5], builds a superpeer topology where more pow-

erful nodes adopt several different, specialized roles in the

creation and maintainance of the overlay. (4) [20] describes

a robust process for shape formation on a sheet of identically

programmed agents (origami) where the heterogeneity of the

agents comes from their location.

Consequences: Specialization locally increases or de-

creases the contribution of individual nodes, improving the

global efficiency of the system.

Related Patterns: In the MORPHOGENESIS pattern,

the role of the agents changes depending on their relative

positions, typically communicated via a GRADIENT. Thus,

MOPHOGENESIS is of the same family but more specific

than SPECIALIZATION.

VI. GENERALIZED COLLECTIVE SORT PATTERN

Collective sort is a clustering mechanism that enables

segregation or relocation of entities into similar-type group-

ings within the context of a collection of system elements

according to some property of the entities or requirement of

the system. Self-organizing algorithms for collective sorting

have been developed based on observations of biological

phenomena, particularly the processes of brood sorting and

cemetery formation by social insects [21].

The mechanism discussed in this pattern is a generaliza-

tion of the biologically inspired collective sorting proposed

as a design pattern for tuple spaces by Gardelli et al. [2]

and analyzed as an environmental coordination mechanism

by Sudeikat and Renz [22]. The usual formulation of the

collective sort algorithm assumes a case where active agents

relocate inactive data items; the COLLECTIVE SORT pattern

presented in this paper extends this to include cases where

the agents themselves may be the entities to be grouped, or

where different environmental abstractions are being used.

These variants are discussed in the Implementation section

of the pattern description, below.

Name: COLLECTIVE SORT

Aliases: Brood Sorting, Cemetery Formation, Collective

Clustering

Problem: A system contains a number of scattered data

or entities that need to be brought into relative proximity

with other similar data or entities.

Solution: Individual agents move through an environ-

ment, encountering data items as they travel. By picking

up and dropping these items based on local heuristics,

elements with similar properties are progressively gathered

into homogeneous groups or clusters.

Inspiration: Brood sorting and cemetery formation by

social insects [21]

Forces: This pattern starts from a disordered arrangement

of entities within an environment and progressively reduces

that disorder. Thus, it is affected by entity distribution, and

other other forces that act to change the location of these en-

tities. The function used by entities to evaluate local density

of entities (as well as an entity’s range of perception) will

affect the outcome of the sort. In particular, a small range

may induce the formation of multiple small collections.

The choice of rules and probabilities for the picking up

and dropping of entities may also influence the speed of

convergence or the resulting topological distribution.

Entities: The entities associated with the COLLECTIVE

SORT pattern are: (1) data items that have an associated

property for which similarity can be assessed; and (2) active

agents that are able to examine and relocate data items

of type (1). Note that, depending on the implementation,

(1) and (2) may be the same entities. For example, the

active agents may themselves possess the property that is

the subject of sorting, and hence the emergent order will be

expressed by the arrangement of the agents themselves.

Dynamics: This pattern relies on three rules which,

together, tend to progressively relocate similar elements into

similar vicinities: a Movement Rule that relocates agents

within a set of candidate locations, a Pick-Up Rule that con-

nects an agent to an element so it can be moved, and a Drop
Rule that leaves a held element at a current location. These

rules are followed by the active agents. The Movement rule

is frequently implemented as random exploration, but could

also take advantage of available contextual information if

appropriate. The Pick-Up and Drop rules select entities to

be clustered when they are encountered, tending to remove

elements from areas of high diversity and deposit them in

areas of low diversity. Two approaches to applying these

general rules are discussed in the Implementation section.

Environment: The environment provides the context

within which the proximity of data items is interpreted.

Thus, entities must have a concept of location, be able to

change location, and be able to detect other nearby entities

within that environment; they must also have a means of

evaluating the similarity of data items thus detected.

Implementation: Previous descriptions have favored a

particular implementation of COLLECTIVE SORT; specif-

202

ically, they assume the use of a distributed tuple space.

The form described here (which emerged from our reverse

engineering exercise) encompasses other models, such as the

graph-oriented, peer-to-peer environment we discuss.

In the tuple-space formulation, active agents move be-

tween spaces, carrying tuples with them. For the movement

rule, agents explore the environment and encounter data

items as they move. The choice of movement strategy is

frequently random, but may also be informed by other

information, such as from CHEMOTAXIS.

Agents “transport” data items from place to place, tending

to move them from areas with lesser concentration to areas

with greater concentration of items of the correct type. This

rule may rely on direct observation of data items in a vicinity

(as with observation of neighbors in FLOCKING); it may

rely on AGGREGATION to estimate the local density of data

items of a particular type; or the agent may make its own

estimate by maintaining a memory of recently encountered

data items. A general way to express how pick-up occurs

is through a probabilistic function of the density of data

items [23]. See [7] for a more detailed formulation.

In a more general view of COLLECTIVE SORT, an abstract

notion of grouping can be used to apply the same strategy in

a scenario where the environment is defined by a pattern of

neighbor relationships between nodes (composing a graph,

as in a P2P network), and where the nodes themselves

are labelled with some property (e.g., a node type) upon

which clustering should be performed. In this dynamic

graph scenario, “movement” is considered to be selecting a

candidate location for growing a new neighbor relationship,

“picking up” is adding a new neighbor, and “dropping” is

severing an existing neighbor relationship.
1. Movement Rule: Agents explore randomly by selecting

a potential new neighbor from a set of possible candidates.
In many P2P networks, and in Mycoload, this set is main-
tained by a separate mechanism that implements the GOSSIP

pattern, and thus provides each node with fresh samples of
candidate non-neighbor nodes. For a node V with neighbor
set N(V), a new possible neighbor Cand is selected:

movement :: 〈V,N(V)〉 rmove−−−−→ 〈V,N(V), Cand〉
where Cand = random(CANDIDATES(V)) and Cand /∈ N(V)

Note that this may also result in V finding a cluster of

its own type (if the new neighbor W is of the same type) if

it was not already in one, or finding a connecting path for

two disconnected same-type sub-clusters.
2. Pick-Up Rule: Once the movement rule has selected a

new possible neighbor Cand, the agent may add it as a new
neighbor to itself

pick up :: 〈V,N(V), Cand〉 rpick up−−−−−→ 〈V,N(V)∪{Cand}〉

In Mycoload, for example, the pick-up rule will be

executed if (a) V does not currently have a neighbor that

is its same type, (b) if V has under a certain number of

different-type neighbors, or (c) execute anyway with a small

probability to prevent the system from settling into a local

optimum. Thus, agents will wander until they find a cluster

of the same type (whether by encountering it by moving or

dropping in place by another agent), but will also try to keep

connections to neighbors of other types in order to help other

nodes move toward an appropriate cluster. The pick-up rate

thus declines as the nodes converge toward clusters.
3. Drop Rule: Dropping for a node V is performed by

randomly selecting a neighbor W ∈ N(V) (where the type
of W with neighbor set N(W) is different from the type of
V) and, if V also has a neighbor U ∈ N(V) with the same
type as W , by transferring W to become a neighbor of U :

drop :: 〈〈V,N(V)〉, 〈W,N(W)〉, 〈U,N(U)〉〉 rdrop−−−→
〈〈V,N(V)−W 〉, 〈W,N(W) ∪ {U}〉, 〈U,N(U) ∪ {W}〉〉

Known Uses: Collective sort and brood sorting-inspired

approaches to distributed self-organizing systems have been

applied to several problems areas: (1) Collecting similar

tuples from a distributed tuple system into a single tuple

space [24]. Of interest is Casadei et al.’s approach using

“noise” tuples to implement a simulated annealing-type ap-

proach to avoiding local optima [25]. (2) Collective sorting

as a coordination mechanism for swarms of self-organized

robots, proposed as early as 1991 by Deneubourg et al. [26]

and extended by later researchers [27]. (3) Storage and

retrieval of Semantic Web documents. Presenting such a

scenario, Muhleisen et al. [28] discuss in particular the

role of similarity metric selection in collective sorting. (4)

Intrusion detection. Sudeikat and Renz [22] identify brood

sorting as suitable for providing a portion of the self-

organizing dynamics for a stigmergic IDS. (5) Clustering

of same-type nodes in peer-to-peer networks. Mycoload [5]

uses a collective sort approach to build clusters of peers

offering the same service types; the specific role of the

collective sort mechanisms is discussed in this paper.

Consequences: Collective sort enables clustering of data

or other entities into groups of similar type. The resulting

order may increase efficiency of operations on this data.

Related Patterns: AGGREGATION is often used to es-

timate local density of data items. SPREADING and GRA-

DIENT may be used to disseminate information about the

density of particular kinds of data, and CHEMOTAXIS may

be used to guide agent movement. SPECIALIZATION may be

used to select specific items among the ones in the resulting

groupings for particular roles.

VII. CONCLUSIONS

We have presented two novel self-organization design

patterns resulting from the pattern-based reverse-engineering

of an entire self-organized software system, Mycoload.

This effort also demonstrated the effectiveness of a well-

organized catalog of design patterns [4]. An outstanding

challenge in this field is understanding the global emergent

203

behavior that results from multiple interacting mechanisms.

A pattern-based design provides leverage for this problem,

since the resulting system decomposition highlights the

interactions among patterns, and their contribution to the

overall self-organizing dynamics.
A benefit of a pattern-based approach is the possibility

of identifying additional self-organizing behaviors within

the system, which can be themselves be abstracted as

reusable mechanisms. Here, we have been able to identify

two such modules, the SPECIALIZATION and COLLECTIVE

SORT patterns. Both of these capture mechanisms that

are present in a number of other self-organized software

systems: SPECIALIZATION solves the recurring problem of

self-selected differentiation of roles among system elements

or agents; and COLLECTIVE SORT enables the organization

of disparate data or agents into homogeneous groups.
As the number of self-organization design patterns that

are extracted from existing systems increases, and and as

we make progress in understanding how they relate and

how they can be used together, the process described in this

paper holds great promise for providing the engineers of self-

organized software with increased insight on the principles

around which self-organization mechanisms can be built

repeatably and leveraged effectively for the self-adaptation

of large- and ultra-large scale systems.

REFERENCES

[1] H. Parunak and S. Brueckner, “Software engineering for self-
organizing systems,” in Proc. of 12th Int’l Wkshp. on Agent-
Oriented Software Engineering (AOSE 2011), 2011.

[2] L. Gardelli, M. Viroli, and A. Omicini, “Design patterns for
self-organizing multiagent systems,” in 2nd Int’l Wkshp. on
Engineering Emergence in Decentralised Autonomic System
(EEDAS) 2007, ICAC 2007, June 2007, pp. 62–71.

[3] T. De Wolf and T. Holvoet, “Design patterns for decentralised
coordination in self-organising emergent systems,” in Proc.
of 4th Int’l Conf. on Engineering Self-Org. Systems. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 28–49.

[4] J. L. Fernandez-Marquez, G. Di Marzo Serugendo, S. Mon-
tagna, M. Viroli, and J. L. Arcos, “Description and compo-
sition of bio-inspired design patterns: a complete overview,”
Natural Computing, pp. 1–25, 2012.

[5] G. Valetto, P. L. Snyder, D. J. Dubois, E. D. Nitto, and N. M.
Calcavecchia, “A self-organized load-balancing algorithm for
overlay-based decentralized service networks.” in Proceeding
of SASO’11. IEEE, 2011, pp. 168–177.

[6] P. Snyder, R. Greenstadt, and G. Valetto, “Myconet: A
fungi-inspired model for superpeer-based peer-to-peer overlay
topologies,” in SASO’09, 2009, pp. 40–50.

[7] P. Snyder, G. Valetto, J. L. Fernandez-Marquez, and G. D. M.
Serugendo, “Describing self-organizing software with design
patterns: A reverse engineering experience,” Drexel Univer-
sity, Tech. Rep. DU-CS-12-07, 2012.

[8] R. Nagpal, “A catalog of biologically-inspired primitives
for engineering self-organization,” in Engineering Self-
Organising Systems, Nature-Inspired Approaches to Software
Engineering. LNCS Vol. 2977. Springer, 2004, pp. 53–62.

[9] M. Mamei, R. Menezes, R. Tolksdorf, and F. Zambonelli,
“Case studies for self-organization in computer science,” Jrnl.
of Systems Architecture, vol. 52, pp. 443–460, Aug. 2006.

[10] H. Kasinger, B. Bauer, and J. Denzinger, “Design pattern for
self-organizing emergent systems based on digital infochem-
icals,” in Proc. of the Int.Conf. on Engineering of Autonomic
and Autonomous Systems (EASe’2009). IEEE Computer
Society, 2009, pp. 45–55.

[11] H. Parunak, S. Brueckner, D. Weyns, T. Holvoet, and P. Val-
ckenaers, “E pluribus unum: Polyagent and delegate MAS
architectures,” in Proc. of 8th Int’l Wkshp. on Multi-Agent-
Based Simulation (MABS07). Springer, 2007, pp. 36–51.

[12] M. H. Cruz Torres, T. Van Beers, and T. Holvoet, “(no)
more design patterns for multi-agent systems,” in Pro-
ceedings of the compilation of the co-located workshops
on DSM’11, TMC’11, AGERE!’11, AOOPES’11, NEAT’11,
& VMIL’11, ser. SPLASH ’11 Workshops. New York,
NY, USA: ACM, 2011, pp. 213–220.

[13] O. Babaoglu, G. Canright, A. Deutsch, G. A. D. Caro,
F. Ducatelle, L. M. Gambardella, N. Ganguly, M. Jelasity,
R. Montemanni, A. Montresor, and T. Urnes, “Design patterns
from biology for distributed computing,” ACM Trans. on
Autonomous and Adaptive Sys, vol. 1, pp. 26–66, 2006.

[14] J. Sudeikat and W. Renz, “Engineering environment-mediated
multi-agent systems,” D. Weyns, S. A. Brueckner, and Y. De-
mazeau, Eds. Berlin, Heidelberg: Springer-Verlag, 2008,
ch. Toward Systemic MAS Development: Enforcing Decen-
tralized Self-organization by Composition and Refinement of
Archetype Dynamics, pp. 39–57.

[15] A. J. Ramirez and B. H. C. Cheng, “Design patterns for
developing dynamically adaptive systems,” pp. 49–58, 2010.

[16] G. Nitschke, M. Schut, and A. Eiben, “Emergent specializa-
tion in biologically inspired collective behavior systems,” in
Intelligent Complex Adaptive Systems, A. Yang and Y. Shan,
Eds. IGI Publishing, 2008, pp. 215–253.

[17] N. Salazar, J. A. Rodriguez-Aguilar, and J. L. Arcos, “Robust
coordination in large convention spaces,” AI Communications,
vol. 23, no. 4, pp. 357–372, 2010.

[18] P. Kersch, R. Szabo, Z. Kis, M. Erdei, and B. Kovács,
“Self organizing ambient control space: an ambient network
architecture for dynamic network interconnection,” in Proc.
of 1st ACM Wkshp. on Dynamic Interconnection of Networks.
ACM, 2005, pp. 17–21.

[19] J. L. Fernandez-Marquez, J. L. Arcos, and G. D. M. Seru-
gendo, “A decentralized approach for detecting dynamically
changing diffuse event sources in noisy WSN environments,”
Applied Artificial Int., vol. 26, no. 4, pp. 376–397, 2012.

[20] R. Nagpal, “Programmable self-assembly using biologically-
inspired multiagent control,” in 1st Int’l. Joint Conf. on
Autonomous Agents and Multiagent Systems: Part 1, 2002,
pp. 418–425.

[21] S. Selvakennedy, S. Sinnappan, and Y. Shang, “A
biologically-inspired clustering protocol for wireless sensor
networks,” Computer Communications, vol. 30, no. 14-15,
pp. 2786–2801, 2007.

[22] J. Sudeikat and W. Renz, “Toward systemic mas develop-
ment: Enforcing decentralized self–organization by compo-
sition and refinement of archetype dynamics,” Engineering
Environment-Mediated Multi-Agent Systems, pp. 39–57, 2008.

[23] M. Casadei, L. Gardelli, and M. Viroli, “Simulating emergent
properties of coordination in maude: the collective sort case,”
Electronic Notes in Theoretical Computer Science, vol. 175,
no. 2, pp. 59–80, 2007.

[24] L. Gardelli, M. Viroli, M. Casadei, and A. Omicini, “De-
signing self-organising MAS environments: the collective sort
case,” Env.s for Multi-Agent Systems III, pp. 254–271, 2007.

[25] M. Casadei, M. Viroli, and L. Gardelli, “On the collective sort
problem for distributed tuple spaces,” Science of Computer
Programming, vol. 74, no. 9, pp. 702–722, 2009.

[26] J. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks,
C. Detrain, and L. Chrétien, “The dynamics of collective
sorting robot-like ants and ant-like robots,” in Proc. of 1st Int’l
Conf on Simulation of Adaptive Behavior on From Animals
to Animats, 1991, pp. 356–363.

[27] T. Wang and H. Zhang, “Collective sorting with multiple
robots,” in Robotics and Biomimetics, 2004. ROBIO 2004.
IEEE Int’l Conf. on. IEEE, 2004, pp. 716–720.

[28] H. Mühleisen, A. Augustin, T. Walther, M. Harasic, K. Tey-
mourian, and R. Tolksdorf, “A self-organized semantic stor-
age service,” in Proc. of the 12th Int’l Conf. on Info. Integra-
tion and Web-based App. & Serv. ACM, 2010, pp. 357–364.

204

