On the Use of Formal Specifications as Part of
Running Programs

Giovanna Di Marzo Serugendo

University of Geneva (CUI)
Department of Information Systems
24, rue Général-Dufour, 1211 Geneva 4 Switzerland
Giovanna.Dimarzo@cui.unige.ch

Abstract. Issues related to large scale systems made of autonomous
components encompass interoperability among independently developed
software and adaptability to changing environmental conditions. Formal
specifications are traditionally used at design time for software engineer-
ing tasks. However, recently, several attempts of using formal specifica-
tions at run-time have been realised that let envisage a future use of
formal specifications at run-time that will enhance interoperability and
adaptability of autonomous components.

This paper intends to highlight the potentialities of the use of formal
specifications at run-time as a support for the correct execution of such
components. This paper reviews and discusses the use of formal specifica-
tions at run-time from different perspectives: software engineering, run-
time code evolution, adaptive middleware, trust and security, or business
applications. It highlights the potentialities of the use of formal speci-
fications at run-time as a support for interoperability and adaptability
of interacting autonomous components. It identifies as well application
domains and open issues related to the combination of specifications and
code in the framework of large scale systems.

1 Introduction

Formal methods are traditionally used at design time as a tool for defining
systems, for analysis tasks, and for model checking.

However, current and future applications’ needs are different than those of
traditional software. Indeed, computing paradigms such as ubiquitous, perva-
sive computing, or service-oriented computing imply the use of a large number
of autonomous components, services or agents interacting at run-time, possi-
bly with decentralised control, independently developed, and acting on behalf
of self-interested users. Off-line verification in these cases is impossible or of
limited utility. Therefore, several works have emerged that combine the use
of formal methods and programming languages at run-time, in order to ben-
efit of some functional and quality assurances at run-time. This paper reviews
(non-exhaustively) some of these works: from traditional ones allowing exception
handling, to more recent ones supporting interactions among independently de-
veloped components. Even though this area of research is rather young and not



yet mature enough for direct and efficient application into actual systems, this
paper advocates that there is a large potential of interest and benefit of using
formal methods at run-time, essentially due to run-time reasoning and decou-
pling of code from specification. Focus is given on large scale systems made of
autonomous interacting components.

Section 2 briefly reviews different domains where formal methods are used
at run-time and for different purposes. Section 3 describes the potential interest
of having simultaneously formal specifications and executable code. Section 4
lists several domains where formal specifications at run-time may prove useful.
Section 5 identifies several issues related to the use of formal methods at run-
time. Finally, section 6 mentions some advantages and drawbacks of the use of
formal methods as part of running programs.

2 Current and Emergent Practice

2.1 Design by Contract.

The most popular and probably the earliest work using formal specifications
inside programs is the ”Design by Contract” paradigm of Meyer [24,25]. The
idea is to attach to each function or routine of the program a list of pre- and
post-conditions. Pre- and post-conditions are assertions or logical conditions that
have to hold at the entry, respectively at the output of the corresponding routine.
In addition to pre- and post-conditions applying to specific routines, invariants
applying to a class as a whole, i.e. which have to hold for all instances of a class,
can also be defined.

The ”Design by Contract” paradigm serves different purposes. At design-
time, it is used for testing, debugging and for quality assurance of the related
software. The program runs are checked against the pre- post-conditions and the
invariants. At run-time, it is used for exception handling. Exceptions occur when
a routine cannot fulfil its contract: post-condition or invariant are violated, a
called sub-routine fails, or the underlying hardware or operating system indicates
an abnormal condition. Exceptions are handled by exception handlers whose
goal is to restore the objects in a state where the invariants hold. If they cannot,
the routine fails and throws an exception to its caller. The Eiffel programming
language [23] has built-in features supporting the Design by Contract paradigm.

Trusted Components. Built on the notion of Design by Contract, the initia-
tive of Trusted Components launched by Meyer et al. [27,26] aims at providing
software components equipped with ”specified and guaranteed quality proper-
ties”. This notion covers both assessing properties of existing components and
producing proofs of correctness of some properties (specified by the contract) for
newly developed components.

2.2 Proof-Carrying Code (PCC)

With similar goals to the above notion of Trusted Components, but intended for
run-time decisions instead of design time implementations, the Proof-Carrying



Code mechanism [29, 28] allows a host system to determine if it is safe to execute
a newly received untrusted binary program. The program comes with a proof
that it validates some safety properties agreed in advance. The code producer
creates such a proof, the code consumer (e.g. the host system that has to execute
it) then simply checks that the proof is valid given the received binary program.
More precisely, a safety policy is specified in advance by the consumer, and
expresses the conditions under which the consumer considers the program execu-
tion to be safe. The safety policy is made of: safety rules specifying operations and
their pre-conditions; and interface calling conventions describing post-conditions
and invariants that the code must establish. It is expressed with first-order pred-
icate logic. The code producer performs a verification that the code she intends
to furnish respects the safety policy, and provides a proof of the successful veri-
fication, realised through theorem proving. On receipt of the code, the consumer
validates the proof received along with the code, through proof checking.

2.3 Run-Time Verification

Run-time verification encompasses both the use of lightweight formal methods
at run-time to complement traditional methods for proving programs correctness
at design-time, and the use of formal techniques for dynamic program monitor-
ing [16,17,32].

Dynamic monitoring usually consists in executing the program and checking
whether it conforms to a requirement specification. The most popular languages
for expressing such specifications are either temporal logics, or state machines.
Among the different proposals made in this field, we can mention [4], who provide
a specification method for expressing the semantics (not only the syntax) of
components’ interfaces. The program runs concurrently with its specification
and deviations from the expected specified behaviour reveals incorrectness in the
program. This technique is realised without any instrumentation of the program.
The interesting point here is that the component’s interface specification not
only describes the signature but it specifies the component’s behaviour. This
technique uses executable specifications written with the Abstract State Machine
Language (AsmL), and the COM infrastructure for monitoring the execution of
a component and checking the behavioural equivalence of the component and
the concurrently executing specification.

An interesting verification tool for the logic-based alternative is provided
by [10] for Java programs. In this approach, the programmer specifies Linear-
Time Temporal Logic (LTL) formulae directly in the code under the form of
metadata annotations. These annotations are compiled into Java bytecode as
attributes; they are thus available together with the program, and subsequently
used by verification tools. Another runtime verification system for Java pro-
grams, the Java PathExplorer, requiring instrumentation of the code, is pro-
vided by [18]. This tool monitors Java programs execution traces by checking
them against a provided requirement specification written with Maude, a speci-
fication and verification system allowing implementation of rewriting logic. The



instrumentation of the code serves to insert additional bytecode that send rele-
vant events to an observer. The observer, which may reside on another machine,
actually checks the event trace against the provided specification.

The commercial tool Temporal Rover [14] allows to insert LTL temporal
assertions into a Java program under the form of comments. The Temporal Rover
tool generates a new program file where these assertions are implemented, so that
the validation of the temporal properties is executed as part of the program.

In an attempt to provide a kind of unifying logic encompassing the different
proposals, [5] propose the temporal finite trace monitoring logic EAGLE and its
Java implementation.

2.4 Ontologies

An ontology for a given domain is a description of some shared concepts and re-
lationships among these concepts. Ontology usually defines a set of keywords for
expressing the concepts, and for expressing the relationships among them. How-
ever, expressivity of ontology may vary from very large vocabularies to complete
formal theories [15].

Ontologies are currently used as an interoperability tool for knowledge man-
agement in business applications, for autonomous agents, and for semantic Web
services.

Meta-Ontologies. Meta-ontologies are algebra allowing definition of type theo-
ries, operations, and axioms. From that perspective, category theory [19], higher-
order logics that define terms, operators, axioms, and provable or checkable the-
orems are meta-ontologies.

2.5 Trust-Based Management Systems.

Trust management systems deal with security policies, credentials and trust
relationships (e.g., issuers of credentials). Most trust-based management systems
combine higher-order logic with a proof brought by a requester that is checked
at run-time. Those systems are essentially based on delegation, and serve to
authenticate and give access control to a requester [34]. Usually the requester
brings the proof that a trusted third entity asserts that it is trustable or it can be
granted access. Those systems have been designed for static systems, where an
untrusted client performs some access control request to some trusted server [2,
6]. Similar systems for open distributed environment have also been realised,
for instance [22] proposes a delegation logic including negative evidence, and
delegation depth, as well as a proof of compliance for both parties involved in
an interaction. The PolicyMaker system is a decentralised trust management
systems [3] based on proof checking of credentials allowing entities to locally
decide whether or not to accept credentials (without relying to a centralised
certifying authority).

More recently, an operational model for trust-based access control in highly
dynamic environment has been defined by [11]. Interacting parties maintain trust



values about each other. These trust values are updated dynamically depending
on positive or negative behaviour of the corresponding principal. This schema
allows trust to evolve with time as a result of evidence, and allows to adapt the
behaviour of principals consequently.

2.6 Smart Labels/Smart Tags.

Smart tagging systems are already being deployed for carrying or disseminating
data in the fields of healthcare, environment, and user’s entertainment. For in-
stance, in the framework of data dissemination among fixed nodes, [8] propose
a delivery mechanism, based on the local exchange of data through smart tags
carried by mobile users. Mobile users or mobile devices do not directly exchange
smart-tags; they only disseminate data to fixed nodes when they are physically
close to each other. Data information vehicled, by smart tags, is expressed as
triples indicating the node being the source of the information, the information
value, and a time indication corresponding to the information generation. Smart
tags maintain, store, and update these information for all visited nodes. A Blue-
tooth implementation of these Smart Tags has been realised in the framework
of a vending machine [7]. In smart tagging systems, data remain structurally
simple, and understandable by human beings, and does not actually serve as a
basis for autonomous local decisions.

2.7 Self-Configuring Systems

In the field of self-configuring systems, [9] propose a model based on a service-
oriented middleware able to perform dynamic binding of components (or ser-
vices) based on behavioural specifications and on contextually non-functional
requirements. The selection and binding of the component is performed at run-
time and is based on the adequacy of its functional description to the user’s re-
quirements. Once a component is selected, the underlying infrastructure allocates
the resources necessary for the component to execute, based on the component’s
non-functional requirements. Several components can be composed together (se-
quentially, conditionally, or in parallel) based on an execution sequence specified
by the user under the form of a dependency graph.

The component’s functional description is expressed in IOPE format: Input,
Output, Pre-condition and Effects. Input and Output serve to describe the pa-
rameters types of the interface, while pre-condition and effects are similar to
pre-condition and post-conditions of the Design by contract paradigm.

Self-configuration is obtained through adaptation to changing user’s require-
ments and changing environmental/contextual information, which is realised
thanks to the decoupling of code from those requirements and information.

This is an ongoing work: the formal language to express the IOPE information
and the implementation of the middleware are under way.



2.8 Specification-Carrying Code

Specification-Carrying Software. The notion of specification-carrying software is
being investigate since several years [31,1]. This idea has been proposed initially
for software engineering concerns, essentially for ensuring correct composition of
software and realising correct evolution of software. Algebraic specifications and
categorical diagrams are used for expressing the functionality, while co-algebraic
transition systems are used to define the operational behaviour of components.
The visions of this team include as well run-time generation of code from the
specifications.

Alternatively, [30] propose a version where the behaviour of a component is
not fully specified in all its operational details, but sufficiently in order to be used
for correct self-assembly of software at run-time. Indeed, moving from the tradi-
tional use of formal methods for testing and debugging, this approach intends to
replace traditional APIs with full formal specifications, understood and checked
at run-time by the different components or services involved in a computation.
The specification becomes the primary element and the basis for communica-
tion and interaction. This approach is currently supported by a service-oriented
middleware architecture implemented in Java, supporting specifications written
either as regular expressions or in Prolog. Components offering services publish
their specification, while components requesting services submit specification re-
quests. The middleware then checks services specifications with service requests
and seamlessly binds the service provider and the service consumer.

This approach has been applied to run-time code evolution [30] and as a
potential solution to autonomic computing [13].

2.9 B2B Interoperability

At a larger scale, the Web-Pilarcos middleware [21] allows independently de-
veloped business applications to interoperate. The business applications are
grouped into what the authors call a ”eCommunity” whose structure is defined
by roles and interactions between the roles. A business application is assigned a
given role if it fulfils the corresponding conformance rules. A Business Network
Model (BNM) semantically describes the collaboration rules requested by each
partner and defines the structure of the eCommunity. A eCommunity contract,
expressed as an XML-schema, comprises the BNM as well as additional informa-
tion related to the format of messages, functional and non-functional (trust, QoS,
security) aspects of the different services. The Web-Pilarcos middleware sup-
ports eCommunities by providing discovery of services, eCommunity’s contract
management and monitoring. It checks interoperability of the different business
applications, their adherence to the BNM, and maintains interoperability at the
collaboration, semantic and technical levels. The Web-Pilarcos approach goes
beyond traditional unified virtual enterprise systems for B2B, where all business
applications have to share the same interoperability model.



2.10 Summary

We can see from the different paradigms and approaches discussed above, that
the range of use of formal methods at run-time varies greatly. We will compare
them from the point of view of dynamic interactions of components at run-time.

The use of design by contract at run-time is currently limited to exception
handling. Both parties of the contract have to share it in advance. For trusted
components, proof of properties are based on contracts, however they do not
serve interoperability purposes.

Proof-Carrying code is useful for checking safety properties, agreed in ad-
vance. Usually these properties are low-level properties; they do not express
functional or non-functional requirements. The code consumer needs to know
the kind of program it receives. However, as advocated by [12], proofs are not the
ultimate solution, since even if a proof has been positively checked, a component
may nevertheless fail due to changing environmental conditions (particularly in
highly volatile environment). Therefore, a more adaptable schema, as one based
on evolving trust, can be more efficient.

Run-time verification is essentially meant for checking deviations of the pro-
gram execution from its expected execution. In addition, dynamic monitoring of
program usually reveals only errors (as traditional model checking) but cannot
guarantee that the program is correct in all cases, but only in the particular
traces that have been checked against the specification.

Moving from purely software engineering concerns to interacting components
or agents, ontologies serve interoperability purposes. They are based on a com-
mon shared domain of concepts. They act as a powerful tool for independently
developed software provided there is a common ontology.

At a more dynamic level, trust-based management systems allow the different
interacting components to take security decisions based on the evolving trust
values.

Self-configuring systems, specification-carrying code are attempts to replace
traditional well-agreed (in advance) APIs with formal specifications understood
at run-time by some middleware infrastructure. This avoids the need of having
shared ontologies, or agreed contracts, thus allowing a high-degree of interaction
among heterogeneously designed components.

Following the same ideas, but a larger level of granularity, B2B middleware
for interoperable business applications, are addressing similar concerns: allowing
interaction and run-time evolution of independently developed business applica-
tions.

As a summary, we can observe that there is a shift from pure software engi-
neering concerns to new communication paradigms for distributed systems based
on formal specifications. In addition, we can observe that in the above described
approaches, the more the specification is decoupled from the code, the more they
apply to coarse grain components, and the more they allow dynamic interactions
among the components.



3 Potential Interest

The potential interest, we foresee of the use of formal specifications at run-time,
resides essentially in the semantic interoperability and adaptability possibilities
they offer for large scale systems made of autonomous independent components.
The potentiality resides in the one hand on the run-time reasoning that can
be performed on the specification, and on the other hand on the decoupling of
concerns between the code and the specification information.

3.1 Semantic Interoperability

Formal specifications allow going far beyond interface descriptions or shared
keywords or concepts. Ideally, they allow: run-time understanding of the func-
tionality of the components they represent (useful for self-assembly of compo-
nents), on-the-fly deduction of component’s properties, as well as compositions
of properties on which to base composition of components for obtaining new
functionalities (useful for automating the composition of components).

Design by contract, and similarly proof-carrying code techniques, allow a lim-
ited form of semantic interoperability: pre- and post-conditions allow run-time
checking of expected properties, but APIs must be shared among the different
components. Run-time verification tools essentially serve dynamic monitoring
purposes (i.e., checking deviations from a requirement’s specification), and there-
fore have a limited utility for supporting dynamic interaction among unknown
components.

Ontology-based systems provide a semantic interoperability based on the
sharing of common concepts, essentially keywords. Smart-tags provide an in-
frastructure for disseminating and handling tags at run-time among autonomous
components. The tag is the support for interactions, however the type of tags
remains limited to numerical or textual values, and do not benefit yet from richer
descriptions based on formal specifications.

The most advanced techniques for realising semantic interoperability are
those based on service-oriented computing, such as self-configuring systems (Sub-
section 2.7), specification-carrying code or B2B interoperability techniques (Sub-
section 2.9). An underlying middleware handles the decoupling of functional
and non-functional formal specifications from services codes; of roles description
from business applications. The middleware seamlessly retrieves corresponding
services and applications based on the specified descriptions.

3.2 Adaptability

In addition to functional adaptability, captured by the above notion of semantic
interoperability, formal methods may prove useful for satisfying non-functional
requirements at run-time, particularly for systems evolving in changing environ-
ments, and needing to constantly adapt themselves.



Dependability. Covering several issues, from exception handling, to resilience
to unexpected environmental conditions, dependability can be dealt with for-
mal specifications. Indeed, as already mentioned, the design by contract favours
exception handling at the level of classes. At a coarser level of granularity, non-
functional requirements such as QoS, constraints, CPU requirements expressed
as formal specifications may serve to guide the component’s execution in order
to maintain the component’s requirement level of functionality. In the techniques
reviewed above, Design by Contract, proof-carrying code, and run-time verifica-
tion techniques allow to detect violations of expected conditions or properties,
and support exception handling. More advanced techniques, such as those based
on service-oriented techniques provide resilience to unexpected environmental
conditions.

Uncertainty. Independently designed and developed components necessarily
interact with unknown software, and necessarily deal with uncertainty in both
the peer components and their environment. Proof-carrying code techniques
allow executing a code only if a proof of correctness has been furnished for
well specified agreed properties. Trust-based systems help components in taking
run-time decisions related to both peers’ or executing environment’s behaviour.
Those decisions are based on observations and experience. Specification-carrying
code supports interaction with unknown software based on formal specifications
only, and not on agreed APIs.

Security Issues. In a world where a high number of components have to
interact together, do not know each other in advance, cannot fully or durably
rely on peers, hosts or servers, a dynamic trust-based management system allows
entities to take decisions on the basis of recent, own or shared, experiences. Such
a framework allows run-time and autonomous adaptation of entities to insecure
situations.

Run-time Code FEvolution. Software that cannot be stopped nevertheless
needs to be updated. Service-oriented computing combined with formal spec-
ifications of component’s requirements and functionality provide a powerful tool
for offering a 24/7 service while performing code changes.

Run-time policies. Individual components or whole workflow processes may
define run-time policies or protocols related to: security, mode of operation,
constraints, etc. Decoupling policies from the code, and having the policies ex-
pressed as formal specifications allows reasoning about the policies, on-the-fly
understanding and checking of those policies, and more importantly allows run-
time modification of the policies. For instance, in eSociety applications, such as
eGovernment services, software is submitted to laws changes. Any change in the
law, affects the way services have to work. For large software as those we can find
in public administration, changing the software code to be compliant with the
new laws, while still offering the service to the citizens, may become an impossi-
ble task. However, if policies are specified independently of the underlying code
which is simply assembled so as to adhere to the policy given a user’s require-
ment, a change in the law turns out to be a change in the corresponding policy,
without any modification of the code. Service-oriented computing techniques



such as self-configuring systems, specification-carrying code or the Web-Pilarcos
middleware are among the techniques that better support the application of
run-time policies through the decoupling of code and specifications provided as
a built-in feature.

4 Applications Domains

Application domains that most likely will benefit the most from approaches
based on the use of formal specifications at run-time are those made of a large
number of autonomous components or devices, evolving in dynamic environ-
ments, and under uncertainty conditions. Among the techniques described in
this paper, service-oriented computing techniques directly support these require-
ments, since the different components are independently equipped with all the
necessary information (described through a formal specification) to interact with
unknown software.

4.1 Ambient intelligence.

Ambient intelligence scenarios envisage devices and software agents, running
in devices, that organise themselves for the wellness of their respective users:
software agents interoperate and share knowledge or experiences, they gather
information (e.g., road traffic), they automatically pay amount of money from
e-purses, they customise rooms lights and temperature, requests for references,
or build user profiles.

These applications are supported by an unobtrusive and invisible technology,
which is able to take decisions, and initiatives, make proposals to the user, and
negotiate. In addition, in order to fully support human beings without overload-
ing them with requests and information, the underlying technology (devices, and
agents) needs advanced means of communication for: understanding each other,
gather and share knowledge, information and experience among each other, en-
sure their own security (data integrity, confidentiality, authentication, access
control), and resources management. In distributed and decentralised environ-
ments, as those in which ambient intelligence systems will evolve, interoperable
policies are closely linked with authorisation policies, or resource management.

Entities evolving in ambient intelligence systems will need to deal with dif-
ferent kinds of information. They are autonomous and not always able to rely
on a central control entity dictating its behaviour. Therefore they must be pro-
vided with means for understanding and adapting their behaviour to changing
situations and environment. Such a technology needs an infrastructure enabling
agents’ mutual understanding, and knowledge sharing for handling interoperabil-
ity, security support, and resource management. Formal specifications provide
an interoperability basis for ambient intelligence systems founded on semantic
information exchange.



4.2 Autonomic Computing.

There is currently a growing interest in biologically inspired systems, not only
from researchers but also from industry. Recent interest by IBM, as part of
their Autonomic Computing [20] program, and by Microsoft, as part of the
Dynamic Systems Initiative, indicates the importance of self-organisation and
self-adaptation for managing distributed resources. Formal specifications pro-
vide solutions addressing self-management of autonomic components. Indeed,
coupled with the corresponding infrastructure, they enhance self-protection by
checking proofs of access control or interoperable compatibility, or to refuse or
accept an interaction with a component that appears to be faulty or malicious.
Based on a provided or collected user profile (expressed as a theory), compo-
nents can self-configure to customise their appearance or behaviour to the user.
Self-optimisation and self-healing are made possible by observation, experiences,
and recommendations that allow, for instance, components to optimise the use
of a pool of printers, or to alert users that faulty printers should be restarted,
or refilled with paper or toner.

4.3 Services

On the one hand Web services represent a first step towards software services
composition through the Web. On the other hand, efforts towards automating
Web tasks have lead to the Semantic Web research works. Combined together,
Semantic Web services are under investigation for allowing automating service
composition on the Internet. Current Semantic Web services architectures rely
on ontology for realising these automation tasks and on specific repositories.
Replacing ontologies with more powerful formal specifications could allow any
individual user to publish its own service on the Web (described through the
specification) in a similar way as today Web pages are published, and any other
system or user to use it (maybe anonymously) on the basis of required properties
matching the ones of the published service. This would give rise to what could
be called " Google-like” services, where instead of searching data, the user or the
underlying software system searches for a particular service on the Web through
a ”Google-like” service browser.

5 Issues

We have identified the following issues related to the use of formal specifications
at run-time.

Content. Functional description encompasses interfaces, signatures, contracts,
operational behaviour. Non-functional descriptions encompass a larger range of
information from QoS to constraints, to policies, to protocols, etc. The richer
the information, the more powerful interactions can be envisaged, but the more
power consuming the computation becomes.



Languages. From the above described approaches, we can observe that lan-
guages for expressing the information vary from simple keywords, to more struc-
tured ontologies, to algebraic specification, to different kinds of logics (temporal
logics, descriptive logics, higher-order logics, etc.), and even to category theory.
Here again the more expressive the language, the more powerful the manage-
ment of the specifications can be, but the more difficult the corresponding auto-
mated tools are. In addition, there is no consensus yet or any emerging formal
specification language allowing powerful reasoning with a reasonable need for
specification processing power.

Specification Checker / Theorem Proving. In addition to the language for
expressing the specification, it is necessary to have run-time efficient tools for
processing them, either specification checkers or theorem provers.

Run-Time Infrastructure. Finally, it is necessary to define a run-time infras-
tructure supporting both the processing of formal specifications and the corre-
sponding code execution. From the above described approaches, solutions seem
to come from service-oriented architectures allowing varying degree of granular-
ity for components (from classes to business applications), as well as a decoupled
processing of the corresponding specifications (functional descriptions, policies,
protocols, etc).

6 Advantages / Drawbacks

Formal specifications and automated reasoning solve interoperability problems:
there is no need for compatible interfaces or exact declarations and queries.
Specifications may express as well non-functional properties, (re)configuration
policies, and interaction protocols allow tackling issues related to dynamic large
scale systems such as adaptability to uncertain environments.

Formal specifications at run-time provide several advantages for run-time ex-
ecution of decentralised autonomous software in general, for ambient intelligence
scenarios and for autonomic computing systems. Among them we can cite inter-
action and interoperability with unknown entities, seamless integration of new
entities and functionalities, possible combination of services, robustness against
errors or failures.

However, there is a need for additional mechanisms and automated tools for
checking the adequacy of a code with its published specification, for discover-
ing errors, and propagating information about erroneous code, for correlating
information and detecting malicious attacks.

In addition, the use of formal methods at run-time is currently slowed down
because the tools (specification checkers or theorem provers) for dealing with
formal methods are not efficient enough for a run-time computation of a program,
or not enough automated (they still need human assistance). However, research
in this field is advancing and we can foresee some advances in the use of formal
methods at run-time.



7 Conclusion

This paper has reviewed different works from different domains and driven by dif-
ferent concerns, but with a common ” conviction” that formal specification can be
helpful if used at run-time: for designing correct software, for guiding executable
software, for composing services and middleware services, as a powerful tool for
autonomic computing, etc. Focus has been given on interactions among indepen-
dently developed autonomous components. Current service-oriented computing
techniques based on a middleware supporting a decoupling of code from speci-
fications, describing functional, non-functional, or contextual information, seem
the more promising for realising future efficient systems. As advocated as well
by [33] in the context of middleware services, formal semantics and reasoning
will most likely be the key to ensure the interactive management of resources
and services, of large-scale interactive systems, all systems that are naturally
exposed to dynamic changing conditions.

The different attempts at using specifications at run-time described in this
paper show an increased interest in this field from different communities. This
area of research is rather young; consequently there is currently no satisfying
efficient solution. Tools dealing with formal specifications are becoming more
powerful; this lets presuppose that the efficient processing of formal specifications
at run-time will soon become possible.

Acknowledgements

This work is supported by Swiss NSF grant 200020-105476/1.

References

1. M. Anlauff, D. Pavlovic, and D. R. Smith. Composition and refinement of evolv-
ing specifications. In Proceedings of Workshop on Evolutionary Formal Software
Development, 2002.

2. A. W. Appel and E. W. Felten. Proof-carrying authentication. In 6th ACM Con-
ference on Computer and Communications Security, 1999.

3. M. Balze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In JEEE
Conference on Security and Privacy, 1996.

4. M. Barnett and W. Schulte. Spying on components: A runtime verification tech-
nique. In Workshop on Specification and Verification of Component-Based Systems,
2001.

5. H. Barringer, A. Goldberg, K. Havelund, , and K. Sen. Rule-based runtime ver-
ification. In B. Steffen and G. Levi, editors, Verification, Model Checking, and
Abstract Interpretation: 5th International Conference, VMCAI 2004, volume 2937
of LNCS, pages 44-57. Springer-Verlag, 2004.

6. L. Bauer, M. A. Schneider, and E. W. Felten. A proof-carrying authorization
system. Technical Report TR-638-01, Princeton University Computer Science,
2001.

7. A. Beaufour. Using Bluetooth-based Smart-Tags for Data Dissemination. In Per-
vasive Computing 2002, 2002.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.
25.
26.

27.

A. Beaufour, M. Leopold, and P. Bonnet. Smart-tag based data dissemination.
In ACM International Workshop on Wireless Sensor Networks and Applications
(WSNA’02), 2002.

U. Bellur and N. Narendra. Towards a Programming Model and Middleware Ar-
chitecture for Self-Configuring Systems. In The First International Conference on
Communication Systems Software and Middleware, 2006.

E. Bodden. A Lightweight LTL Runtime Verification Tool for Java. In J. Vlissides
and D. Schmidt, editors, OOPSLA Companion, pages 306-307, 2004.

V. Cahill and al. Using trust for secure collaboration in uncertain environments.
IEEE Pervasive Computing Magazine, special issue Dealing with Uncertainty,
2(3):52-61, 2003.

G. Di Marzo Serugendo and M. Deriaz. A social semantic infrastructure for decen-
tralised systems based on specification-carrying code and trust. In D. Hales and
B. Edmonds, editors, Socially-Inspired Computing, 2005.

G. Di Marzo Serugendo and M. Deriaz. Specification-Carrying Code for Self-
Managed Systems. In International Workshop on Self-Managed Systems € Ser-
vices, 2005.

D. Drusinsky. The Temporal Rover and the ATG Rover. In SPIN Model Checking
and Software Verification, volume 1885 of LNCS, pages 323-330. Springer-Verlag,
2000.

D. Fensel. Ontologies: A Silver Bullet for Knowledge Management and Electronic
Commerce. Springer, 1998.

K. Havelund and G. Rosu, editors. Proceedings of The Run-Time Verification
Workshop (RV’01). Electronic Notes in Theoretical Computer Science 55 (2).
Elsevier Science B. V., 2001.

K. Havelund and G. Rosu, editors. Proceedings of The Run-Time Verification
Workshop (RV’02). Electronic Notes in Theoretical Computer Science 70(4). El-
sevier Science B. V., 2002.

K. Havelund and G. Rosu. An overview of the runtime verification tool java
pathexplorer. Formal Methods in System Design, 24(2):189-215, 2004.

M. Johnson and C. N. G. Dampney. On Category Theory as a (meta) Ontology for
Information Systems Research. In International Conference On Formal Ontology
In Information Systems (FOIS’01), 2001.

J. O. Kephart and D. M. Chess. The Vision of Autonomic Computing. Computer,
36(1):41-50, January 2003.

L. Kutvonen, T. Ruokolainen, J. Metso, and J. Haataja. Interoperability middle-
ware for federated enterprise applications in Web-Pilarcos. In D. Konstantas, J.-P.
Bourriéres, M. Léonard, and N. Boudjlida, editors, Interoperability of Enterprise
Software and Applications, pages 185-196, 2005.

N. Li, J. Feigenbaum, and B. N. Grosof. A logic-based knowledge representation
for authorization with delegation. In 12th IEEE Computer Security Foundations
Workshop, 1999.

B. Meyer. Eiffel: The Language. Prentice Hall, 1991.

B. Meyer. Applying "Design by Contract”. IEEE Computer, 25(10):40-51, 1992.
B. Meyer. Object-Oriented Software Construction. Prentice Hall, second edition,
1997.

B. Meyer. The grand challenge of trusted components. In ICSE, pages 660-667.
IEEE, 2003.

B. Meyer, C. Mingins, and H. Schmidt. Providing trusted components to the
industry. IEEE Computer, 31(5):104-105, 1998.



28

29.

30.

31.

32.

33.

34.

G. Necula. Proof-carrying code. In The 24th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’97), pages 106-119, 1997.

G. Necula and P. Lee. Proof-carrying code. Technical Report CMU-CS-96-165,
School of Computer Science, Carnegie Mellon University, September 1996.

M. Oriol and G. Di Marzo Serugendo. A disconnected service architecture for
unanticipated run-time evolution of code. IEE Proceedings-Software, Special Issue
on Unanticipated Software Evolution, 2004.

D. Pavlovic. Towards semantics of self-adaptive software. In Self-Adaptive Soft-
ware: First International Workshop, volume 1936 of LNCS, pages 50—-65. Springer-
Verlag, 2000.

0. Sokolsky and M. Viswanathan, editors. Proceedings of The Run-Time Verifica-
tion Workshop (RV’03). Electronic Notes in Theoretical Computer Science 89 (2).
Elsevier Science B. V., 2003.

N. Venkatasubramanian. Safe ” Composability” of Middleware Services. Commu-
nications of the ACM, 45(6):49-52, June 2002.

S. Weeks. Understanding trust management systems. In 2001 IEEE Symposium
on Security and Privacy, 2001.



