
Self-organising Pervasive Ecosystems: A Crowd
Evacuation Example?

Sara Montagna2, Mirko Viroli2, Matteo Risoldi1

Danilo Pianini2, and Giovanna Di Marzo Serugendo1

1 Université de Genève – Rte. de Drize 7, CH-1227 Carouge
{matteo.risoldi, giovanna.dimarzo}@unige.ch

2 Università di Bologna – Via Venezia 52, IT-47521 Cesena
{sara.montagna, mirko.viroli}@unibo.it, danilo.pianini@studio.unibo.it

Abstract. The dynamics of pervasive ecosystems are typically highly
unpredictable, and therefore self-organising approaches are often exploited
to make their applications resilient to changes and failures. The SAPERE
approach we illustrate in this paper aims at addressing this issue by tak-
ing inspiration from natural ecosystems, which are regulated by a limited
set of “laws” evolving the population of individuals in a self-organising
way. Analogously, in our approach, a set of so-called eco-laws coordi-
nate the individuals of the pervasive computing system (humans, de-
vices, signals), in a way that is shown to be expressive enough to model
and implement interesting real-life scenarios. We exemplify the proposed
framework discussing a crowd evacuation application, tuning and vali-
dating it by simulation.

Keywords: pervasive computing, software ecosystems, self-adaptation,
self-organisation

1 Introduction

The increasing evolution of pervasive computing is promoting the emergence
of decentralised infrastructures for pervasive services. These include traditional
services with dynamic and autonomous context adaptation (e.g., public displays
showing information tailored to bystanders), as well as innovative services for
better interacting with the physical world (e.g., people coordinating through
their PDAs). Such scenarios feature a number of diverse sensing devices, per-
sonal and public displays, personal mobile devices, and humans, all of which are
dynamically engaged in flexible coordinated activities and have to account for
resilience when conditions change. Recent proposals in the area of coordination
models and middlewares for pervasive computing scenarios try to account for
issues related to spatiality [10, 12], spontaneous and opportunistic coordination
[1, 7], self-adaptation and self-management [17]; however, most works propose

? This work has been supported by the EU-FP7-FET Proactive project SAPERE—
Self-aware Pervasive Service Ecosystems, under contract no.256873

2

ad-hoc solutions to specific problems in specific areas, and lack generality. The
SAPERE project (“Self-adaptive Pervasive Service Ecosystems”) addresses the
above issues in a uniform way by means of a truly self-adaptive pervasive sub-
strate; this is a space bringing to life an ecosystem of individuals, namely, of per-
vasive services, devices, and humans. These are coordinated in a self-organising
way by basic laws (called eco-laws), which evolve the population of individuals
in the system, thus modelling diverse mechanisms of coordination, communica-
tion, and interaction. Technically, such eco-laws are structured as sort of chem-
ical reactions, working on the “interface annotation” of components residing in
neighbouring localities—called LSA (Live Semantic Annotation).

A notable application of the proposed approach is in resilient crowd steer-
ing applications, in which a crowd is guided in a pervasive computing scenario
depending on unforeseen events, such as the occurrence of critical events (i.e.
alarms) and the dynamic formation of jams. We exemplify the approach in a
crowd evacuation scenario, providing its set of eco-laws and validating it via
simulation of the associated Continuos-Time Markov Chain (CTMC) model.

The remainder of the paper is organised as follows. In Section 2 we give
a brief overview of the SAPERE approach and general architecture. Section 3
examines in detail the language for eco-laws. Section 4 describes the concrete
example of crowd evacuation application, which is then validated in Section 5
by simulation. Related work and conclusions wrap up the article.

2 Architecture

The SAPERE approach is inspired by the mechanism of chemical reactions [20].
The basic idea of the framework is to model all the components in the ecosystem
in a uniform way, whether they are humans perceiving/acting over the system
directly or through their PDAs, pervasive devices (e.g., displays or sensors),
or software services. They are all seen as external components (i.e., agents),
reifying their relevant interface/behavioural/configuration information in terms
of an associated semantic representation called Live Semantic Annotation (LSA).
To account for dynamic scenarios and for continuous holistic adaptation and
resilience, we make LSAs capable of reflecting the current situation and context
of the component they describe. As soon as a component enters the ecosystem,
its LSA is automatically created and injected in the SAPERE substrate, which is
a shared space where all LSAs live and interact. Topologically, this shared space
is structured as a network of LSA-spaces spread in the pervasive computing
system and containing the LSAs of the associated components, each hosted by a
node of the SAPERE infrastructure. Proximity of two LSA-spaces implies direct
communication abilities.

Each LSA-space embeds the basic laws of the ecosystem, called eco-laws,
which rule the activities of the system by evolving the population of LSAs.
They define the policies to rule reactions among LSAs, enforcing coordination
of data and services. LSAs (and thus their associated data and services) are like
chemical reagents in an ecology in which interactions and composition occur via

3

chemical-like reactions featuring pattern-matching between LSAs. Such reactions
(i) change the status of entities depending on the context (e.g., a display showing
information on the nearest exit only when a bystander needs it), (ii) produce
new components (e.g., a composite service coordinating the execution of atomic
service components), or (iii) diffuse LSAs to nearby nodes (e.g., propagating an
alarm, or creating a gradient data structure).

Coordination, adaptivity, and resilience in the SAPERE framework are not
bound by the capability of individual components, but rather emerge in the
overall dynamics of the ecosystem. Changes in the system (and changes in its
components, as reflected by dynamic changes in their LSAs) result in the firing of
eco-laws, possibly leading to the creation/removal/modification of other LSAs.
Thus, the SAPERE architecture promotes adaptivity and coordination not by
enacting resilience at the level of components, but rather promoting a sort of
“systemic resilience”.

3 Eco-law Language

For the sake of readability, we here present the eco-law language informally3. Al-
though in the SAPERE framework LSAs are semantic annotations, expressing
information with same expressiveness of standard frameworks like RDF, we here
consider a simplified notation without affecting the expressiveness of the self-
organisation patterns we describe. Namely, an LSA is simply modelled as a tuple
〈v1, . . . , vn〉 (ordered sequence) of typed values, which could be for example num-
bers, strings or structured types. For instance, 〈10001, sensor, temperature, 28〉
could represent the LSA with identifier 10001, injected by a sensor which cur-
rently measures temperature 28. In writing LSAs and eco-laws, we shall use
typetext font for concrete values, and italics for variables.

An eco-law is a chemical-resembling reaction working over patterns of LSAs.
An LSA pattern P is basically an LSA which may have some variable in place
of one or more arguments of a tuple, and as usual an LSA L is said to match
the pattern P if there exists a substitution of variables which applied to P gives
L. An eco-law is hence of the kind P1, . . . , Pn

r7−→ P ′1, . . . , P
′
m, where: (i) the left-

hand side (reagents) specifies patterns that should match LSAs L1, . . . , Ln to be
extracted from the LSA-space; (ii) the right-hand side (products) specifies pat-
terns of LSAs which are accordingly to be inserted back in the LSA-space (after
applying substitutions found when extracting reagents, as in standard logic-
based rule approaches); and (iii) rate r is a numerical positive value indicating
the average frequency at which the eco-law is to be fired—namely, we model
execution of the eco-law as a CTMC transition with Markovian rate (average

frequency) r. As a simple example, the eco-law 〈10001, a, 10〉 1.07−−→ 〈10001, a, 11〉
fires when 〈10001, a, 10〉 is found in a space, its effect is to increment value 10
to 11, and the rate of its application is 1.0—an average of once per time unit.

3 A formal description, associating an operational semantics to the eco-law language
based on Continuos-Time Markov Chains, is presented in Appendix.

4

A more general eco-law 〈id, a, 10〉 1.07−−→ 〈id, a, 11〉 would work on LSAs with any
identifier.

This simple language is extended with some key ingredients to fit the goals
of our framework. First of all, to allow interaction between different LSA-spaces,
we introduce the concept of remote pattern, written +P , which is a pattern that
will be matched with an LSA occurring in a neighbouring LSA-space (called a re-

mote LSA): for example, 〈id, a, 10〉 1.07−−→ +〈id, a, 11〉 removes the reagent LSA in
a space (called the local space), and injects the product LSA into a neighbouring
space, called the remote space (chosen probabilistically among matching neigh-
bours). Note that when more remote patterns occur into an eco-law, they are all

assumed to work on the same remote space, e.g., P1,+P2,+P3
r7−→ P4,+P5 works

on a local space where P1 occurs and a remote space where P2, P3 occur, and its
effect is to replace P1 with P4 locally, and P2, P3 with P5 remotely.

In order to allow eco-laws to apply to a wide range of LSAs, the argument
of a pattern can also be a mathematical expression—including infix/prefix op-

erators, e.g., +,−,∗,/,min. For instance, 〈id, a, x〉 1.07−−→ 〈id, a, x+ 1〉 makes third
argument of a matching LSA be increased by 1. Finally, among variables, some
system variables can be used both in reagents and products to refer to contextual
information provided by the infrastructure; they are prefixed with # and include
#T which is bound to the time at which the eco-law fires, #D which is the topo-
logical distance between the local space and the remote space, and #O which is
the orientation of the remote space with respect to the local space—e.g., an an-
gle, a north/south/west/east indication, or any useful term like in-front-of,
on-rigth, in-the-same-room.

4 A crowd evacuation application

A public exposition is taking place in a museum composed of rooms, corridors,
and exit doors. The surface of the exposition is covered by sensors, arranged in a
grid, able to sense fire, detect the presence of people, interact with other sensors
in their proximity as well as with PDAs that visitors carry with them.

When a fire breaks out, PDAs (by interaction with sensors) must show the
direction towards an exit, along a safe path. The system has to be resilient
to changes or unpredicted situations, in particular the safe path should: (i -
distance): lead to the nearest exit; (ii - fire): stay away from fire; and (iii -
crowd): avoid overcrowded paths. These factors influence PDAs by means of the
following LSAs:

– The exit gradient: each node contains an LSA with a numeric value indicating
the distance from the nearest exit. These LSAs form a gradient field covering
the whole expo [10]. Over an exit, the gradient value is 0, and it increments
with the distance from the exit. When there are several exits or several paths
towards an exit, the lowest distance value is kept for a node.

– The fire gradient: each node also contains an LSA indicating its distance
from nearest fire. The LSA’s value is 0 at the fire location and increases with

5

the distance from it. It reaches a maximum value at a safe distance from a
fire.

– The crowding gradient: sensors in the expo surface detect the presence of
people and adjust the value in a local LSA indicating the crowding level of
the location. As with exit and fire, this LSA is diffused around, and its value
increases with the distance from the crowded region.

– The attractiveness information: finally, each node contains an LSA indicating
how desirable it is as a position in an escape route. Its value is based on the
values of the previous three, and is used to choose which direction displays
should point to.

4.1 Types of LSAs in the system

There are three forms of LSAs used in this scenario:

〈source, type,max, ann〉, 〈grad, type, value,max, ann〉, 〈info, type, value, tstamp〉

A source LSA is used for gradient sources: type indicates the type of gradient
(fire, exit, and so on); max is the maximum value the gradient can assume;
and ann is the annealing factor [4]—its purpose will be described later, along
with eco-laws. A gradient LSA is used for individual values in a gradient: value
indicates the individual value; and the other parameters are like in the source
LSAs. Finally, an info LSA is used for local values (e.g., not part of a gradient)—
parameters are like in the source and gradient LSAs. The tstamp reflects the
time of creation of the LSA.

4.2 Building the fire, exit and crowding gradients

The sources of the gradients are injected by sensors at appropriate locations, with
the values 〈source, exit, Me, Ae〉 and 〈source, fire, Mf, Af〉. For the crowding
information, we may assume that sensors are calibrated so as to locally inject
an LSA indicating the level of crowding. The actual threshold in number of
people will mainly depend on the sensor arrangement, and should be seen as a
configuration issue. The crowding LSA looks like 〈source, crowd, Mc, Ac〉 and is
periodically updated by the sensor.

As sources are established, gradients are built by the following set of eco-
laws, applying to exit, fire and crowding gradients by parameterising argument
type in the LSAs. First, we define Eco-law 1 that, given a source, initiates its
gradient:

〈source, T,M,A〉 Rinit7−−−→ 〈source, T,M,A〉, 〈grad, T, 0,M,A〉 (1)

When a node contains a gradient LSA, it spreads it to a neighbouring node with
an increased value, according to Eco-law 2:

〈grad, T, V,M,A〉 Rs7−−→ 〈grad, T, V,M,A〉,+〈grad, T, min(V+#D,M),M,A〉 (2)

6

Due to use of system variable #D, each node will carry a grad LSA indicating the
topological distance from the source. When the spread values reach the maximum
value M , the gradient becomes a plateau. Also note that the iterative application
of this eco-law causes continuous diffusion of the LSA to all neighbouring nodes.

The spreading eco-law above may produce duplicate values in locations (due
to multiple sources, multiple paths to a source, or even diffusion of multiple
LSAs over time). Thus, Eco-law 3 retains only the minimum distance:

〈grad, T, V,M,A〉, 〈grad, T,W,M,A〉 → 〈grad, T, min(V,W),M,A〉 (3)

Finally, we have to address the dynamism of the scenario where people move,
fires extinguish, exits may be blocked, crowds form and dissolve. For instance, if
a gradient source vanishes, the diffused values should increase (the distance to
exit increases if the nearest exit is no longer available). However, with the above
eco-laws this does not happen because Eco-law 3 always retain the minimum
value. This is the purpose of the annealing parameter in the gradient LSAs:
it defines the rate of Eco-law 4, which continuously tends to level up gradient
values, encouraging the replacement of old values by more recent ones:

〈grad, T, V,M,A〉 Rann(A)7−−−−−−→ 〈grad, T, V+1,M,A〉 (4)

The Rann rate is directly proportional to A. When a fire is put out, for example,
this eco-law will gradually raise the fire gradient to the point where it reaches the
maximum, indicating no fire. Annealing may introduce a burden on the system,
therefore high annealing values should only be used for gradients that have to
change often or quickly.

4.3 Ranking escape paths: the attractiveness field

Based on exit distance, fire distance and crowding, a location can be ranked
as more or less “attractive” to be part of an escape path. This is done via an
attractiveness value automatically attached to each node by eco-law 5:

〈grad, exit, E,Me,Ae〉, 〈grad, fire, F,Mf ,Af 〉, 〈info, crowd,CR,TS〉 Ratt7−−−→
〈grad, exit, E,Me,Ae〉, 〈grad, fire, F,Mf ,Af 〉, 〈info, crowd,CR,TS〉,
〈info, attr, (Me − E)/(1 + (Mf − F) + k × (Mc − C)),#T 〉

(5)

Coefficient k (tuned by simulation) is used to weight the effect of crowding on
attractiveness. As gradients evolve, older attractiveness LSAs are replaced with
newer ones (T is assumed positive):

〈info, attr, A,TS〉, 〈info, attr,A2 ,TS+T 〉 → 〈info, attr,A2 ,TS+T 〉 (6)

7

4.4 Choosing a direction

Each location contains by default an LSA of the form 〈info, escape, L,TS 〉,
where L is the direction to be suggested by the PDA. In principle, the neighbour
with the highest attractiveness should be chosen, but a more resilient solution
is to tie the markovian rate of eco-laws to the attractiveness of neighbours, so
that the highest probability is to point the best neighbour, with a possibility to
point a less-than-optimal (but still attractive) neighbour:

〈info, escape, L〉, 〈info, attr, A, TS〉,+〈info, attr, A+∆,TS2〉
Rdisp(∆)
7−−−−−−→

〈info, escape,#O〉, 〈info, attr, A, TS〉,+〈info, attr, A+∆,TS2〉
(7)

The rate is proportional to the difference in attractiveness between the node
and its neighbour (∆). The higher is ∆, the higher is the rate. Note that ∆ is
a positive value, hence A + ∆ implies that eco-law 7 only considers neighbours
with a higher attractiveness, i.e., the PDA will not point away from the exit.

4.5 Resilient behaviour

The proposed architecture is intrinsically able to dynamically adapt to unex-
pected events (like node failures, network isolation, exits suddenly unavailable,
crowd formation, and so on) while maintaining its functionality. We will now
discuss a few examples of possible problems and explain how the system reacts
to them.

Single-node failure Most behaviour in this architecture is based on nodes
being able to apply eco-laws and host LSAs. Failure of a node clearly impacts this
behaviour in some measure. A failing node (i.e., disappearing from the system)
results in a physical location where no information for the displays is available,
and where gradient information is not received or transmitted.

If the failing node is a generic one (i.e, no fire or exits at that node) and its
disappearance does not cause network isolation, the impact is somewhat limited.
Gradients will still be transmitted around the broken node, although values
will change. Displays traversing a failing node will not update their direction;
however, they will also never guide people towards a failing node, because it does
not have an attractiveness value; they will rather steer people around the failing
node. This means that functionality is preserved with decreased efficiency (i.e.,
longer paths).

If the failing node is a node containing a fire, the consequences are more
severe: the fire will not be detected. PDAs will still never point the failing node
on fire directly, but they will let people pass near it. One might argue that people
will still see the fire; however, from the point of view of system behaviour, safety
is reduced. On the other hand, it can be assumed that a serious fire would be
detected by more sensors, and that all of them failing at the same time is unlikely.

If the failing node is an exit node, functionality gets a major hit, because
the whole system will lack a fundamental information for display functioning
(the exit gradient). If other exits are available, the system will still guide people

8

towards them (again preserving functionality with reduced efficiency). However,
if the failing node “hides” the only available exit, the system completely fails to
provide useful information. This situation can be tackled by redundant source
nodes near each exit.

Network isolation When a group of failing nodes is the only connection be-
tween two parts of the network, this causes network isolation. There are a few
sub-scenarios to consider. If the isolated section does not include exits, we find
another limitation: the evacuation mechanism cannot work inside that section,
as it is lacking fundamental information. If the section does however contain
exits, it will act as an autonomous system in itself. Efficiency may be reduced
but functionality will still be preserved, with an important caveat: this section
of the network will ignore fires and alarms occurring in the rest of the network.
This may or may not be an acceptable limitation depending on the scenario. For
fires, it could probably be unacceptable. In a general way, however, we would
consider that an isolated part of the network behaving as an autonomous system
is an acceptable fallback. Again, redundancy is desirable for those nodes of the
network that can cause isolation.

Exit unavailability If an exit is suddenly unavailable in the expo, for instance
it is broken and hence it does not open, a sensor could detect this and drop the
source LSA. Because of the annealing mechanism, this causes the gradient value
in each node to converge to the situation corresponding to the unavailability
of that door; namely, a new path toward another exit emerges and affects the
behaviour of all PDAs—people would simply go back to another exit as expected.

Crowd formation While people follow their PDAs towards the nearest exit,
it is possible that a jam forms in front of certain doors or corridors: this is one
of the most perilous, unexpectable situations to experience in crowd evacuation.
The application we set up is meant to emergently tackle these situations by
means of the crowding gradient.

Assume two available corridors exist towards some exit, and from a given
room people can choose to walk through any of them. If one becomes unavail-
able because a jam is forming the crowding gradient would emerge, reducing
attractiveness along that corridor. Accordingly, it is expected that people be-
hind the crowded area start walking back and head for the other corridor, and
people in the room start choosing systematically the path free from crowd, even
if they do not “see” the problem from the room.

5 Simulation

The proposed system is specified by a limited set of eco-laws, equipped with
CTMC semantics. This specification can be used to feed the SAPERE infras-
tructure and be simulated in order to check the model dynamics in advance.

9

In this section we describe the prototype simulator we used, along with some
simulations to validate the general correctness of the proposed system and to
tune some parameter of the model before implementation and deployment.

5.1 The simulator

In order to simulate the scenario described in Section 4, the main requirement
for a simulation engine is to support a computational model built around a set
of interacting and mobile nodes, which autonomously perform internal actions
to aggregate/transform the information they hold. Such actions have the form
of eco-laws that change system state following the CTMC model. Moreover, the
number and position of nodes can change over time to model for instance new
PDAs entering the system and moving around, or nodes breaking down.

Although many works manage to capture complex scenarios like the above
one, we found existing approaches not completely fitting our framework. For
instance, the agent-based model (ABM) [9] is a computational approach which
provides the useful abstractions for modelling some of the mentioned concepts,
i.e., each node can be modelled as an agent that owns an internal behaviour and
interacting capabilities. An ABM is simulated on top of platforms such as Repast
or MASON [15] which provide the user with model specification and execution
services. Unfortunately they do not support the CTMC model, which is a key
element of the eco-laws model.

This is instead typically supported by simulators of chemical systems. How-
ever, the state-of-the-art in this context does not focus on highly mobile networks
of chemical compartments [11]. A good deal of work has actually been moving
towards multi-compartimentalisation: from the single, global solution idea of
e.g. stochastic π-calculus [14], to mechanisms and constructs tackling the multi-
compartment scenario of Membrane computing [13], the Sπ@ process calculus
[18] and Bio-PEPA [5]. The mentioned languages and frameworks are not how-
ever conceived to address systems composed by a huge number of interacting
compartments, and do not support dynamic networks, for the topology of the
system is static.

For the above reasons, in the context of the SAPERE project we are devel-
oping an ad-hoc simulator with the purpose of executing chemical-like, multi-
compartment scenarios resembling pervasive ecosystems, in which the position
and number of nodes can dynamically vary with time as a results of adding, re-
moving and moving nodes in the system. For the sake of brevity, we only sketch
here its basic features.

The behaviour of each node is programmed according to the eco-laws coor-
dination model explained in Section 3. Moreover the concept of reaction in the
classical form of A+B

r−→ C+D is extended, still maintaining the CTMC seman-

tics, into the form c1, . . . , ci
f(k,c1,...,ci,a1,...,aj)7−−−−−−−−−−−−−→ a1, . . . , aj where reactants are a

series of conditions over LSAs in local and remote LSA-spaces, and products are
a series of changes to such LSA-spaces. The markovian rate is computed accord-
ing to a kinetic function f . This model allows us to represent simple chemical
reactions up to complex state transitions such as those modelled by eco-laws.

10

Fig. 1. A simulation run of the reference exposition: three snapshots

The simulator engine is written in Java4 and features: (i) an XML-based,
low-level specification language to structure reactions, which can be used as sort
of byte-code that higher-level specifications can be compiled to; (ii) an internal
engine based on the “Next Reaction Method” (an optimised version of the well-
known Gillespie’s algorithm [8]); (iii) a set of configurable interfaces to show
simulation results visually.

5.2 Simulation setting

We here present simulations conducted over an exposition structured as shown in
Figure 1, where three snapshots of a simulation run are reported: all the people
in the room start moving towards one of the two exists (located at the ends of
the corridor) because of the fire in the top-right corner of the room. Note in
third snapshot that a person is walking in the middle of the corridor, for she was
suggested to go to a farther exit because of the corridor jam at the bottom-right.

Rooms and corridors are covered by a grid of locations hosting sensors, one
per meter in the room, one per two meters in the corridor: such locations are
the infrastructure nodes where LSAs are reified. The maximum values for the
gradients are set to: Me = 30, Mf = 3, Mc = 20. The PDA of each person is
modelled as a mobile node, able to perceive the attractiveness gradient in the
nearest sensor location: accordingly, the person moves in the suggested direction.

Figure 2 shows the gradients of exit, fire, crowding and attractiveness (one
per column) corresponding to the simulation steps of Figure 1 (one step per
row). At t = 0, gradients are level; with time, the gradient self-modify—it is
easy to see the exits, fire and crowds in the respective gradients. The crowding
gradient in the third column changes dynamically during simulation according
to the movement of people. The last column shows the attractiveness gradient,
computed from the other three gradients. Note how the second snapshot shows
an attractiveness “hole” in the middle of the room and in the corridor due to
crowding.

4 The choice of this language, compared to others more standard for simulators like
C++, revealed no significant penalisation in performance.

11

Fig. 2. Gradients for the snaphots in Figure 1. Concentration is the gradient value
normalised to its maximum value.

5.3 Tuning parameters

We chose to tune by simulation two parameters of the model: k (used in the
eco-law computing attractiveness), and a multiplication factor p we applied to
the crowding gradient to control its slope—namely, how far crowding should be
perceived. Different simulations have been performed in order to find the set of
parameters that minimises the time of exit of all the people in the room: the
range of variation of k is [0.1, 1] with a step of 0.1, while the range for p is [0, 20]
with step of 0.5. The smaller is k, the lower is the impact of the crowding in the
computation of attractiveness, so that we expect the crowds not be avoided and
the exit time to grow. The bigger is p, the higher is the crowding gradient slope,
until it becomes a local information that PDAs can perceive only very close to it.
Experiments have been done with 50, 100 and 225 persons in the room and with
a fire in the corner of the room or in the middle, so as to experimentally observe
the impact of parameters in the evacuation outcome of different scenarios. For
each couple of parameters, 10 simulations have been run, considering average
value and standard deviation of the resulting time.

In Figure 3 we show the results we obtained from the analysis of the param-
eters. Only dynamics for k < 0.5 are shown, because the time of exit is much
higher elsewhere, and also because standard deviation becomes much higher
since the system is much more chaotic.

The graphs show that with k = 0 (i.e., if the crowding gradient does not in-
fluence attractiveness) the performance of the system slows down as the number
of persons increases, and the likelihood of crowd formation grows. This result
highlights the impact of considering crowds in resilience with respect to jams.

12

Fig. 3. Results of parameter analysis

For k = 0.1 we obtained the best performance for the system for both simulated
fire positions. Results finally showed that the parameter p does not seem to have
relevant impact on the average exit time in this particular expo.

5.4 Resilience to node failures

Among the many simulations analysing resilience aspects, we focused on the case
in which all nodes experience temporary failures, i.e., they work correctly only for
a percentage of time. We expect the system to still be safe, i.e., be able to drive
people out of the room in reasonable time, in spite of the changes in gradient
values around the broken nodes. The results of simulation with 50, 100 and 225
persons are shown in Figure 4: the time to exit does not significantly increase
even in the case of nodes being failing for 30%-40% of the time, and people are
still able to eventually reach the exit even with 80% of node downtime.

6 Related Works

Chemical-oriented coordination The issue we face in this article can be
framed as the problem of finding the proper coordination model for enabling and
ruling interactions of pervasive services. With LSAs and LSA-spaces we took as
basis the archetypal Linda model, which simply provides for a blackboard or
space with associative matching for mediating component interactions through
insertion/retrieval of tuples. Then, we followed the idea of engineering the coor-
dination space of a distributed system by some policy “inside” tuple spaces. Our
proposal extends these models to include bio-inspired ecological mechanisms,

13

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Percentage of functioning time

Ti
m

e
ex

it
[s

ec
]

50
100
225

Number
of people

Fig. 4. Resilience to temporary node failures

via fine-grained and well structured chemical-like reactions, the eco-laws. This
idea originated from the chemical tuple space model in [19], though with some
notable differences: (i) here we provide a detail notational framework to flexi-
bly express eco-laws that work on patterns of LSAs and affect their properties;
(ii) the chemical concentration mechanisms proposed in [19] to exactly mimick
chemistry is not mandatory here—though it can be achieved by a suitable de-
sign of rate expressions; (iii) the local-remote space mechanism described here
is new; (iv) the way we conceive the overall infrastructure and its applications
goes beyond the mere definition of the tuple space model in [19].

Beside tuple spaces, chemistry has been a source of inspiration for several
works in (distributed) computing and coordination like in the Gamma language
and its extensions [2]. The main features we inherit from this research thread
include: (i) conferring a high-level, abstract, and nature-inspired character to
the language used to program the distributed system behaviour; (ii) providing a
reactive computational model very useful in autonomic contexts. While Gamma
and it extensions (such as HOCL) were exploited in different application con-
texts [2], they originated with the goal of writing concurrent, general-purpose
programming languages. Our approach instead aims at specifically tackling co-
ordination infrastructures for pervasive systems, which calls for dictating specific
mechanisms of diffusion, context- and spatial-awareness.

Situatedness and Context-Awareness Considering the issues of situat-
edness and context-awareness, extensions or modifications to traditional ap-
proaches have been recently proposed to address adaptivity in pervasive en-
vironments. Similarly to our approach, in PLASTIC [1] service descriptions are
coupled with dynamic annotations related to the current context and state of a
service, to be used for enforcing adaptable forms of service discovery. However,
our approach gets rid of traditional discovery services and enforces dynamic

14

and adaptive service interaction via simple chemical reactions and a minimal
middleware.

In many proposals for pervasive computing environments and middleware
infrastructures, the idea of “situatedness” has been promoted by the adoption of
shared virtual spaces for services and components interactions. The pioneering
system Gaia [16] introduces the concept of active spaces, that is active black-
board spaces acting as the means for service interactions. Later on, a number of
Gaia extensions where proposed to enforce dynamic semantic pattern-matching
for service composition and discovery [7] or access to contextual information
[6]. Other related approaches include LIME [12] and TOTA [10]. Our model
shares the idea of conceiving components as “living” and interacting in a shared
spatial substrate (of tuple spaces) where they can automatically discover and
interact with one another. Yet, our aim is broader, namely, to dynamically and
systemically enforce situatedness, service interaction and data management with
a simple language of chemical reactions.

7 Conclusions

This article discussed the SAPERE approach to modeling self-organising and
self-adaptive ecosystems. We briefly discussed the approach and overviewed a
fragment of the SAPERE model and eco-laws language. We gave an example
of application of the approach to model crowd evacuation, and validated the
approach using simulation.

The example we made shows that the SAPERE approach is well-suited to
support generalised descriptions of self-organising behavioural patterns. Through
parameterisation of eco-laws and LSAs, it was possible for example to use the
same set of rules for different gradients. On the one hand this simplifies modeling,
on the other hand it supports scalability and expandability, where new eco-law
applications can be actuated which were unforeseen before. This is especially
important if one does not want to impose closed ecosystems. A further level of
openness can be achieved by semantic matching, which is not described in this
paper for the sake of brevity. This project has just recently started, and these are
the first analyses of concrete scenarios that have been achieved. Perspectives for
the immediate future include performing a larger set of simulations to deepening
resiliency aspects, including larger expo environments, effect of crowd formation
in steering, and so on; analysis, modeling and simulation of further scenarios,
with different types of complexity; a further refinement of the LSA and eco-law
syntax (more readable and user-friendly); and finally, more advanced valida-
tion techniques like model checking, in particular probabilistic symbolic model
checking.

References

1. Autili, M., Benedetto, P., Inverardi, P.: Context-aware adaptive services: The plas-
tic approach. In: FASE ’09 Proceedings. pp. 124–139. Springer-Verlag, Berlin, Hei-
delberg (2009)

15

2. Banâtre, J.P., Priol, T.: Chemical programming of future service-oriented archi-
tectures. Journal of Software 4, 738–746 (September 2009)

3. Busi, N., Gorrieri, R., Zavattaro, G.: On the expressiveness of Linda coordination
primitives. Inf. Comput. 156(1-2), 90–121 (2000)

4. Casadei, M., Gardelli, L., Viroli, M.: Simulating emergent properties of coordina-
tion in Maude: the collective sort case. Electronic Notes in Theoretical Computer
Science, vol. 175(2), pp. 59–80. Elsevier Science B.V. (2007)

5. Ciocchetta, F., Duguid, A., Guerriero, M.L.: A compartmental model of the
cAMP/PKA/MAPK pathway in Bio-PEPA. CoRR abs/0911.4984 (2009)

6. Costa, P.D., Guizzardi, G., Almeida, J.P.A., Pires, L.F., van Sinderen, M.: Situa-
tions in conceptual modeling of context. In: EDOC 2006. p. 6. IEEE-CS (2006)

7. Fok, C.L., Roman, G.C., Lu, C.: Enhanced coordination in sensor networks through
flexible service provisioning. In: Field, J., Vasconcelos, V.T. (eds.) Proceedings of
COORDINATION 2009. LNCS, vol. 5521, pp. 66–85. Springer-Verlag (2009)

8. Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical sys-
tems with many species and many channels. The Journal of Physical Chemistry A
104(9), 1876–1889 (March 2000)

9. Macal, C.M., North, M.J.: Tutorial on agent-based modelling and simulation. Jour-
nal of Simulation 4, 151–162 (2010)

10. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing appli-
cations: The tota approach. ACM Trans. Softw. Eng. Methodol. 18(4), 1–56 (2009)

11. Montagna, S., Viroli, M.: A framework for modelling and simulating networks of
cells. In: Proceedings of the CS2Bio 2010 Workshop. ENTCS, vol. 268, pp. 115–129.
Elsevier Science B.V. (Dec 2010)

12. Murphy, A.L., Picco, G.P., Roman, G.C.: Lime: A model and middleware sup-
porting mobility of hosts and agents. ACM Trans. on Software Engineering and
Methodology 15(3), 279–328 (2006)

13. Paun, G.: Membrane Computing: An Introduction. Springer-Verlag New York,
Inc., Secaucus, NJ, USA (2002)

14. Priami, C.: Stochastic pi-calculus. The Computer Journal 38(7), 578–589 (1995)

15. Railsback, S.F., Lytinen, S.L., Jackson, S.K.: Agent-based simulation platforms:
Review and development recommendations. Simulation 82(9), 609–623 (2006)

16. Román, M., Hess, C.K., Cerqueira, R., Ranganathan, A., Campbell, R.H., Nahrst-
edt, K.: Gaia: a middleware platform for active spaces. Mobile Computing and
Communications Review 6(4), 65–67 (2002)

17. Roy, P.V., Haridi, S., Reinefeld, A., Stefany, J.B., Yap, R., Coupaye, T.: Self-
management for large-scale distributed systems: an overview of the selfman project.
In: Formal Methods for Components and Objects, LNCS No. 5382. pp. 153–178.
Springer Verlag (2008)

18. Versari, C., Busi, N.: Efficient stochastic simulation of biological systems with
multiple variable volumes. ENTCS 194(3), 165–180 (2008)

19. Viroli, M., Casadei, M.: Biochemical tuple spaces for self-organising coordination.
In: Field, J., Vasconcelos, V.T. (eds.) Proceedings of COORDINATION 2009,
LNCS, vol. 5521, pp. 143–162. Springer-Verlag (2009)

20. Viroli, M., Zambonelli, F.: A biochemical approach to adaptive service ecosystems.
Information Sciences 180(10), 1876–1892 (2010)

16

Appendix: The Eco-laws Formal Model

7.1 Abstract Syntax

We model the execution of eco-laws using standard algebraic approaches as in [3],
namely, in terms of a calculus of LSAs, LSA-spaces, and eco-laws; in particular,
we neglect the description of how LSAs are injected or are updated by external
agents, for this is outside the true semantics of eco-laws.

In the definition of the formal model we present here, we let meta-variable σ
range over tuple space identifiers, n over (real) numbers, s over strings (literals),
x over variables.
The syntax of the calculus is expressed by the following grammar:

v ::= n | s Values
L ::= 〈v1, . . . , vj〉 LSA
S ::= 0 | L | (S | S) LSA-Space
a ::= v | x | k | e Argument
k ::= #T | #D | #O System variables
e ::= a+ a | a− a | a ∗ a | . . . Math Expressions
P ::= 〈a1, . . . , aj〉 LSA-pattern
R ::= P | + P reagent/product
T ::= 0 | R | T +T Reagent/product set

E ::= Ti
a7−→ To Eco-law

C ::= 0 | E | 〈S〉σ | σ
n,v
 σ′ | C,C Configuration

An LSA L is a tuple of values, while an LSA-space is a composition (by operator
“ | ”) of LSAs. An LSA pattern P (which will be used to query an LSA-space
for given LSAs) is a tuple of arguments a, which could be values (v), (standard)
variables (x), system variables (k), or any composition of them by standard
mathematical operators. Note an LSA L is a particular kind of pattern P—in
fact, an LSA will be obtained by a pattern after instantiating all its variables and
evaluating all its mathematical expressions. Eco-laws are structured as chemical-
like reactions, where reagents and products are LSA patterns, possibly prepended
by modifier “+” meaning the corresponding LSA is picked in a remote space,
and where reaction rate is an expression evaluating to a positive real number.
Finally, C is a system configuration, which is a composition by operator “,”

of LSA-spaces 〈S〉σ (σ is the space identifier), eco-laws, and space links σ
n,v
 σ′

(meaning space σ′ is connected to σ, at estimated distance n with orientation v).
Note also that eco-laws here are global, that is, all LSA-spaces are “programmed”
with the same set of eco-laws.

As typical in process algebras, we assume operators operators “ + ”, “ | ”, and
“,” are associative, commutative, and absorbs 0, hence they define multisets—
they allow repetitions and order is not relevant.

7.2 Substitution and Evaluation

A substitution θ = [v1/x1, . . . , vn/xn] is a mapping from variables to values.
Each variable x is equipped with a set of values denoted Sort(x), which defaults

17

(I)
Ti

r7−→ To[t/#T, d/#D, s/#O] ::〈S0〉σ ::〈S′0〉σ′ ↪−−→∗ 0
r′7−→ 0::〈S1〉σ ::〈S′1〉σ′

Ti
r7−→ To, 〈S0〉σ, 〈S′0〉σ′ , σ

d,s
 σ′, C

σ,σ′,t,eval(r′)−−−−−−−−−→ Ti
r7−→ To, 〈S1〉σ, 〈S′1〉σ′ , σ

d,s
 σ′, C′

(P) 0
r7−→ P +T ::〈S〉σ ::〈S′〉σ′ ↪−−→0

r7−→ T ::〈eval(P) | S〉σ ::〈S′〉σ′

(P) 0
r7−→ (+P) +T ::〈S〉σ ::〈S′〉σ′ ↪−−→0

r7−→ T ::〈S〉σ ::〈eval(P) | S′〉σ′

(R) P +T
r7−→ T ′ ::〈L | S〉σ ::〈S′〉σ′ ↪−−→T

r7−→ T ′[L/P] ::〈S〉σ ::〈S′〉σ′

(R) (+P) +T
r7−→ T ′ ::〈S〉σ ::〈L | S′〉σ′ ↪−−→T

r7−→ T ′[L/P] ::〈S〉σ ::〈S′〉σ′

Fig. 5. Operational Semantics of Chemical Reactions

to the universe of all values when not otherwise specified; a substitution is valid
if it maps each variable xi to a value vi ∈ Sort(xi). A valid substitution θ can
be applied to a pattern P by notation Pθ, or even to a whole eco-law E by Eθ,
which simply causes replacement of each variable xi with the corresponding value
vi. Naively, we have e.g. 〈x, 1, y〉[2/x, true/y] = 〈2, 1, true〉. By substitution, a
pattern P can eventually become ground, i.e., it includes no more variables:
in particular, this means that its arguments are either values or mathematical
expressions built out of values, as e.g. in pattern 〈1, 2 + 3 ∗ 4, true〉. Given one
such ground pattern P , we let eval(P) be the result of fully evaluating each
argument, which yields a new pattern whose arguments are all values, namely,
it is an LSA—it would be 〈1, 24, true〉 when evaluating the pattern above. The
notation is abused writing eval(a) for the resulting of evaluating a single (ground)
argument a. The definition of evaluation is standard.

We write [L/P] for a minimal substituion θ such that eval(P)θ = L. Due
to the possible intricacy of expressions, it might be the case that the exis-
tence and uniqueness of such a substituion is not guaranteed, so construct
[L/P] has to be seen as a partial function possibly yielding no result. This
operator is used to match an LSA L with a reagent pattern P , and ob-
tain a substitution that can be applied to the remaining part of the eco-
law. As an example [〈1, 2, 3〉/〈x, 2, y〉] = [x/1, y/3]. Due to evaluation of P in
the definition above, and assuming N,M are variables such that Sort(N) =
Sort(M) = R+

0 , we also have [〈1, 2, 3〉/〈N, 2, N +M〉] = [N/1,M/2], whereas
notation [〈4, 2, 3〉/〈N, 2, N + M〉] does not make sense for it would yield the
invalid substitution [N/4,M/− 1].

7.3 Operational semantics

The operational semantics of this calculus is given as a CTMC (Continuous-time
Markov Chains) model, like other stochastic calculi for chemical-like behaviour
[14]. A transition system (C,→, Σ ×Σ ×R+

0 ×R+
0) is defined where transitions

are of the kind C
σ,σ′,t,r−−−−−→ C ′, meaning that system configuration C ∈ C moves

to C ′ ∈ C by executing one eco-law in local space σ ∈ Σ and remote space

18

σ′ ∈ Σ, at time t ∈ R+
0 , and with Markovian rate r ∈ R+

0 —namely the transi-
tion duration is a stochastic variable following negative exponential distribution
with average value 1/r time units. In particular, an LSA-space “executes” by

interpreting this transition system, namely, querying judgment C
σ,σ′,t,r−−−−−→ C ′ by

assuming C, σ and t as input, and σ′, r as output.
The transition relation is defined by the rules in Figure 5. Rule (I) is the

entry-point rule performing the overall job of applying an eco-law Ti
a7−→ To at

time t over local space σ with content S0, remote space σ′ with content S′0,
and provided the two spaces are at distance d and are in relative orientation
s. This rule first instantiates system variables with current time, distance and
orientation, then applies the transition relation ↪−−→ which evolves triples of the
kind Ti

r7−→ To ::〈S0〉σ ::〈S′0〉σ′ , by iteratively simplifying the eco-law and applying

the corresponding side-effects until eco-law turns into 0
r′7−→ 0. At that point, the

new state of LSA-spaces S′0 and S′1 is updated, and the whole transition rate is
eval(r′), since at that point the rate expression will became ground. Note that
as usual by ↪−−→∗ we mean the transitive closure of ↪−−→, namely, successive
application of a sequence of transitions ↪−−→.

All the subsequent transition rules define the semantics of relation ↪−−→,
which is the one managing reagents and products. Rules (P,P) handle the seman-
tics of chemical products, by applying to reactions with empty set of reagents.
Let P be a local product, by rule (P) the transition adds to the local space the
result of evaluating P , and remove P from products of the eco-law—note that
for construction P has to be ground. Rule (P) is similar, but P is added to the
remote space.

Rules (R,R) handle reagents with a similar structure to (P,P). Let P be a
reagent, and L be a matching LSA in the local space: rule (R) drops L, applies
substtitution [L/P] to the eco-law, and removes P from reagents. Rule (R) is
similar, but affects the remote space.

In particular, the reader should note that when more remote LSAs occur
in a firing eco-law (in reagents or products), they are all picked from the same
remote space, probabilistically chosen among all those enabling the eco-law.

