
An Architecture for
Self-Managing Evolvable Assembly Systems

Regina Frei, Bruno Ferreira
Uninova

Caparica, Portugal
regina.frei@uninova.pt, bdf17288@fct.unl.pt

Giovanna Di Marzo Serugendo
Birkbeck College

London, United Kingdom
dimarzo@dcs.bbk.ac.uk

Jose Barata
Uninova

Caparica, Portugal
jab@uninova.pt

Abstract—Agile manufacturing requires high responsiveness at
all levels of a company, but is especially challenging on the shop-
floor level. Evolvable Assembly Systems (EAS) are a solution:
agentified modules can be seamlessly integrated into existing
systems, or removed at any instant. EAS offer a more flexible
solution to automation production, but many system design and
integration tasks are still done manually. Our goal is to make
EAS increasingly self-managing: 1) to easily and quickly produce
a new or re-configured assembly system each time a new product
order arrives or each time a failure or weakness arises in the
current assembly system and 2) to maintain production also under
degraded conditions. This article describes an architecture for
self-managing evolvable assembly systems. It involves on-the-fly
self-assembly of robotic modules, dynamic coordination of tasks
and self-adaptation to production conditions, mainly self-healing
and self-optimisation. The architecture exploits self-description of
modules, monitored modules behaviour and dynamic policies.

I. CHALLENGES IN AGILE MANUFACTURING SYSTEMS

Industrial suppliers of automation technology produce com-
ponents such as electric drives, valves, grippers, or motors.
Their customers from the automotive industry, pharmaceutical
industry, food and package industry, etc. purchase these com-
ponents for building robotic assembly systems in order to
produce specific products for their own clients. Over the years,
the needs of the suppliers’ customers have evolved. In the era
of mass production, customers produced large quantities of an
identical product as fast and as cheap as possible. It was then
worth paying the big investments for custom-made installa-
tions, which would be disposed of once the product was out of
production. Today, the market tends increasingly towards mass

customization, with customers clients individually selecting
from various product options. Customers require high respon-
siveness and the ability to cope with a multitude of conditions.
They increasingly need agile robotic assembly systems, able to
cope with dynamic production conditions dictated by frequent

changes, low volumes and many variants. There is an accrued
awareness among industrial suppliers that industrial systems
need to be quickly changeable, have to follow a Plug&Play
approach, avoiding time- and work-intensive re-programming,
and maintain productivity also under perturbations. Much
attention has been given to the requirement for assembly
systems to be easily reconfigurable or to seamlessly integrate
new components. However, human involvement is still strongly
required, in particular for designing the reconfiguration of the
assembly system, for programming the individual devices, and

for monitoring the production. Altogether, it is an expensive,
error-prone, long and tedious process.

The application of self-* principles to the automation
domain is a research area with the potential to attract a
great industrial interest. It has not received much attention
yet from the self-* community, currently more focused on
P2P systems, mobile ad hoc networks, mobile robots, services
or optimisation problems (e.g. shop floor scheduling). We
envision that modules of an assembly system, selecting each
other, re-programming themselves and working as an ecosys-
tem, will provide reliable assembly systems that dynamically
self-organise to process customised product orders and self-

adapt to ensure production also in degraded modes, rather than
stopping completely in case of perturbations. This will result
in cost-efficient and quickly reconfigurable assembly systems
requiring a minimum of human involvement.

Section II briefly describes the concept of self-managing
evolvable assembly systems. Section III presents the architec-
ture and design elements of these systems. Section IV provides
implementation details. Section V discusses a case study of
dynamic self-assembly of modules and some self-management
scenarios. A discussion of the chosen approach follows in
Section VI. Finally, Section VII presents related work.

II. SELF-MANAGEMENT FOR ASSEMBLY SYSTEMS

An assembly system is an industrial installation that re-
ceives parts and joins them in a coherent way to form a
final product. It consists of a set of equipment items (man-
ufacturing resources or modules) such as conveyors, pallets,
simple robotic axes for translation and rotation as well as more
sophisticated industrial robots, grippers, sensors of various
types, etc. An Evolvable Assembly System (EAS) [1] is
an assembly system which can co-evolve together with the
product and the assembly process. Thanks to tiny controllers
for local intelligence and software wrappers, every module is
an embodied software agent, forming a homogeneous society
with the others, despite their original heterogeneity (nature,
type and vendor). Each module is carrying self-knowledge
information about its physical reality, especially its workspace
(the portion of the space that the module uses when in action
/ that is accessible by the module), its interfaces and its skills.
Skills represent the functionalities that each module is able
to perform. Skills offered by one module are called simple

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
2786

skills; those skills requiring the aggregation of more than
one module (that is, module coalitions), are called composite

skills [5]. A Self-Managing Evolvable Assembly System
is an EAS with two additional characteristics: modules self-
organise to produce an appropriate layout for the assembly
and the assembly system as a whole self-adapts to production
conditions. Recently, we developed a design process for self-
* systems [2] and applied this design process to assembly
systems [4]. This involves a service-oriented architecture,
acquired and updated metadata (e.g. monitored behaviour of
modules) and enforcement of executable policies.

A. Self-* requirements and mechanisms

Creation of the layout. Any new product order triggers
a self-organising process: the modules spontaneously create
coalitions (self-assemble) with suitable partners and select their
position in the assembly system layout.

Task coordination at production time. This includes task

sequencing in which modules coordinate their work according
to the current status of the product being built (indirect commu-
nication by storing the current advancement of the assembly in
a shared place - an RFID attached to the carrier of the product
being assembled); and collision avoidance where modules with
overlapping workspace must maintain a minimum distance to
each other while moving.

Self-adaptation at production time. During production
time, whenever a failure or weakness occurs in one or more
of the current elements of the system, the process may lead
to three different reconfiguration types [7]. Parametrical: the
current modules adapt their behaviour (change speed, force,
task distribution, etc.) in order to cope with the current failure,
possibly degrading performance but maintaining functionality.
Logical: the current modules may be used in a different way,
possibly forming new coalitions. For instance, a robot may take
over additional tasks, which were previously executed by other
modules in order to equilibrate the work-loads. Structural: the
layout may be changed at production time (addition / exchange
/ relocation of modules) and thus trigger a new coalition,
leading to a repaired system.

Resilience to failures and collision avoidance is performed
by modules monitoring their own behaviour or their neigh-
bours’ behaviour. If a module fails during production, or if
there is a change in the product design, coalitions can dynam-
ically change or be (re-)built at any instant, replacing/changing
modules in order to address the failure or the design change.

III. ARCHITECTURE AND DESIGN

Figure 1 illustrates the architecture of our system. The
services are provided by autonomous agents. The architecture
exploits metadata to support decision-making and adaptation,
based on the dynamic enforcement of explicitly expressed
policies. Metadata and policies are themselves managed by ap-
propriate services. Agents, metadata and policies are decoupled

from each other and can be dynamically updated or changed.
Additional services to build the run-time infrastructure en-

compass: a registry/broker that handles the service descriptions

and services requests supporting dynamic binding; an acqui-
sition and monitoring service for the self-* related metadata
(e.g. performance); a registry that handles the policies; a
reasoning tool that matches metadata values and policies, and
enforces the policies on the basis of metadata. Metadata is
either directly modified by components or indirectly updated
through monitoring. Metadata and policies cause the reasoning
tool to determine whether or not an action must be taken.

A. Agents

An assembly system consists of a group of distributed
agents. MRA (Manufacturing Resource Agent): an agentified
module that provides simple skills and has the capability to
participate in coalitions. DCA (Dynamic Coalition Agent):
provides composite skills obtained by the aggregation (self-
assembly) of multiple MRAs. A provided simple or composite
skill is called a service. OA (Order Agent): specifies the
number of products of the same type to produce as well as
the generic assembly plan to follow in order to create these
products. PA (Product Agent): specifies the detailed assembly
plan of the product that is currently being assembled. As the
product assembly progresses along the assembly system, the
PA requests the appropriate services from the various MRAs
in order to perform the different steps on the assembly plan.
WPCA (Work-piece Carrier Agent): transports the product
along the assembly system and allows it to reach the MRAs
executing the desired operations.

B. Metadata

Metadata is data about functionality and performance char-
acteristics, as opposed to data which is treated directly by the
agents. Metadata is stored, published and updated at run-time
(monitoring of the modules) or by the agents themselves (sens-
ing/acting). Metadata types include: (1) self-description of the
modules: skills, interfaces information, location, conditioning,
etc. (see section IV-A for more details); (2) environment related
metadata: e.g. coordination information stored in the RFID of
the product; (3) self-* properties metadata: performance level
of individual modules or coalitions such as speed, precision,
etc., captured by sensors attached to manufacturing resources.
The Agent Machine Interface (AMI) is a specific software
which links the sensors and actuators to the MRAs and updates
metadata according to the sensors readings.

C. Services Registry and Broker

The EAS ontology[11] has been developed, using Protégé-
OWL1. It specifies classes of modules (such as transport or
drilling modules) and their related skills. It also describes
additional shared knowledge such as the nature of the ex-
changed messages, skill composition rules, device constraints
and capabilities.

The ontology agent OntA agent provides controlled access
to the EAS ontology and supports service registration and
retrieval. It acts as a service registry for the MRAs to register
their skills, and as a broker for retrieving requested services.

1http://protege.stanford.edu/

2787

Fig. 1. Architecture for Self-Managing Evolvable Assembly Systems

Once a specific skill is requested, OntA returns the current list
of agents providing the requested skill together with additional
information (interfaces, performance characteristics, etc.).

Fig. 2. OntA interface showing some registered skills

Figure 2 shows an example of MRAs and coalitions reg-
istered with OntA. The Crane1 agent with three registered
skills (the three skills of the actual underlying Crane module):
Pick for being able to seize parts; Place for being able to
release previously seized parts; Transport for being able to
move seized parts. The ’CoalitionDrill’ agent includes two
modules: an agent called MRA Drill which can drill holes of
20mm and 30mm diameter, and another one called MRA Drill

Chuck which holds the drill. The three skills registered for this
coalition correspond to the union of skills provided by the drill
(Drill20, Drill30: drilling holes of 20 or 30 mm) and the drill
chuck (Hold Drill).

D. Policies

Policies come in different categories and apply to different
levels: system-level policies vs. agent level policies (Figure 1).
Guiding policies stand for both high-level goals the system
as a whole has to reach (e.g. drilling holes into 30 pieces)
and for individual components goals (e.g do not get blocked).

Bounding policies prevent the system from going beyond
its limits, which are set by the designer (maximum speed,
minimum quality of products or too many failures), as well as
imposed by the environment (e.g. a particular type of modules
cannot be placed on the lower left corner of the assembly
plan). Coordination policies refer to task coordination (e.g.
scheduling of tasks or overlapping of work spaces). Finally,
sensing/monitoring policies are lower level policies attached
to individual components specifying how to react to on-
going activities in the system. ’If the target position after
a movement has not been reached correctly, take corrective
measure (advance more or less, ask for maintenance). For more
see [4].

E. Enforcement of Policies

The run-time infrastructure is equipped with specific ser-
vices responsible for enforcing higher-level policies, such as
guiding and bounding policies by directly acting on the agents
(e.g. replacing, reconfiguring modules), the metadata values or
the policies. The reasoning engine serves two purposes: firstly,
it allows the system to infer new composition rules whenever a
new type of module is inserted into the ontology; secondly, it
allows the system to infer the action to be performed whenever
a policy applies. Policies are generic, e.g.: ’Replace slow mod-
ule by an equivalent module having a higher performance.’ By
accessing metadata about current performance of the modules,
the reasoning engine can determine which of the available
modules can actually replace the failing one.

IV. IMPLEMENTATION

Figure 3(a) shows how the architecture is being imple-
mented. Each MRA is linked to an individual computer2 which
hosts: a controller that pilots the actual movements of its
associated module; metadata local to the module, such as
performance or precision of the module or self-description (see
below); local (low-level) policies; and the reasoning engine
JESS3 for enforcing the policies through the controller, on the

2this is current practice in automation research
3http://herzberg.ca.sandia.gov/

2788

Fig. 3. a) for every MRA, b) for every coalition, for sub-sets of the system,
and for the entire system

basis of metadata. The language used for writing policies is
OWL, which assures the compatibility with the EAS Ontology.

Figure 3(b) depicts a similar organisation for coalitions
(group MRA-2, MRA-3, MRA-4) and for the whole assembly
system. Coalitions do not have a controller, but have metadata
and policies shared only by the agents in that coalition.
Examples of metadata include performance of the coalition
as a whole, such as how many pieces the CoalitionDrill has
processed in the last 10 seconds. An example of a coalition
policy is: If queuing level of pieces is high, increase coordi-
nated speed. Notice that as coalitions are dynamically created
in response to an incoming Order Agent or a production
condition, the corresponding policies are created or linked to
the coalition on-the-fly. Policies and metadata applying at the
level of the whole system are shared by all agents.

A. Self-describing services

Every module carries an XML-file which contains diverse
information about the module characteristics, limitations and
requirements, as well as some variables such as the location
and the workload. This is crucial to support dynamic coalitions
[5]. The XML-file is saved locally on the MRA’s controller.
It allows the module’s agent to know the module itself,
which is useful when searching for suitable partner modules
and when answering requests from another module, such as
compatible interfaces and dimensions. This limits considerably
the viable combinations of modules and thus prevents from a
combinatorial explosion during the creation of the coalitions.

Figure 4 is the first part of such an XML-file, which is part
of the metadata stored in the computer attached to the module
(see Figure 3(a)). The file shows the details of the MRA
Drill Chuck. Each module has a unique ID. The ModuleName

describes the type of the module, it is the same for every
module of the same type. The Description in natural language
is relevant for the human user only. The SerialNumber is
uniquely assigned to the module by the supplier and follows
the supplier’s format. Skill contains the skill name and various
items which depend on the skill type in question. For the drill
chuck, it includes the diameter of the drill it can hold, the

maximal depth, the maximal rotations / minute, the workplace
(i.e. the absolute position where the module is placed). The
Requirements specify the need for additional skills (such as
Hold Drill Chuck, Rotate 2000 and Move vertical) which have
to be provided by a partner module, as well as the minimal
time necessary to execute the skill. The second part of the
XML-file is generic for all modules and assembly parts and
defines characteristics such as the physical size of the module
and its centre of gravity.

Fig. 4. Part of an XML-file showing examples of module specifications.

V. CASE STUDY

The MOFA [5] system at Uninova, Portugal, an industrial-
like system used for educational purposes, was used for this
study. It consists of various modules that can be plugged and
unplugged: robot stations, conveyors, tools, buffers, magnetic
crane, etc. A small case study illustrates how a dynamic
coalition to drill holes is formed. Notice that we are not
concerned by performance measurement during production
time; our interest is on the dynamic reconfiguration of the
assembly system.

A. Drilling Service Composition

An Order Agent requires a hole to be drilled and thus
requests this service. For this purpose, a coalition is formed.
Figure 5 shows the UML-sequence corresponding to the case
study, where the OA sends a request message to OntA asking
for the skill Drill. The OntA answers that MRA Drill can
provide this, and the OA requests this agent to participate.
MRA Drill analyses if there is some further requirement for
the requested action. If not, the agent would communicate that
it can perform the action and send the location where it works.
In our case, there are some further requirements: MRA Drill
needs to be hold by a drill chuck. MRA drill therefore launches
a Coalition Agent and provides it with the relevant information.

2789

The newly created coalition initially contains one agent
only: the agent at the origin of the coalition (i.e. the one
really able to perform the requested skill, with the help of
the other agents). The CA then analyses the requirements and
asks OntA who can perform those skills. According to the
answer from OntA, the coalition asks the indicated agents to
join (and eventually asks the user to bring the required module
to the corresponding location, joining them physically). The
MRA drill chuck, in Figure 5 called ’MRA Hold’, as this
is its main functionality, then informs the coalition about its
location, requirements, limitations, and other available skills
(all the potentially relevant information), just as the MRA Drill
did before.

The coalition agent repeats the step of analysing if there
is any open requirement. In our case, the drill chuck needs
to be rotated and moved vertically in order to drill a hole.
The procedure of calling further MRAs to join the coalition
continues as explained before. Once all the coalitions members
have joined and all the requirements are satisfied, the final
steps in the self-assembly of services are the skill registration
in the ontology and sending an inform message to the product,
indicating the coalitions’s workplace (the place where the
MRA drill performs its action). The coalition is now ready
to work. During production, when the product arrives at the
workplace of the coalition, the Product Agent requests the
service to be executed and the coalition agent starts the
working process.

Fig. 5. UML sequence showing how services self-assemble.

B. Rules for self-assembly

The requirements for additional partners’ skills, which every
module carries, include also specifications concerning the
interfaces, general compatibility, etc. Still, several modules
may suit the requirements and be available. In this case, how
to choose the next module which will join the chain?

At the moment, a rule about lower cost is applied for
this purpose (e.g lower power consumption, minimum time to

perform operation). Other rules can be added in the same way.
Rules could for instance tell the agent to choose the module
which has already been used successfully before, or choose
the newest one. Such rules can be generally valid, or only for
specific cases, or only certain modules.

Whenever a module joins the coalition, it may bring further
requirements, and the coalition grows. Depending on the
choices made, a chain may get shorter or longer, be more or
less complicated to realise physically. Some module combina-
tions may lead to a dead end because they need modules which
are not available any more. In other cases, a module asked to
join may refuse - on grounds of another reservation, a planned
maintenance stop, or a previous problematic collaboration. As
a consequence, the last service in the chain will announce a
failure, and the concerned assembly options are abandoned in
favour of others.

During production, in case one of the services experiences
a failure (for instance, a module is blocked), the most im-
portant criterion for choosing a suitable replacement could be
minimising the effort of change.

Self-(re-)configuration: At production time, a new layout
must be created whenever a new product order with different
assembly operations arrives. Sometimes, an existing layout
can be adapted to fit the new order. The layout formation
is progressively reached through a series of service requests
including the needed 3D movements (x/y/z dimensions micro-
instructions). This follows the procedure described in subsec-
tion V-A. Endless reconfiguration iterations are avoided by a
time-out policy which alerts the user of a problem when no
solution could be found within a certain time range.

Self-repair: When a robot experiences problems and asks
for maintenance, as a temporary solution, the robot agent or
the coalition agent it belongs to asks another robot to take over,
which means that it takes the previous robot’s place in the self-
assembled chain. The new robot must make sure that it fits,
and will otherwise refuse to collaborate. In such a case, the
coalition agent continues the search for suitable replacement,
and if there is none, it will make a request for re-configuration
of the layout.

Self-adaptation: In case of a small product design change,
which only lightly touches the assembly process, there is no
need for complete layout re-configuration. Consider the case
of a previous Order Agent requiring the skill Drill30, while the
new design requires a hole of 20mm only. If one of the MRAs
in the layout has two skills both Drill30 and Drill20, there
is no need for physical change. During production time, PAs
will request the service Drill20 instead of Drill30. If no MRA
can offer the Drill20 service, the coalition offering Drill30 will
adapt to the new requirement. It will request a Drill20 tool and
integrate this new tool into the existing coalition. The guiding
policies for choosing the options with less changes / less effort
apply.

2790

VI. DISCUSSION

A. No global knowledge

None of the elements involved in the self-managing as-
sembly systems as described in this paper have global or
complete knowledge of the system’s goals and the ways to
achieve it. Every MRA knows itself and some of its peers.
It can communicate with other agents, but does not know
what the system is supposed to achieve. The EAS Ontology
does not know this, either. It only contains terms and their
relations to one another. OntA knows which agents are in the
system, and knows which MRA can perform which skills. It
has no knowledge of the product to build. Each Product Agent
knows what assembly actions should be executed, and is able
to request the necessary services from other agents, but does
not know anything further. Order agents know how to assemble
the parts in a generic way, only (e.g. part 1 screwed with part
2), but do not know the actual details of the assembly (which
robot will execute which movement).

B. Characteristics of self-managing assembly systems

The Order Agent drives the dynamic organisation of the
manufacturing resources; there is no centralised planning or
allocation of resources. The generic assembly plan is pro-
vided by the OA; it does not dependent on actual layout
details. Manufacturing resources spontaneously self-assemble
in response to the incoming product order and progressively
fill a detailed product assembly description. The assembly
system that will ultimately produce the requested products is
dynamically designed (dynamic positioning and selection of
interacting resources) through self-organisation. The assembly
system can absorb unanticipated product designs and unan-
ticipated changes of resources. Thanks to the agentification
of modules and software wrappers, manufacturing resources
are seamlessly integrated or removed. Production occurs with
decentralised and distributed control. Self-knowledge and self-
monitoring of the MRAs keeps the system in good conditions
at production time. Agent communicate with their neighbours
to fulfil the assembly tasks.

VII. RELATED WORK

Other concepts which currently address the needs of Mass
Customization industry include the following: Flexible and
Reconfigurable Manufacturing Systems [3] mainly focus on
machining tasks, not on assembly. Holonic Manufacturing
Systems [12] concentrate on morphologic aspects (every item
is a whole as well as part of a bigger whole). The Archi-
tecture for Agile Assembly and its programming model [6]
is probably one of the approaches which comes closest to
providing a solution for reconfigurability in assembly sys-
tems. Dynamic coalitions in manufacturing MAS are based
on central databases where agent relations are stored [10].
Heterogeneous multi-robot coalitions can be built on the basis
of a schema approach [9]. A schema defines the function of a
component, the inputs it takes, and the outputs it provides. By
joining a schema with suitable other schemas, entire networks
can be generated. ’Plug’n’Produce’ can be achieved thanks

to process-oriented programming [8] instead of device-level
programming. This includes forming composite skills out of
simple ones, describing devices in detail, using Ontologies and
facilitating user interaction.

VIII. CONCLUSIONS

This article presented an architecture for providing self-
management in Evolvable Assembly Systems. Manufacturing
resources self-organise to create the assembly system that will
process product orders and self-adapt during production for
maintaining acceptable levels of production or quality. The
work described in this article is being implemented at Uninova,
Portugal. Videos showing the demonstrator in operation are
online4. Further steps include definition of an EAS policy
language, the integration of policies and metadata for rein-
forcing the self-organising and self-adapting aspect of EAS,
as proposed in [4].

ACKNOWLEDGMENTS

The authors thank Antonio Amado, Jose Belo and Nuno
Pereira, whose M.Sc. projects contribute to the implementation
of the EAS Ontology and the research related to policies and
metadata in EAS. Regina Frei is supported by the Portuguese
Foundation for Science and Technology (PhD grant SFRH /
BD / 38608 / 2007). The authors also thank the EU-funded
coordination action Perada5 for financially supporting travel
exchange between Uninova and Birkbeck College.

REFERENCES

[1] J. Barata. Coalition based approach for shopfloor agility. Edições Orion,
Amadora - Lisboa, 2005.

[2] G. Di Marzo Serugendo, J. Fitzgerald, A. Romanovsky, and N. Guelfi.
Metaself - a framework for designing and controlling self-adaptive and
self-organising systems. Technical report, Computer Science and Infor-
mation Systems, Birkbeck College, 2008.

[3] H. A. ElMaraghy. Flexible and reconfigurable manufacturing systems
paradigms. Int. Journal of Flexible Manufacturing Systems, 17(4):261–
276, 2006.

[4] R. Frei, G. Di Marzo Serugendo, and J. Barata. Designing self-
organisation for evolvable assembly systems. In IEEE Int. Conf. on Self-
Adaptive and Self-Organising Systems, Venice, Italy, 2008.

[5] R. Frei, B. Ferreira, and J. Barata. Dynamic coalitions for self-organising
manufacturing systems. In CIRP Int. Conf. on Intelligent Computation in
Manufacturing Engineering, Naples, Italy, 2008.

[6] R. Hollis, A. A. Rizzi, H. B. Brown, A. E. Quaid, and Z. J. Butler.
Toward a second-generation minifactory for precision assembly. In Int.
Advances Robotics Program Workshop on Microrobots, Micromachines
and Microsystems, Moscow, Russia, 2003.

[7] N. Lohse. Towards an ontology framework for the integrated design of
modular assembly systems. PhD thesis, University of Nottingham, 2006.

[8] M. Naumann, K. Wegener, and R. Schraft. Control architecture for robot
cells to enable Plug’n’Produce. In Int. Conf. on Robotics and Automation,
pages 287–292, Roma, Italy, 2007. New Orleans: Omnipress.

[9] L. E. Parker and F. Tang. Buidling multirobot coalitions through
automated task solution synthesis. Proc. IEEE, 94(7):1289–1305, 2006.

[10] M. Pechoucek, V. Marik, and O. Stepankova. Coalition formation in
manufacturing multi-agent systems. In Int. Conf. on Database and Expert
Systems Application, London, UK, 2000.

[11] L. Ribeiro, J. Barata, M. Onori, and A. Amado. Owl ontology to
support evolvable assembly systems. In 9th IFAC Workshop on Intelligent
Manufacturing Systems, Szczecin, Poland, 2008.

[12] P. Valckenaers and H. Van Brussel. Holonic Manufacturing Execution
Systems. CIRP Annals - Manufacturing Technology, 54(1):427–432, 2005.

4http://www.archive.org/details/DynamicCoalitions-Video
5http://www.perada.org

2791

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

