
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS 1

Self-Organizing Assembly Systems
Regina Frei and Giovanna Di Marzo Serugendo, Member, IEEE

Abstract—This paper addresses a vision of future manufactur-
ing systems, which are highly agile, user friendly, and increasingly
based on autonomous components. Evolvable assembly systems
(EASs) provide a solution for agile assembly, including a concept
for reconfigurability with modularity at the mechanical as well as
at the control level. It takes the multilateral relations among prod-
uct, processes, and systems into account and allows the systems
to evolve together with the requirements. Self-organizing assem-
bly systems (SOASs) are a further development of EAS, allow-
ing them to play an active role in layout design and production.
This paper focuses on the self-organization mechanisms for the de-
sign of SOAS, as well as the system architecture, including agents
and self-knowledge. Agentified modules participate in their own
arrangement in the system layout and monitor themselves dur-
ing production. Policies and metadata for self-management during
production are described, and performance metrics for agility sce-
narios are indicated.

Index Terms—Agile manufacturing, assembly systems, multi-
agent systems.

I. INTRODUCTION

AGILE manufacturing is one of the big challenges nowa-
days and will be an even bigger challenge in the future.

As product life cycles shorten, market dynamics increase, and
the economic situation deteriorates, the manufacturing industry
needs to improve its competitiveness. It may help for automa-
tion to become sustainable and accessible to small and medium
enterprises as well. Companies must be highly responsive to
changing conditions, fluctuating demands, and individual cus-
tomer wishes. Due to the well-known factors of high salaries in
the Western Hemisphere, automation is the only alternative to
offshoring entire industries. However, automation in its tradi-
tional form cannot cope with today’s and tomorrow’s challenges.

Dedicated production lines are optimized for a single spe-
cific product, or at the most for a specific product family, but can
hardly be adapted to new and frequently changing requirements.
Flexible manufacturing systems [1]–[3] incorporate a prede-
fined set of capabilities that makes them both expensive and
often overly sophisticated, which means that they are difficult to
manage. The risk of paying for unused and wrong capabilities
is high. Reconfigurable manufacturing systems (RMSs) [4]–[6]

Manuscript received June 16, 2010; revised September 14, 2010; accepted
November 21, 2010. This paper was recommended by Associate Editor J.
Lazansky. This work was supported by the Portuguese Foundation for Sci-
ence and Technology under Grant SFRH/BD/38608/2007 and by the European
Union-funded Coordination Action PerAda (http://www.perada.org) for travel
exchange between Portugal and the U.K. R. Frei currently receives a Fellowship
for Prospective Researchers from the Swiss National Science Foundation.

R. Frei is with the Intelligent Systems and Networks Group, Department of
Electrical and Electronic Engineering, Imperial College London, London SW7
2BT, U.K. (e-mail: work@reginafrei.ch).

G. Di Marzo Serugendo is with the University of Geneva, CH-1211 Geneva,
Switzerland (e-mail: dimarzo@dcs.bbk.ac.uk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCC.2010.2098027

are already closer to coping with the need for agility at the shop-
floor level because they are modular and allow the engineer to
add/remove functionalities according to the needs. Recent ef-
forts in the area of RMS do, however, often focus on reconfig-
urable machines [7] and the evolution of product characteris-
tics [8]. A suitable control concept seems to be missing so far.
Evolvable assembly systems (EASs) [9], [10] offer a solution,
which includes finely granular modules with local intelligence
and a multiagent control system. Product class characteristics
are closely related with assembly processes and assembly sys-
tems. In the context of EAS, evolvability refers to a system’s
ability to continuously and dynamically undergo modifications
of varying importance: from small adaptations to big changes.

Our proposal for self-organizing assembly systems (SOASs)
[11]–[13] takes the EAS paradigm further by letting the sys-
tems play an active role and making systems more autonomous,
and thus, more user friendly. The system is at the service of its
user, similar to intelligent houses, which provide their inhabi-
tants with all kinds of services due to home automation [14].
An SOAS actively participates in its own design at creation
time: given a specified product order provided in input, the sys-
tem modules select suitable partner modules and choose their
own position in the assembly system layout. The appropriate as-
sembly system and corresponding movements emerge from the
self-organization process among the different modules in the as-
sembly system. The self-organization (SO) and self-adaptation
(SA) process does not stop at the layout formation. During
production time, the modules self-manage: whenever a failure
occurs in one or more of the modules, the SO process may lead
to two different outcomes: the current modules adapt their be-
havior (change speed, force, task distribution, etc.) to cope with
the current failure, potentially degrading performance but main-
taining functionality, or may decide to trigger a reconfiguration
leading to a repaired system. The actual decision will depend
on the situation at hand and on specific production constraints
(cost/speed/precision).

A. Contributions of this Paper

SOASs are situated in a very interdisciplinary field; research
from manufacturing engineering, microengineering, mechan-
ical, electrical and electronic engineering, computer science,
distributed systems, SO, and formal methods comes together.
This paper focuses on the creation of SOASs; it summarizes
the general concept, the creation time mechanisms, and the pro-
duction time architecture. This paper provides an overview of
the previously published work and refers to suitable articles
for details on specific topics: design [11], architecture [15], cre-
ation time mechanisms and execution of formal specifications in
Maude [16], production time policies and metadata [17], partial
implementation advances [12], [18], and overall view [13].

1094-6977/$26.00 © 2010 IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS

B. Organization of this Paper

Related work is presented in Section II, and useful concepts
for SOAS in Section III. Section IV gives an overview of SOAS,
clarifies the requirements, and introduces the running exam-
ple. The agents and self-knowledge are detailed in Section V.
Mechanisms for SO and self-management are illustrated in Sec-
tion VI. Section VII explains agility scenarios and performance
parameters, and Section VIII concludes this paper.

II. RELATED WORK

Holonic manufacturing systems [19], [20] concentrate on
morphologic aspects (every item is a whole as well as part
of a bigger whole). ADAptive holonic COntrol aRchitecture for
distributed manufacturing systems (ADACOR) [21], [22] com-
bines holonics with the idea of SO by using pheromones. At
their inception, holonic systems were strongly biologically in-
spired; however, with time, the approaches have become mainly
top–down, and thus, less suited for quick changes.

The architecture for agile assembly (AAA) [23] and its Euro-
pean equivalent, i.e., the MiniProd [24], [25], are probably two
of the approaches that come closest to provide a solution for
reconfigurability in assembly systems, but do not consider the
mutual interrelations among product, processes, and systems,
which are important for evolvability [9]. AAA and MiniProd
are made for mini assembly and only suitable for a limited set
of operations.

Realized by partially the same researchers as MiniProd, the
project SIARAS [26] (short for skill-based inspection and as-
sembly of reconfigurable automation systems) intends to auto-
mate part of the usually manual reconfiguration work in as-
sembly systems. Similarly to SOAS, SIARAS is also ontology
based. It analyzes the process requirements, specified as work
flows, and makes suggestions for corresponding system config-
urations. CAD data of the parts and simulations help to answer
geometrical questions, such as the reachability of certain points
and potential collisions. The system can automatically cope with
changes in the product, the processes, and the equipment. Dif-
ferent from SOAS, the SIARAS approach is centralized and
does not consider local intelligence.

The software component in an agent-based automation ar-
chitecture can be considered as a world model repository [27],
containing a symbolic representation of the automation agent
and its relations to its environment.

The use of ontologies in manufacturing has been thoroughly
discussed and diverse proposals were made [28], [29]. An
ontology-based reconfiguration agent [30] uses knowledge from
an ontology to automate reconfiguration and avoid human in-
tervention. The agent reasons about the current system as well
as the new requirements and then decides if reconfiguration is
necessary. However, in our proposal, there is no single agent,
which reasons and decides; reasoning is distributed, and adap-
tion happens locally.

The Pabadis [31] control architecture for plug & participate
is based on distributed intelligence, a manufacturing ontology,
a first embedded real-time agent platform for control, and a new
generation of radio-frequency identifications (RFIDs). Having

parallels with SOAS, Pabadis is focused on a higher level inside
the manufacturing company, more at the level of production
management [enterprise resource planning (ERP)].

Multiagent systems are increasingly used for projects in in-
dustry [32], [33], as their application to manufacturing has been
studied for over two decades. Nevertheless, further efforts are
still necessary to make them more accessible for industry and
to link them with other industrial systems.

As for the shop-floor design, automatic procedures, to help
the planning engineer define the shop-floor layout [34], [35],
use CAD representations of robots and parts. The flow between
generic workstations [36] determines their arrangement, which
can be serial, parallel, or consist of any hybrid combination.
However, workstations with varying skills were not taken into
account. This approach considers that the assembly sequence
can be chosen in function of the layout, whereas with SOAS,
we assume that the assembly sequence is given.

Diverse types of shop-floor layouts (functional, cellular, dis-
tributed, hybrid, etc.) and corresponding performance metrics
are compared in [37]. Their reconfigurable layout type, where
the resources can be easily moved around in the shop floor, is
quite inline with the distributed nature of EAS.

Reinforcement machine learning helps determine whether a
shop-floor layout is feasible or not [38]. The suggested simula-
tion model takes into account the arrival rate of the items, the
cycle times, and the workstation capacities but does not con-
sider the different types of processes, which may be required
for different work steps.

Overlapping decomposition [39] is a system-theoretic ap-
proach to modeling and analyzing the performance of complex
manufacturing systems. The layout is decomposed into serial
production lines, which overlap at the beginning and the end
of the line. Assembly, parallel, rework, feedforward, and scrap
operations can modeled.

III. CONCEPTS AND ASSUMPTIONS

A. Assembly Terminology

A product is composed of parts assembled in a specified
way, either by human hands or by robots in an assembly system
[11], which is an industrial installation able to receive parts
and join them in a coherent way to form the final product. An
assembly system consists of a set of equipment items (modules),
such as conveyors, pallets, simple robotic axes for translation
and rotation, as well as more sophisticated industrial robots,
grippers, sensors of various types, etc.

B. Agentified Modules and Services

Both in EAS and SOAS, each module or manufacturing com-
ponent is associated with a software agent, consisting of an
abstraction of the component including its functionalities and
interaction skills. In this way, every agentified module can offer
its services to other agents and request theirs. Agents which dy-
namically collaborate form coalitions [18] and offer composite
skills, based on the simple skills, which each module contributes.
Agentified modules can be seen like the members of a swarm;

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FREI AND SERUGENDO: SELF-ORGANIZING ASSEMBLY SYSTEMS 3

Fig. 1. SOAS. (a) Overview of the system including most relevant components. (b) SADT representation.

their coordination can be based on similar strategies, such as
“pursue your local goals, keep your behavior in sync with your
neighbors, and comply with the system’s rules.” Even though
their mechanical properties are diverse, from a software point
of view, they have similar or identical characteristics. They can
spontaneously participate in a dynamic collaboration or with-
draw from it, without disturbing the peers. Interaction is based
on local rules.

C. Time Terminology

In the context of SOAS, we discern two phases in the life
of an assembly system: At creation time,, the layout is being
created by the agents as a virtual concept, and then, physically
built by the user. At production time, an SOAS is assembling
product items (software and mechanical modules are running).
Creation time and production time may also overlap or occur
concurrently in different parts of the same system; the concept of
SOAS previews that the systems coevolve with the requirements,
and thus, never become outdated.

D. Working Assumptions

We consider the following working assumptions reasonably
realistic and useful for SOAS (for the full list, see [13]): Sys-
tem modules are versatile (can be used in different contexts)
and work with high precision and repeatability. Each module
disposes of various types of suitable sensors for diverse moni-
toring purposes. EAS and SOAS are open systems. New mod-
ules/agents may join at any instant, but there are no malicious
attacks or undesired intruders that threaten our systems. The
rules for SO and policies for self-management rely on ontolo-
gies [12], [40].

E. System Autonomy and User Friendliness

User-friendly systems should be easy to handle, also for non-
specialized operators. This means that a certain degree of sys-
tem autonomy is required. Manual (re)programming needs to be
gradually reduced, as it requires specialist knowledge; select-

ing options proposed by the system is much more convenient
and also feasible for usual operators. Nevertheless, system au-
tonomy is a highly controversial issue in industry. At the same
time, it is also very promising. As a general measure, it has to
be ensured that the user never loses the ultimate control. The
degree of autonomy needs to be variable [41] so that the user
can modify it at wish (e.g., make the system to find solutions
and ask the user for confirmation before execution).

F. Emergence in SOAS

Emergence, like autonomy, is a controversial topic in indus-
try. Some of the emergent phenomena will be favorable to the
accomplishment of the system’s task and have considerable po-
tential for advanced system behaviors, such as the emergence of
complex capabilities out of simple ones. An example is the clas-
sical pick & place mechanism: There are many different ways of
putting together a gripper with translation/rotation axes, but not
all of them lead to the desired functionality. Favorable emergent
phenomena could and should be exploited. Others may be less
adapted, disturbing, or even harmful: e.g., system integration is
supposed to function without unexpected symptoms. In nature,
unsuccessful properties will be eliminated by natural selection.
Such a mechanism is not viable in manufacturing environment:
Harmful behavior cannot be allowed at any moment, and there-
fore, suitable control and safety mechanisms are needed. For
further discussion, see [13].

IV. SELF-ORGANIZING ASSEMBLY SYSTEMS OVERVIEW AND

RUNNING EXAMPLE

A. Overview

Fig. 1(a) illustrates creation time, production time, and the
relevant system components, using a system analysis and design
technique (SADT) inspired representation, as shown in Fig. 1(b).

Creation time: At the core of the system is a self-organizing
incremental and iterative process (modeled according to the
chemical reaction model), controlled by creation time rules and
supported by the ontology [12], [40].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS

Inputs to this creation time process are as follows.
1) The generic assembly plan (GAP), which specifies the as-

sembly tasks in an abstract way, independent from which
modules are going to execute the tasks. The GAP is ex-
plained in Section V-D1.

2) All the available modules as registered in the ontology.
These modules will compose the layout. They offer skills,
and those suitable for the tasks to be execute will react
with the tasks and form coalitions with partner modules to
offer composite skills according to the task requirements.

3) The EAS ontology, which contains all necessary knowl-
edge about assembly concepts, processes, modules, parts
and their relations.

4) User preferences expressed as policies, for instance, the
preference for a linear layout, or the use of a minimal
number of modules.

The outputs are 1) the layout (to be built by the user accord-
ing to the results of the self-organized process and the user’s
selection, as explained in Section IV-C1) as well as a virtual
representation of the layout and 2) the layout-specific assem-
bly instructions (LSAI), explained in Section V-D2, which the
modules derive from the GAP according to rules and taking into
account their own characteristics.

Production time: The output of the creation time process
is the input of the production time process. This process is
controlled by production time policies (see Section VI-C), which
are enforced with a reasoning engine,1 and leads to the finished
products at the end, which represent the output. If necessary, it
also triggers system reconfiguration, which restarts the creation
time process, taking as additional input the information about
the current state of the system and its problems/failures.

B. SOAS Requirements

Requirements, which follow a self-* approach are called
self-* requirements within the context of our paper. They are
classified according to the life-cycle phase of the system.

1) Creation Time Self-* Requirements: When a product or-
der arrives in the system, a suitable shop-floor layout needs to
be built on the basis of the available system modules.

a) Creation of the layout (Requirement 1): Any new GAP
triggers an SO process, leading to the self-selection of mod-
ules and their coalition formation. The modules and coalitions
arrange themselves in the shop floor, and thus, a layout is cre-
ated. If a layout already exists, it may be adapted parametrically,
logically, or structurally [13], [40].

b) Transformation of the GAP into the LSAI (Requirement 2):
Once the layout is formed, the GAP needs to be transformed
into layout-specific assembly instructions, which the modules
execute to assemble the product.

2) Production Time Self-* Requirements: During the pro-
duction execution, the modules and coalitions coordinate their
actions and take care of themselves and their neighbors.

a) Task coordination (Requirement 3): Tasks sequencing is
done according to the LSAI. Modules coordinate their work

1For instance with JESS, http://www.jessrules.com.

Fig. 2. Adhesive tape roller dispenser.

according to the current status of the product being built. The
results of each operation may be written on RFID (for questions
of RFID survivability, see [42]), and the subsequent coalition
can act accordingly.

Collision avoidance between the modules is also a fundamen-
tal part of the self-management process. Modules with overlap-
ping workspace must maintain a minimum distance to each other
while moving.

b) SA and self-management (Requirement 4): Whenever a
failure occurs in one or more of the current modules of the
system, the process may lead to three different outcomes, corre-
sponding to the three types of adaptation: parametrical, logical,
or structural. This often lead to forms of self-healing and self-
optimization (for details, see [13]).

i) Parametrical: The current modules adapt their behavior
(change speed, force, task distribution, etc.) in order to
cope with the current failure, which maybe degrading per-
formance but maintaining functionality.

ii) Logical: The current modules may be used in a different
way, eventually requiring coalitions to be adapted accord-
ingly. For instance, a robot may take over additional tasks,
which were previously executed by other modules in or-
der to equilibrate the work loads. The agents can do this
autonomously by triggering reconfiguration process with
minimal-effort preference.

iii) Structural: The layout may be changed at production time
(addition/exchange/relocation of modules), and thus, trig-
ger a new coalition, leading to a repaired system.

3) Classical Requirements: Some requirements are not di-
rectly related to a self-* approach, but still important for pro-
duction or assembly systems. They include traceability, timely
production, and safety. For more, see [13].

C. Running Example: Adhesive Tape Roller Dispenser

To illustrate the concept of SOAS, a simple product was
chosen: an adhesive tape roller dispenser, short “tape roller,”
as shown in Fig. 2. It consists of two body parts (Part1 and
Part3) locked by a screw (Part4) and the tape roll (Part2).
The assembly is made on a workpiece carrier circulating on the
conveyors.

For reasons of simplicity, the choice of system modules will
for now be very limited: a Z-axis moving in a vertical direction,
an X-axis working horizontally, and a feeder receiving screws in
bulk. In reality, modules, which are available at other places in

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FREI AND SERUGENDO: SELF-ORGANIZING ASSEMBLY SYSTEMS 5

Fig. 3. Robot made of two axes and one gripper and P art1 placed on a
workpiece carrier circulating on the conveyor.

Fig. 4. Circular layout, where Robot1 treats P art1 and, later, P art3 . R:
robot, G: gripper, and F: feeder.

the system, storage, or even in the system supplier’s catalogue,
can be considered for joining the coalitions on request. Fig. 3
shows a combination of the two robotic axes with a two-finger
gripper mounted on the Z-axis. This configuration can be used
for executing all the movements required to assemble the tape
roller dispenser.

A more complete version of this running example, especially
of the reactions between the different agents to form coalitions
according to the GAP, is presented in [16].

1) Layout Formation: The SO process produces many dif-
ferent layouts and chooses one, depending on user preferences
and available modules. For this running example, we consider
that the layout shown in Fig. 4 is produced, with all the robots be-
ing identical and as shown in Fig. 3. Due to the layout’s circular
structure, workpiece carriers revisit Robot1 , which executes two
different tasks. In this example, we assume that Robot1 works
faster than Robot2 and Robot4 , and thus, assembles Part1 as
well as Part3 . IN represents the entry of the empty workpiece
carriers and OUT means that the carrier with the finished prod-
uct leaves the system. Feeders are placed next to robots, and
robots are linked by a conveyor system.

2) Tape Roller System Scenarios: To define policies, we con-
sider the following scenarios triggering an SO process in our
assembly system. They are reconsidered in Sections VI-B, C1,
and C2.

a) New product order: Carried by an order agent (OA), it
triggers the building of the corresponding layout (actual
user preferences considered: circular system and morpho-
logically identical robots with one being faster than the
others).

b) Resilience during production: There is a failure of some
modules and reorganization of the remaining modules for
building a repaired or alternative system. (Concrete inci-
dent considered: Robot2 shows decreasing performance,
and Robot1 can take over until Robot2 has been replaced.)

Fig. 5. Same gripper grabbing tape rolls: once fed from a stick (left) and once
fed from a tube (right).

Fig. 6. Modules and workspaces (symbolic representation).

c) Small change in tape roll conditioning: Sometimes, little
changes in conditioning or design do not need physical
reconfigurations but only small modifications of the LSAI.
(Concretely, instead of being delivered in a tube, the tape
rolls are delivered on a stick. Gripper3 will thus grab the
tape roll from outside instead of inside, see Fig. 5.)

d) Small change in product design followed by the recon-
figuration of the layout: Some modifications have big-
ger consequences and affect resource attribution. (Change
considered: The screw will be eliminated and replaced by a
snap-fit mechanism integrated in Part3 ; as a consequence,
Robot4 is redundant and Robot1 (=Robot3) needs a new
gripper, which is able to apply a force F in the center of
Part3 .)

e) Optimization: In case of difficult, long, or impossible han-
dling paths, the system may propose layout changes based
on a set of relatively simple policies.

V. AGENTS, SPECIFICATIONS, AND ARCHITECTURE

A. Agents and Modules

In comparison with the EAS and the corresponding multia-
gent software system CoBASA [10], SOAS require an enlarged
set of agents. Each of these agents can be instantiated as often as
required and according to the actual item to be represented. The
agents in PROSA [43] served as an inspiration for this paper, but
they were not a direct basis. For a detailed comparison, see [13].

The basic module types, which are needed for executing as-
sembly operations are illustrated in Fig. 6: axes, grippers, and
feeders. Most agents are embodied [e.g., manufacturing sys-
tem modules and product parts (PartA)], but some do not have a
physical body (e.g., OAs). All agents can request and/or provide
services, which are based on their skills. The software part of the
agents is implemented in Java Agent DEvelopment framework
(JADE) [12], [18].

1) Order Agent: A product order comes into the system as
an OA, asking for a certain number of instances of a specific
product to be assembled within a certain deadline. An OA carries
the GAP (see Section V-D1) given by the user, specifying in a
general way how to assemble which parts. The GAP does not

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS

determine which module will execute which movement,2 as this
remains to be defined later. The GAP stays fixed, even in case of
changes in the layout; only changes in the product design itself
lead to changes in the GAP.

2) Product Agent: Product agents (PAs) represent the in-
stances of the product to be made. They are launched by an
OA and carry the LSAI (see Section V-D2), which is derived
from the GAP according to the layout that has been created.
The LSAI defines which module executes which movement in
which order. Each PA exists until its product is finished. As the
product assembly progresses along the assembly system, the
PA requests the appropriate services from the various modules
to perform the different steps on the assembly plan. PAs are
associated with the RFID on the workpiece carriers.

3) Manufacturing Resource Agent: A manufacturing re-
source agent (MRA) is an agentified module that provides sim-
ple skills and has the capability to participate in coalitions.
MRAs can incorporate the following items: A robotic axis, A,
which is a module that can execute a movement along or around
a certain direction (axis). Its workspace is thus linear or circular.
If combined with another linear axis, their combined workspace
can be square, or cylindrical in case of a rotational axis. More
complex combinations have more complex workspaces: a grip-
per G, which is a device that is mounted on an axis and allows
a part to be grabbed, an industrial robot R, such as a Delta,
articulated arm robot, or Scara robot. All of them have elaborate
workspaces. A conveyor agent ConvA transports material be-
tween locations in the system, mostly with the help of workpiece
carrier agents (WPCAs) (see below). A conveyor is a typically
linear transportation device. Other instances of conveyor mod-
ules are corner units and T-junctions. In addition, cranes may
be included in this group. A feeder agent FA feeds parts into the
system using any kind of device (vibration feeding, tubes, rails,
pallets, or even manual delivery). A feeder receives the parts
to be assembled and puts them at the disposal of the respective
modules, which will treat them. For a WPCA, each carries a
product on the conveyors along the assembly system and allows
it to reach the MRAs.

4) Dynamic Coalition Leader Agent: As mentioned in Sec-
tion III-B, MRAs can form meaningful coalitions to provide
composite skills. Each coalition is represented by a dynamic
coalition leader agent (DCLA). This agent does not emit com-
mands, but it may play the role of a mediator or monitoring
entity in case of difficulties.

5) Part Agents: Product parts, represented by PartAs, are
delivered by the feeders and need to travel to their target position
in the final assembly. There is one PartA per part type per product
type (and not one agent per part).3 PartAs collaborate with FAs
to organize the delivery.

6) Ontology Agent: The ontology agent (OntA) provides
controlled access to the ontology, among others offering the
capability of filtering the list of possible agents that have a

2apart from the feeders, which are directly related to the parts.
3In case several product types using the same part are assembled at the same

time, there is one PartA per product type, which uses the respective part.

certain skill by the use of specific criteria. Depending on the
implementation, there may be only one or several OntAs.

B. Self-Knowledge

Embodied intelligence [44] means that agents must know
themselves, their physical bodies, their workspace, and their
interactions with others. This implies specifying parts, modules,
and assembly operations/skills in a computer-readable way. The
agents carry XML files with the corresponding information,
which complements the specifications given by the ontologies
[12], [40].

1) Module Specifications: Modules (MRAs) need an inter-
nal functional model of themselves and their working space in
the geometrical sense, as well as specifications of their pneu-
matic, electric, and electronic interfaces.

The services an MRA can provide are called skills; on the
requirement side, they correspond to the processes needed
to assemble a product. When modules come together, their
workspaces merge. This may result both in an expansion or
in a limitation; modules can give each other more freedom
or constrain each other. Trajectories and workspace usage can
be calculated with kinematic matrices, as taught in engineer-
ing courses, or using industrially available software. Doing this
properly is crucial for collision avoidance by the means of the
control software.

To facilitate the selection of the right coalition partners, each
agent has a local database with knowledge about partners, which
the agent has already worked with (successfully—white list—or
with problems—black list). Similarly, modules will carry rules
for forming complex skills in collaboration with their partners.

2) Part Specifications: Parts must be precisely specified,
analogously to the module specifications. There is plenty of
potentially useful information, including geometry, material,
properties (insulating, conducting, magnetic, transparent, etc.),
mass, rigidity (or stiffness), elasticity, the way of conditioning,
and the way of gripping. In future, even a CAD file for every
part might be included in the part specifications. This would al-
low graphically specifying the locations of assembly operations,
gripping points, and other relevant spots.

C. Architecture

Fig. 7 illustrates the architecture of the system. The self-
organizing and self-adaptive architecture that we use fol-
lows a service-oriented architecture, where components or
agents provide services. It has been adapted from MetaSelf
[45] and exploits dynamically collected metadata to support
decision-making and adaptation based on the dynamic en-
forcement of explicitly expressed rules and policies. Meta-
data, rules, and policies are themselves managed by appro-
priate services, which are autonomous agents. The compo-
nents, metadata, rules, and policies are all decoupled from
each other and dynamically updated (or changed). Addi-
tional services to build the run-time infrastructure encompass
the following: a registry/broker that handles the service de-
scriptions and services requests supporting dynamic binding;
an acquisition and monitoring service for the self-* related

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FREI AND SERUGENDO: SELF-ORGANIZING ASSEMBLY SYSTEMS 7

Fig. 7. System architecture.

Fig. 8. (a) For every MRA, (b) for every coalition, for subsets of the system, and for the entire system.

metadata (e.g., performance); a registry that handles the poli-
cies; and a distributed reasoning tool that matches metadata
values and policies and enforces the policies on the basis of
metadata. Metadata is either directly modified by components
or indirectly updated through monitoring. Metadata and policies
cause the reasoning tool to determine whether or not an action
must be taken.

All MRAs register their skills and constraints (self-
description metadata) in the OntA. They have access to global
or local coordination metadata (e.g., assembly status of current
product item) and resilience/self-* metadata (e.g., current level
of precision or speed of a module itself or of a partner module).
Policies, to which the system as a whole has to adhere, are global
to all components (for instance, “fulfill the GAP,” “no MRA is
allowed to move outside the allowed global workspace,” or “the
user favors a circular layout”) or locally attached to individ-
ual components (such as “avoid collisions” or “adapt your own
speed to the speed of your partner”).

The local run-time software infrastructure is presented in
Fig. 8(a). Besides representing the local arrangement (MRA-
1), Fig. 8(b) depicts a similar organization for coalitions (sem-
ishared, in the middle of the picture, group MRA-2, MRA-3,
MRA-4) and for the whole assembly system (shared, on the
right-hand side). Coalitions do not have a controller (only mod-
ules have) but have metadata and policies shared by the agents

in that coalition; the same applies for the system as a whole and
subsystems thereof. Examples of metadata include the perfor-
mance of the coalition as a whole, such as how many pieces a
certain module has processed in the last 10 s. Notice that because
coalitions are dynamically created in response to an incoming
OA or a production condition, the corresponding policies are
created or linked to the coalition on the fly. Finally, policies and
metadata applying at the level of the whole system are shared
by all agents.

D. Assembly Specifications

In the current proof of concept, the assembly specifications
are written in Maude language [16]; when implemented, XML
is likely to be chosen to express them.

1) Generic Assembly Plan: This specifies the way a prod-
uct is to be assembled: It includes the assembly sequence of
the different parts and the way they must be joined. Tasks are
defined in the form of generic operations (equivalent to skills).
The GAP does not provide information about what module to
use and what movement to make. In other words, the GAP says
what to do but not how and is thus independent from any layout.
The goal of generically specifying the tasks is to describe oper-
ations independently from the concrete parts to be treated and
independently from the resource (MRAs), which will execute

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS

Fig. 9. Simplified tape roller GAP written as a workflow.

Fig. 10. Simplified running example.

the tasks. This gives the system a certain level of abstraction,
and thus, the liberty to attribute any module with suitable skills
to the operation in question.

Fig. 9 shows the example of a GAP for the simplified running
example (assembling only parts 1 and 2, as illustrated in Fig. 10),
represented as a workflow and written in XML. The four simple
illustrated tasks each have an operation type (Op), an object to
be handled (Obj), a start point (StPt), an end point (EndPt), as
well as a start orientation (StOr) and an end orientation (EndOr),
which we assume to be sufficient information at this stage of
implementation. This GAP specifies that a carrier is loaded from
the Storage to Conveyor1 , then Part1 is picked from Feeder1
and placed on the Carrier, then Part2 is picked from Feeder2
and placed on top of Part1 , and finally, the Carrier with the
assembled product is unloaded to the Storage.

Notice that in the GAP, points refer to a general description
of their type (for instance, a point on the feeder, which provides
a certain type of part), which is then in the LSAI matched to a
specific point (where the feeder is located in the layout).

2) Layout-Specific Assembly Instructions: For executing the
assembly, the GAP needs to be transformed into the LSAI.
This is done in collaboration between the OAs and the MRAs,
and based on the created layout. The LSAI consists of exe-
cutable programs for the robotic modules, which satisfy the
GAP. The instructions are generated for a certain layout; if the
layout is modified, these instructions must be changed. Fig. 11
shows the tape roller LSAI written as a workflow for the layout
shown in the same figure. For instance, the second column of
the LSAI specifies TaskA , which is a transport operation ex-
ecuted by ConveyorCoalition1 , to move the Carrier from
ConveyorP t1 to Robot1Pt. At the same time and in prepara-
tion of Task2 , Task2−1 is a feeding operation, where Feeder1
delivers Part1 to Feeder1Pt with the orientations θ3 , ϕ3 , and
ψ3 . Fig. 11 shows three inputs, represented by the flashes in the
boxes on the left-hand side, and one output, represented by the
square in the box on the right-hand side.

In comparison with the GAP, the LSAI contains additionally
the following items: It instantiates the tasks of the GAP with
concrete modules and movements and specifies who will execute
the tasks and how. It contains transportation tasks in between
the main tasks from the GAP. It includes feeding tasks, which
provide the parts to be assembled.

VI. SELF-* MECHANISMS

To address the requirements detailed in Section IV-B, we pro-
pose the subsequently detailed self-* mechanisms. Section VI-A
discusses the model for SO, which we used. Section VI-B ex-
plains the system at creation time and Section VI-C at production
time.

A. Model for SO in SOAS

SO refers to the ability of a system to undergo structural
changes in order to cope with the ever-changing environment
and the requirements resulting from it (in the context of as-
sembly, this includes incoming assembly orders), without cen-
tral command or important control from outside. It means that
gradually the system will tend to acquire the ability to execute
reconfigurations on its own, autonomously and automatically.4

Physical changes need to be done by the user, but they can hap-
pen on the request of the system and according to its proper
dynamics. This can be considered as a kind of user-assisted
self-assembly on initiative of the modules, coalitions, or PAs;
on the software and control side, the system can self-organize
without the help of the user.

The chemical abstract machine (CHAM) [46], [47] is a design
abstraction, which can be used for many different problems. It
consists of a molecule solution and chemical reaction rules.
The molecules spontaneously react with each other according
to the rules; each time a rule fires, the molecules involved in the
reaction are replaced (or rewritten) by their new composition
(the outcome of the reaction). Afterward, other rules may apply,
and the solution is rewritten again, and so forth, until no rule can
be applied any more, and the system has converged to a stable
state. The rules are applied in a concurrent and distributed way;
in other words, the molecules self-assemble or self-organize.

In the case of SOAS, as illustrated in Fig. 12, the molecule so-
lution is the set of all modules; rules are physical (possible) com-
binations of modules and their provided (simple or composite)
skills matching requested tasks. The insertion of a product order
into the solution triggers the reaction rules. As a result, mod-
ules form coalitions, according to their compatibility rules and
composition pattern (compatible sizes and shapes, and combi-
nation of simple skills providing composite skills) and announce
themselves for fulfilling some task specified in the product or-
der. Just in the same way as molecules have properties of their
own and potentially different ones when combined, modules
also have properties of their own and potentially different ones
in coalitions.

4A stepwise approach tending toward this goal is advisable.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FREI AND SERUGENDO: SELF-ORGANIZING ASSEMBLY SYSTEMS 9

Fig. 11. Simplified tape roller LSAI written as a workflow.

Fig. 12. Self-assembly of coalitions in CHAM.

Fig. 13. Stepwise application of rules according to the chemical reaction
model (schematic view).

B. Creation Time: Rules for SO

Reaction rules for SO apply to all modules at creation time.
Fig. 13 graphically illustrates how modules progressively self-
assemble to form coalitions and establish transport links in be-
tween. These coalitions are built according to a set of rules, as
explained in the following, to progressively match with the tasks
defined in the GAP, as shown in Fig. 12. All rules apply at all

times; there is no explicitly specified order of application. How-
ever, implicitly, there is a logical order of application because
of the conditions guarding the rules. Currently, these rules exist
as a proof of concept in Maude [16] and lead to a valid solution.
Implementation in a multiagent system is future work.

1) Rules: Addressing the Requirements 1 and 2 detailed in
Section IV-B.

a) Interface compatibility: Modules match according to the
types and characteristics of their physical interfaces. In reality,
interfaces are often brand-specific and module-type-specific,
and the compatibility between nonrelated modules is limited,
thus avoiding combinatorial explosion. The number of interfaces
a module has determines the maximal number of connections
it may establish, e.g., due to physical limitations, a gripper is
unable to connect to more than one axis at once.

b) Composition pattern: Typical basic combinations of mod-
ules are specified as composition pattern. For instance, the com-
bination of three linear axes makes a Cartesian robot, and three
rotational axes make an articulated arm robot, whereas a linear
and a rotational axis build a robot with a cylindrical workspace.
In cases, where many modules are available, such rules can
help to reduce the search space by indicating which module
combinations typically occur; corresponding coalitions would
be formed with priority. This type of rule can be implemented
either using module types or skills (in this paper, we chose the
skills).

c) Creation of composite skills: Composite skills are com-
binations of simple skills, which come together when module
coalitions are created. Most skill combinations lead to immedi-
ate composite skills, which are a direct combination (addition)
of the simple skills. As an example, move(x) and move(y) can
result in move(x + y). However, some combinations also lead
to the emergence of additional composite skills. For instance,
a gripper has the skills open− close, and an axis has move.
Together, they have open− close, move, and pick&place.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS

d) Task coalition matching: When a GAP is introduced, the
modules’ skills react with the operations requested by the tasks
in the GAP. At the same time, the modules react with suitable
partner modules, according to their own requirements (interface
compatibility and necessary partners, like a gripper needs to be
hold by an axis or a robot) as well as the corresponding compo-
sition pattern, previously explained. Once a coalition is formed,
a corresponding DCLA (explained in Section V-A4) is inserted
into the chemical solution. The coalition, again, when suitable
reacts with other tasks and modules. This procedure continues
until all the tasks have reacted with modules/coalitions, or until
no more modules are available. In this case, the task will emit
a user alert after a certain time because no satisfactory solution
could be found. If a task reacts with more than one coalition
(which will most often be the case), a selection may be made
according to various criteria, such as a user preference or an opti-
mization function. A coalition, which, in the process of forming
itself, cannot find any suitable partner in the module pool, will
be discarded. The probability of exactly the same (fruitless)
coalition being built again is relatively low and gets smaller
with an increasing number of available modules. Unsuccessful
compositions may be recorded.

e) Layout creation and transport linking: Generic layout cre-
ation rules specify how MRAs and coalitions react with places in
the layout and with conveyors to establish transportation links
in between the robots. The coalition that was assigned to the
first task chooses its place first (random or default position).
Coalitions that come later place themselves at default distances
from other coalitions, and ask for transportation skills to move
the product from the previous robot to the current. Conveyors
will react to such requests and provide the necessary services.
A continuous path from IN to OUT must be formed.

f) Transforming the GAP into the LSAI (rewriting): The GAP
now needs to be transformed into specific instructions for the
selected modules/coalitions in their respective positions; this is
the content of the LSAI. The CHAM rewriting technique will
be exploited. Commercially available solutions for virtual engi-
neering [48] allow the designer to simulate the workspace and
verify if a certain point is reachable, to identify potential colli-
sions and kinematic singularities, and to calculate trajectories,
velocities, cycle times, and the stress on robot mechanics.

C. Production Time: Policies and Metadata
for Self-Management

The following examples of production time policies and meta-
data refer to the running example. For more details about policy
types and classes and metadata types, see [13].

1) Coordination at Production Time: Policies and dynam-
ically updated metadata, which help the system to coordinate
its actions at production time, addressing the Requirement 3
detailed in Section IV-B, are subsequently explained.

a) Policies: Task sequencing policies assure the well-ordered
execution of the tasks specified in the GAP and the de-
rived LSAI. A task can start when the WPCA (carrier) has
reached its working position next to the robot. The WPCA
can move on as soon as the robot has finished its opera-

tion. Collision avoidance policies help avoid crashes, e.g.,
“the distance MRAs must always be bigger than a safety
threshold, unless they are members of the same coalition.”

b) Metadata: Task sequencing metadata supports the appli-
cation of task sequencing policies, e.g., for each PA: cur-
rent status of LSAI execution—the result of any operation
is always written into the product’s RFID (success, fail-
ure, problems, etc.) and for each MRA: status/availability
(idle, reserved, working, failure, and in storage). A log
file stores the performed operations history (for traceabil-
ity purposes). Collision avoidance metadata supports the
application of collision avoidance policies, e.g., for all
MRAs: occupancy of its workspace by other MRAs (e.g.,
feeders), including a list of possible undue items (e.g., a
loose screw is lying on the workspace).

c) Tape roller system scenario: 1) Task sequencing: A WPCA
circulates along the layout, and the PA notices that it passes
twice next to Robot1 . According to its LSAI, it asks for
the appropriate operation (adding Part1 or Part3). Sim-
ilarly, Robot1 accesses the RFID to read the previous and
to write the result of the current task. 2) Collision avoid-
ance: The workspaces of Robot1 , Robot2 , and Robot4 do
not interfere in this particular example; no danger of col-
lision between them. Whenever a collision sensor detects
something irregular in the workspace (a human hand or a
loose screw), the operation is stopped until the intrusion
has gone. If this takes more than a given time, the user is
informed.

2) SA and Self-Management at Production Time: The meta-
data and policies required for SA at production time, address-
ing the Requiremen4 detailed in Section IV-B, are described
here.

a) Policies: Self-optimization policies help MRAs improve
their performance, e.g., “adapt the feeding speed to the
part removal speed.” (Feeders always need to deliver parts
at their output. If the parts are taken away quickly, their
feeding speed should be high.) Self-healing policies help
to assure the good health of the system. It is necessary to
report the state or, respectively, the result of collaboration
with other MRAs. Every agent monitors its own state, es-
pecially with reference to critical parameters, and alerts
the user in case of problems, e.g., MRAs need to monitor
their own precision, and eventually also their neighbor’s
precision, in order to detect the effects of fatigue or other
kinds of disturbances, and to take corresponding counter-
measures. System-level policies (bounding policies), e.g.,
“if one (or more) failure occur more than a certain number
of times in a certain period of time, then alert the user.”

b) Metadata: Self-* metadata supports performance parame-
ters. For each MRA: maximal/optimal speed of operation,
precision of movements on every MRA’s own axes and
its partners’/neighbors’ axes, current queuing level of ar-
riving products, and quality of assembled product (any
measurable characteristic or feedback given by the user).

c) Tape roller system scenario: This was introduced in Sec-
tion IV-C2. SA: Robot2 experiences problems in reach-
ing its target positions and asks for maintenance. As a

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FREI AND SERUGENDO: SELF-ORGANIZING ASSEMBLY SYSTEMS 11

temporary solution, Robot1 is asked to take over, and the
user is asked to place Feeder2 close to Robot1 .

d) Reconfiguration triggered: After taking over from Robot2 ,
Robot1 experiences a high level of queuing. This leads
Robot1 to ask for a reconfiguration and, therefore, triggers
the creation time mechanism.

VII. AGILITY SCENARIOS AND PERFORMANCE METRICS

As SOAS have not been fully implemented yet, it is not
possible to measure their performance and compare it with the
performance of other agile assembly systems. This is why, at
this moment, we suggest a series of metrics, which can be used
once the implementation has been completed.

It is difficult to express the performance of an SOAS in quan-
titative terms, as the goal is not to optimize the global through-
put as it is for traditional assembly systems. Evolvability counts
much more here, and again, is difficult to quantify. Furthermore,
we are not yet able to realistically measure and compare SOAS
performance with the performance of other approaches, as the
project has so far not reached the stage, where implementation
on a pseudoindustrial system can be tackled. Instead, we con-
sider here which measurable factors will be considered in the
future.

A successful assembly system is one, which correctly assem-
bles the required products within the desired time span. Addi-
tionally, a successful agile assembly system is the one, which
can assemble different types of products at the same time, which
can evolve from one system form to another within a short time
frame, which can cope with failures and perturbations, which
requires minimal user interaction, and which uses resources in
a sustainable way.

Within this context, sustainability includes 1) socioeconomic
dimensions, i.e., keeping jobs and industries within Western
Europe instead of losing them due to offshoring; 2) monetary
dimensions, which means making investments in a way that
they will not be wasted if the market situation changes; as well
as 3) technological dimensions: Modules are reusable, legacy
equipment can be integrated into newer system, in case of per-
turbations, production can be maintained in degraded modes,
and the system takes care of itself.

A. Creation-Time-Related Metrics

To judge the validity of the SO approach suggested in this
paper, it is necessary to define how exactly the effort for layout
design and system configuration/reconfiguration may be mea-
sured. Is it how long a human operator works on it? Or how
specialized that operator needs to be? Does mechanical work
done by an operator with basic training count less than repro-
gramming by a specialist?

Besides these open issues, we suggest that for an SOAS, it
is relevant to know: How often did a human need to intervene,
while the system layout is being created? Were the agents able
to find a suitable layout? Were the agents able to derive an LSAI,
which correctly satisfies the GAP? When reconfiguration is re-
quired, how many different reconfigurations were proposed, and
how many were accepted? How high or low is the “degree of ex-

ternal control” for system creation? How much global complete
knowledge was needed?

B. Production-Time-Related Metrics

Most commonly available performance metrics concern the
system at production time. For instance, Brueckner [49] sug-
gests the following criteria for distributed manufacturing sys-
tems: load of processing stations and buffers, work in progress
(should be minimized), local and global throughput values,
communication and computation load; required human inter-
ference, effort for design and implementation, and effort for
reconfiguration.

For an SOAS, it is relevant to additionally know: How often
did a human need to intervene during production? How often
did the system experience emergency stops? For how long was
the system down? Were there any rashes or other catastrophes?
How high or low is the “degree of external control” at produc-
tion time? How much global complete knowledge was needed?
How sustainable is the use of resources? (How well can legacy
components be used, and how high is the utilization rate of the
robots?) Could the system recover from failures on its own? To
what failures is the system robust?

C. Cost of Reconfiguration

To evaluate the cost of reconfiguration, one may consider
the following points: Judge the quality and complexity of a
reconfiguration proposal. Decide about which system reconfig-
uration proposal to accept. Find out how easy it is to remove
other modules, which would be in the way of the new modules.
Take the new module from the storage or out of an old place
in the layout. Arrange the new installation: geometric, electric,
electronic/computational, pneumatic, etc., interfaces to be con-
nected. Verify that the agents autonomously integrate the new
module.

It is not within the scope of this paper to conclusively answer
the questions of how much evolvability or SO cost or if it is
really worth paying that much and, if yes, for producing which
products exactly. Within the EUPASS project,5 models for es-
timating cost of flexible microassembly were developed [50].
Adapting them to SOAS will be future work.

D. Agility Scenarios

To realistically compare the performance of an SOAS with
the performance of other systems, certain aspects of specific
agility scenarios should be compared.

Creation of a suitable layout to assemble a given product:
Which steps does selecting suitable modules and composing a
suitable layout to assemble a given product include? How much
effort does this require? How many mistakes happen?

Programming of the modules/robotic cells/work stations:
How are the modules controlled and coordinated? How work-
intensive and error-prone is the programming? How easily can
it be adapted to changes in the layout, the parts, or processes?

5http://www.hitech-projects.com/euprojects/eupass/index.htm

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS

System management during production: How much human
supervision is required and for which aspects? How is main-
tenance handled, and how many perturbations occur per time
unit? How are they handled? How are movement accuracy and
repeatability monitored and improved if necessary?

System recovery in case of module failures: How does the
rest of the system react when one, two, or several modules
experience partial or complete failures? Is the system able to
find alternative ways of executing a task, or will it only stop?

Minor system reconfigurations: What is necessary to execute
minor changes in the system, which may be due to a product
design change or due to different feeding of a part? How much
user interaction is required, and how complicated is it?

Major system reconfigurations: How does the system handle
major reconfigurations? Is it easier/quicker to start afresh, or
can an existing system be modified?

Further discussion about the nature and characteristics of
performance metrics for distributed manufacturing systems as
well as their mathematical expressions can be found in [21],
together with further agility parameters to be considered.

VIII. CONCLUSION AND OUTLOOK

This paper discusses the concept of SOAS, their design rules,
as well as their run-time architecture and policies. SOAS are
composed of agentified modules, which carry thorough self-
knowledge and engage in collaborations with peers to fulfill
their tasks.

At creation time, the modules self-organize according to a
set of rules. Each module offers simple skills; modules self-
assemble to form coalitions and can thus offer composite skills
to fulfill the assembly requirements specified in the GAP. The
coalitions arrange themselves in the shop-floor layout, and the
LSAIs are derived, specifying which module is going to execute
what movement.

At production time, the modules are asked to assemble the
product according to policies for SA and self-management. This
includes monitoring of themselves and their peers and reconfig-
urations of minor scope. A need for major reconfiguration leads
the system back to the creation phase.

Although implementation is still on-going, SOAS can already
be identified as a promising approach. Besides providing a so-
lution for tomorrow’s agile manufacturing, SOAS may also be
helpful for other applications of MetaSelf [45], the architecture
for SO and SA, which we used. The MetaSelf architecture is
now accompanied by a design method, which added valued to
the architecture [51].

The implementation of the SOAS concepts and architecture
presented in this paper are either already implemented (EAS on-
tology, OntA, agents, and dynamic coalitions) or currently being
implemented (policies and metadata, reasoning with JESS, self-
assembly in CHAM, and proofs of properties with Maude). The
production time infrastructure will be addressed soon.

Future work: A mathematical model of the system already
exists, whereas the formal proofs of system properties are still
being considered. Furthermore, our next steps encompass the
following: defining more sophisticated optimization policies,

as the existing ones are very basic; investigating performance
metrics for SOAS, including realistic metrics to compare SOAS
with other approaches to agile manufacturing; considering how
more complicated skills, such as insert and press-fit/snap-fit,
can be treated. Strategies to deal with conflicting policies must
be investigated. It still remains open how exactly the SA/self-
management mechanisms at production time will work (moni-
toring, sensing, and coordination of workspaces). A prototype
will be built.

REFERENCES

[1] J. A. Buzacott and J. G. Shanthikumar, “Models for understanding flexible
manufacturing systems,” Trans. Amer. Inst. Elect. Eng., vol. 12, no. 4,
pp. 339–350, 1980.

[2] R. Kaula, “A modular approach toward flexible manufacturing,” in Integr.
Manuf. Syst., West Yorkshire, U.K.: MCB Univ. Press, 1998, pp. 77–86.

[3] M. Onori and P. Groendahl, “MARK III: A new approach to high-variant,
medium-volume flexible automatic assembly cells,” Robotica, Spec. Is-
sue, vol. 16, no. 3, pp. 357–368, 1998.

[4] Y. Koren, U. Heisel, F. Jovane, T. Moriwaki, G. Pritchow, A. Ulsoy, and
H. Van Brussel, “Reconfigurable manufacturing systems,” CIRP Ann.—
Manuf. Technol., vol. 48, no. 2, pp. 6–12, 1999.

[5] M. Mehrabi, A. Ulsoy, and Y. Koren, “Reconfigurable manufacturing
systems: Key to future manufacturing,” J. Intell. Manuf., vol. 11, pp. 403–
419, 2000.

[6] H. ElMaraghy, “Flexible and reconfigurable manufacturing systems
paradigms,” Int. J. Flexible Manuf. Syst., vol. 17, no. 4, pp. 261–276,
2006.

[7] R. Katz, “Design principles for reconfigurable machines,” Int. J. Adv.
Manuf. Technol., vol. 34, pp. 430–439, 2007.

[8] H. ElMaraghy, T. AlGeddawy, and A. Azab, “Modelling evolution in
manufacturing: a biological analogy,” CIRP Annals—Manuf. Technol.,
vol. 57, pp. 467–472, 2008.

[9] M. Onori, “Evolvable assembly systems—A new paradigm?,” in Proc.
33rd Int. Symp. Robot., Stockholm, Sweden, 2002, pp. 617–621.

[10] J. Barata, Coalition Based Approach for Shop Floor Agility. Amadora,
Lisboa: Edições Orion, 2005.

[11] R. Frei, G. Di Marzo Serugendo, and J. Barata, “Designing self-
organization for evolvable assembly systems,” in Proc. IEEE Int. Conf.
Self-Adaptive Self-Organizing Syst., Venice, Italy, 2008, pp. 97–106.

[12] R. Frei, N. Pereira, J. Belo, J. Barata, and G. Di Marzo Serugendo, “Im-
plementing self-organisation and self-management in evolvable assem-
bly systems,” in Proc. IEEE Int. Symp. Ind. Electron., Bari, Italy, 2010,
pp. 3527–3532.

[13] R. Frei, “Self-organisation in evolvable assembly systems” Ph.D. disser-
tation, Dept. Elect. Eng., Faculty Sci. Technol., Univ. Nova de Lisboa,
Lisbon, Portugal, 2010.

[14] C. D. Nugent, D. D. Finlay, P. Fiorini, Y. Tsumaki, and E. Prassler,
“Editorial, home automation as a means of independent living,” IEEE
Trans. Autom. Sci. Eng., vol. 5, no. 1, pp. 1–9, Jan. 2008.

[15] R. Frei, B. Ferreira, G. Di Marzo Serugendo, and J. Barata, “An archi-
tecture for self-managing evolvable assembly systems,” in Proc. IEEE
Int. Conf. Syst., Man, Cybern., San Antonio, TX, 2009, pp. 2707–
2712.

[16] R. Frei, G. Di Marzo Serugendo, and T. Serbanuta, “Ambient intelligence
in self-organising assembly systems using the chemical reaction model,”
J. Ambient Intell. Humanized Comput., vol. 1, no. 3, pp. 163–184, 2010.

[17] R. Frei, G. Di Marzo Serugendo, and J. Barata, “Designing self-
organization for evolvable assembly systems,” School Comput. Sci. Inf.
Syst., Birkbeck College, London, U.K., Tech. Rep. BBKCS-09-04, 2009.

[18] R. Frei, B. Ferreira, and J. Barata, “Dynamic coalitions for self-organizing
manufacturing systems,” presented at the CIRP Int. Conf. Intell. Comput.
Manuf. Eng., Naples, Italy, 2008.

[19] P. Valckenaers and H. Van Brussel, “Holonic manufacturing execution
systems,” CIRP Ann.—Manuf. Technol., vol. 54, no. 1, pp. 427–432,
2005.

[20] V. Marik, V. Vyatkin, and A. Colombo, Eds., Holonic and Multi-Agent
Systems for Manufacturing. Heidelberg, Germany: Springer-Verlag,
2007.

[21] P. Leitão, “An agile and adaptive holonic architecture for manufacturing
control,” Ph.D. dissertation, Dept. Elect. Eng., Polytechnic Inst. Bragança,
Bragança, Portugal, 2004.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FREI AND SERUGENDO: SELF-ORGANIZING ASSEMBLY SYSTEMS 13

[22] P. Leitao and F. Restivo, “Implementation of a holonic control system in
a flexible manufacturing system,” Trans. Syst., Man, Cybern. C: Appl.
Rev., vol. 38, no. 5, pp. 699–709, 2008.

[23] A. Rizzi, J. Gowdy, and R. Hollis, “Agile assembly architecture: An agent
based approach to modular precision assembly systems,” in Proc. Int.
Conf. Robot. Autom., Albuquerque, NM, 1997, pp. 1511–1516.

[24] T. Gaugel, M. Bengel, and D. Malthan, “Building a mini-assembly system
from a technology construction kit,” Assembly Autom., vol. 24, no. 1,
pp. 43–48, 2004.

[25] C. Hanisch and G. Munz, “Evolvability and the intangibles,” Assembly
Autom., vol. 28, no. 3, pp. 194–199, 2008.

[26] M. Pflueger and M. Bengel, “Automatisch rekonfiguriert,” Comput. Au-
tom., vol. 1, pp. 38–41, 2009.

[27] M. Vallée, H. Kaindl, M. Merdan, W. Lepuschitz, E. Arnautovic, and
P. Vrba, “An automation agent architecture with a reflective world model
in manufacturing systems,” in Proc. IEEE Int. Conf. Syst., Man Cybern..
Piscataway, NJ: IEEE Press, 2009, pp. 305–310.

[28] S. Lemaignan, A. Siadat, J. Dantan, and A. Semenenko, “MASON:
A proposal for an ontology of manufacturing domain,” in Proc. IEEE
Workshop Distrib. Intell. Syst.: Collective Intell. Appl.. Piscataway, NJ:
IEEE Comput. Soc. Press, 2006, pp. 195–200.

[29] P. Vrba, M. Radakovič, M. Obitko, and V. Mařı́k, “Semantic extension
of agent-based control: The packing cell case study,” in Proc. 4th Int.
Conf. Ind. Appl. Holonic Multi-Agent Syst.. Berlin/Heidelberg, Ger-
many: Springer-Verlag, 2009, pp. 47–60.

[30] Y. Al-Safi and V. Vyatkin, “An ontology-based reconfiguration agent
for intelligent mechatronic systems,” in Holonic and Multi-Agent Sys-
tems for Manufacturing (Lecture Notes in Computer Science), V. Marik,
A. Vyatkin, and V. and Colombo, Eds. Berlin/Heidelberg, Germany:
Springer-Verlag, 2007, vol. 4659, pp. 114–126.

[31] A. Lueder, J. Peschke, T. Sauter, S. Deter, and D. Diep, “Distributed intel-
ligence for plant automation based on multi-agent systems: the PABADIS
approach,” Prod. Plann. Control, vol. 15, no. 2, pp. 201–212, 2004.

[32] L. Monostori, J. Vancza, and S. Kumara, “Agent-based systems for man-
ufacturing,” CIRP Ann.—Manuf. Technol., vol. 55, no. 2, pp. 697–720,
2006.

[33] W. Shen, Q. Hao, H. J. Yoon, and D. H. Norrie, “Applications of agent-
based systems in intelligent manufacturing: an updated review,” Adv. Eng.
Informat., vol. 20, pp. 415–431, 2006.

[34] U. Rossgoderer, C. Woenckhaus, G. Reinhart, and J. Milberg, “A concept
for automatical layout generation,” in Proc. IEEE Int. Conf. Robot. Autom.,
Nagoya, Japan, 1995, pp. 800–805.

[35] Y. Tu and H. Holm, “Automatic determination of operation sequence for
material handling and equipment set-up in one-of-a-kind production,” Int.
J. Comput. Integr. Manuf., vol. 10, no. 6, pp. 435–445, 1997.

[36] R. Webbink and S. Hu, “Automated generation of assembly system-design
solutions,” IEEE Trans. Autom. Sci. Eng., vol. 2, no. 1, pp. 32–39, Jan.
2005.

[37] S. Benjaafar, S. Heragu, and S. Irani, “Next generation factory layouts:
Research challenges and recent progress,” Interfaces, vol. 32, no. 6,
pp. 58–77, 2002.

[38] C. Song, X. Guan, Q. Zhao, and Y.-C. Ho, “Machine learning approach
for determining feasible plans of a remanufacturing system,” IEEE Trans.
Autom. Sci. Eng., vol. 2, no. 3, pp. 262–275, Jul. 2005.

[39] J. Li, “Overlapping decomposition: A system-theoretic method for model-
ing and analysis of complex manufacturing systems,” IEEE Trans. Autom.
Sci. Eng., vol. 2, no. 1, pp. 40–53, Jan. 2005.

[40] N. Lohse, “Towards an ontology framework for the integrated design
of modular assembly systems,” Ph.D. dissertation, School Mech. Mater.
Manuf. Eng., Faculty Eng., Univ. Nottingham, Nottingham, U.K., 2006.

[41] M. Goodrich, D. Olsen, J. Crandall, and T. Palmer, “Experiments in ad-
justable autonomy,” in Proc. IJCAI Workshop Autonomy, Delegation Con-
trol: Interact. Intell. Agents, Seattle, WA, 2001, pp. 1624–1629.

[42] Y. Zuo, “Survivable RFID systems: Issues, challenges, and techniques,”
IEEE Trans. Syst., Man, Cybern. C: Appl. Rev., vol. 40, no. 4, pp. 406–418,
Jul. 2010.

[43] J. Wyns, “Reference architecture for holonic manufacture: The key to sup-
port evolution and reconfiguration,” Ph.D. dissertation, Katholieke Univ.
Leuven, Leuven, Belgium, 1999.

[44] R. Pfeifer and C. Scheier, Understanding Intelligence. Cambridge, MA:
MIT Press, 1999.

[45] G. Di Marzo Serugendo, J. Fitzgerald, A. Romanovsky, and N. Guelfi,
“Metaself: A framework for designing and controlling self-adaptive and
self-organising systems,” School Comput. Sci. Inf. Syst., Birkbeck Col-
lege, London, U.K., Tech. Rep. BBKCS-08-08, 2008.

[46] G. Berry and G. Boudol, “The chemical abstract machine,” Theor. Com-
put. Sci., vol. 96, no. 1, pp. 217–248, 1998.

[47] J.-P. Banâtre, P. Fradet, and D. Le Métayer, “Gamma and the chemi-
cal reaction model: Fifteen years after,” in Proc. Workshop on Multiset
Processing (Lecture Notes in Computer Science). New York: Springer-
Verlag, 2000, vol. 2235, pp. 17–44.

[48] M. Garstenauer, “Das virtuelle engineering,” Comput. Autom., vol. 9,
pp. 24–26, 2009.

[49] S. Brueckner, “Return from the ant—Synthetic ecosystems for manufac-
turing control,” Ph.D. dissertation, Inst. Comput. Sci., Humboldt-Univ.,
Berlin, Germany, 2000.

[50] M. Oulevey, P. Roduit, S. Koelemeijer Chollet, J. Jacot, P. Ryser, and
K. Taferner, “A cost model for flexible high speed assembly lines,” pre-
sented at the Int. Precision Assembly Semin., Bad Hofgastein, Austria,
2004.

[51] G. Di Marzo Serugendo, J. Fitzgerald, and A. Romanovsky, “Metaself—
An architecture and development method for dependable self-* systems,”
in Proc. Symp. Appl. Comput., Sion, Switzerland, 2010, pp. 457–461.

Regina Frei received the M.Sc. degree in microengi-
neering from the Swiss Federal Institute of Tech-
nology in Lausanne, Lausanne, Switzerland, and the
Ph.D. degree from the Department of Electrical En-
gineering, Faculty of Sciences and Technology, New
University of Lisbon, Lisbon, Portugal.

She is currently a Postdoctoral Researcher with
the Intelligent Systems and Networks Group, Depart-
ment of Electrical and Electronic Engineering, Im-
perial College London, London, U.K. Her research
interests include self-organizing assembly systems,

self-* properties, and complexity engineering.

Giovanna Di Marzo Serugendo (M’07) received the
M.Sc. degree in computer science and mathematics
from the University of Geneva, Geneva, Switzerland,
and the Ph.D. degree in software engineering from the
Swiss Federal Institute of Technology in Lausanne,
Lausanne, Switzerland.

She is currently a Professor and a Lecturer/Senior
Researcher with the Object Systems Group, Univer-
sity of Geneva. From 2005 to 2010, she was a Lecturer
with the School of Computer Science and Informa-
tion Systems, Birkbeck College, University of Lon-

don, London, U.K. Her research interests include self-assembly of software,
self-organizing, and self-adapting systems realized using specification carrying
code and reputation systems, mobile agents systems, and formal methods.

Dr. Serugendo was the Cofounder of the IEEE International Conference on
Self-Adaptive and Self-Organising Systems. She is also the Editor-in-Chief of
the Association for Computing Machinery’s Transactions on Autonomous and
Adaptive Systems.

