
Robustness and Dependability of Self-Organizing

Systems - A Safety Engineering Perspective

Giovanna Di Marzo Serugendo

Birkbeck College, University of London
dimarzo@dcs.bbk.ac.uk

Abstract. This paper analyses the robustness of self-organizing (engi-
neered) systems to perturbations (faults or environmental changes). It
considers that a self-organizing system is embedded into an environment,
the main active building blocks are agents, one or more self-organizing
mechanisms regulate the interaction among agents, and agents manipu-
late artifacts, i.e. passive entities maintained by the environment. Per-
turbations then need to be identified at the level of these four design
elements. This paper discusses the boundaries of normal and abnormal
behaviour in self-organizing systems and provides guidelines for design-
ers to determine which perturbation in which part of the system leads
to a failure.

1 Introduction

Self-organizing artificial (engineered) systems are appealing because they pro-
vide a ”natural” robustness to changes and failures, while being composed of
relatively simple entities. This claim, although backed by observation through
simulations or experiments, has not been thoroughfully investigaged. For in-
stance, questions such as: To what changes in their environment/faults are these
systems naturally robust to, and what changes/faults are they not able to over-
come (naturally)? What does ”naturally” mean in this context? The boundary
between the normal behaviour and the abnormal one is usually blurred since the
self-* part of these systems contains (built-in or intrinsic) recovery capabilities.
So, what is the normal operational mode of such systems, what is their abnormal
one? This is also pointed out by Alderson et al. [1], in the context of complex
systems: ”Robustness is the invariance of [a property] of [a system] to [a set of
perturbations]”. The main point here is that a given system preserves a spe-
cific property for a specific set of perturbations, but may be fragile for another
property or other perturbations.

The aim of this paper is twofold. First, it intends to clarify the notions of ”nor-
mal”, ”dependable” and ”resilient” behaviour in self-organizing systems. Second,
it guides the designer of self-organizing systems in identifying the limits of the
”natural” robustness, i.e. in identifying the properties and set of perturbations
that render the system fragile. This is similar to the Failure Mode and Effects
Analysis (FMEA)1 technique followed by safety engineers when they analyse the
1 http://en.wikipedia.org/wiki/Failure mode and effects analysis

R. Guerraoui and F. Petit (Eds.): SSS 2009, LNCS 5873, pp. 254–268, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Robustness and Dependability of Self-Organizing Systems 255

design of a system to find what faults can occur. Starting from a block diagram
of the system, the safety engineer considers what happens when each block fails
and subsequently proposes changes to the system to make it safer. In the con-
text of self-organizing systems, the designer determines which changes/faults in
which part of the system lead to a failure. To this end, the paper lists the design
elements of a self-organizing system, properties of self-organizing systems, types
of faults for self-organizing systems and considers means to reach dependability
in self-organizing systems. To illustrate our discussion, we consider a simple self-
organizing systems and discuss its dependability to different changes and faults.
This paper does not intend to be complete, additional investigations, experi-
ments and measurements are necessary. The main goal of this paper is to lay the
foundations for additional thorough investigation into these systems’ behaviour.

2 Dependability and Resilience

This section provides a short summary of Avizienis et al. [2] and Laprie [3]
papers. We extract (almost verbatim) here the essential elements of these papers
that suit the purpose of our discussion and render our paper self-contained as
we will refer to these notions in the next sections.

Robustness and Dependability. A computing system is robust if it retains its
ability to deliver a service in conditions which are beyond its normal domain of
operation [4]. Dependability is the ability to deliver a service that can justifiably
be trusted.

Dependability Attributes. Dependability is measured against the following
criteria: Availability - readiness for correct service; Reliability - continuity of cor-
rect service; Safety - absence of catastrophic consequences on the user(s) and the
environment; Integrity - absence of improper system alterations; Maintainability
- ability to undergo modifications and repairs.

Threats to dependability. A failure is an event that occurs when the delivered
service deviates from correct service (service does not comply with functional
specification). It is a transition from correct service to incorrect service. A service
failure means that one or more of external service states deviates from the correct
service state. The deviation is called an error. An error is a part of the total
state of the service that may lead the system to its subsequent service failure. A
fault is the cause of an error.

Means to attain dependability. Fault Prevention encompasses the improve-
ment of development processes in order to reduce the number of faults intro-
duced in the produced systems. Fault Tolerance aims at failure avoidance and is
carried out through error detection and system recovery. Fault Removal occurs
during system development or during system use. Fault Forecasting consists in
evaluating the system’s behaviour with respect to fault occurrence.

Resilience. In a recent paper, Laprie [3] provides an insight into the notion of
resilience and its relationship with dependability. The considered systems are

256 G. Di Marzo Serugendo

ubiquitous systems and the main point is to maintain dependability in spite of
continuous changes. Resilience is then defined as the persistence of dependability
when facing changes.

Self-organizing systems permanently face changes; this definition of resilience
thus applies directly to self-organizing systems.

3 Self-Organizing Systems

Self-organizing applications are applications generally made of multiple auto-
nomous entities with a knowledge limited to their local environment and that
locally interact (directly or indirectly) to produce a result. Autonomous entities
usually work in a decentralised manner, the global behaviour (function) gener-
ally “emerges” from the local interactions of the different entities. The entire
“global” function is encoded in none of the individual entities. The result is gen-
erally obtained when the system reaches, converges to, a stable state. Typical
examples of natural self-organizing system include swarms (ant, flocks of birds,
wasps, etc.), immune system, human social behaviour (markets, trust, gossip).
Artificial (engineered) systems include unmanned vehicles, swarms of robots,
P2P systems, immune computer or trust-based access control.

3.1 Design Elements

Our discussion starts with the following consideration driven by design con-
cerns [5,6]. The elements of a self-organizing (SO) system are: the environment
in which it evolves (operating system, physical world, or network), the autono-
mous individual active entities - the agents - that constitute the system itself
(software agent, robots, peer nodes), the self-organizing mechanism defining the
rules (all) the agents apply (continuously) when evolving in the environment
and letting them (re-)organise in case of changes or failures, and the artifacts,
which are the passive entities maintained by the environment, created, modified
and/or sensed by the agents (e.g. digital pheromone spread in the environment
or information exchanged among agents).

SO System = Environment + Agents + SO Mechanism (rules) + Artifacts

Agents evolve into an environment, which they use to interact and carry on
their behaviour. The boundary between an agent and its environment must be
identified, but may vary from system to system. Depending on the system, it may
be more convenient to consider an agent as a piece of software and everything
else as its environment (in particular the underlying operating system or the
node the agent is residing in). In other cases, it is more convenient to consider
the agent as the combination of the piece of software and the node it is executing
in. This is the case, when the agent is an autonomous (maybe mobile) robot,
or when the agent is a node itself. Artificial systems usually take inspiration
from nature - the SO mechanism being an ad hoc translation of the natural SO
mechanism.

Robustness and Dependability of Self-Organizing Systems 257

Sections 5 provides an example of SO Systems (stigmergy) identifying the
environment, the agents, the SO mechanism, the artifacts together with examples
of respective failures. Babaoglu et al. [7] describe this mechanism as well as others
under the form of patterns and analyse in details these mechanisms and their
corresponding implemented algorithms. Additional patterns for self-organisatin
can be found in [8].

3.2 Types of Faults in SO Systems

In order to identify faults arising in a SO system, it is then convenient to consider
faults (individually or as a combination) arising from each of these elements, i.e.
faults from the environment, from the agents, from the SO mechanism itself, or
from the artifacts, as shown in Figure 1.

Environmental Faults include all network related faults and communication
faults arising among the agents; operational faults of the computing entities
(nodes) present in the environment; any storage related fault (database, mem-
ory problem) affecting agent programs or artifacts; as well as any faults from
the physical world in which the agents evolve (hole in the ground, unexpected
obstacle). Environmental faults are a type of Interaction faults, more precisely
they are System Boundaries faults (External faults), those that ”originate out-
side the system boundary and propagate errors into the system by interaction
or interference”.

Agents Faults cover development faults affecting agent code and behaviour;
when the node, in which the agent program resides, is considered part of the
agent, then node faults are also Agents faults. We distinguish those faults from
the ones directly affecting sensing and acting capabilities of the agents (vision
camera fault or robot arm fault). Finally, an agent can be maliciously faulty.
Agents faults may be Physical faults (hardware or software fault) and/or Devel-
opment faults introduce during the system development. Agents interact with

Fig. 1. Characterisation of Types of Faults in SO Systems

258 G. Di Marzo Serugendo

each other directly or indirectly through the environment. Agents faults may
then also contribute to Interaction faults. Both Environmental and Agents faults
may be the result of some malicious intent.

SO Mechanism Faults are Development faults, essentially due to errors in the
design and implementation of the SO mechanism rules.

Artifacts Faults are all those faults affecting the integrity of the artifacts.
Artifacts faults are likely to be caused by the Environment, the Agents or the
SO Mechanism, since Artifacts themselves are essentially passive. We consider a
fault to be an Artifact fault when it affects an artifact - through uncorrect modi-
fication, destruction, production or management of the artifact. For instance, an
artificial pheromone whose evaporation rate is different than the expected one
or that suddenly dissapears is an Artifact fault, in this case mostly caused by
the Environment.

Environment and Agent faults may be either permanent or transient, while
SO Mechanisms faults are permanent.

3.3 SO Systems Properties

We identify here the properties of self-organizing systems (Figure 2) that have
to be questioned for the types of faults identified above.

Invariants. An invariant is any property that must be satisfied by the system
at all time, i.e. it must be true at any state of the system.

SO Systems Robustness Attributes. Convergence. An important property
of SO systems is whether the system actually converges towards the intended goal
(correct value). Speed of convergence. How quickly does the system reaches its
goal? Stability. Once the goal is reached, does the system maintain it? Scalability.
How is the system affected by the number of agents and artifacts?

Dependability Attributes. These are the dependability attributes listed in
Section 2: Availability, Reliability, Safety, Integrity, Maintainability.

Fig. 2. SO Systems Properties

Robustness and Dependability of Self-Organizing Systems 259

4 Normal vs. Self-Organizing vs. Resilient

4.1 Dependability at Run-Time - Traditional Systems

Figure 3 (a) sketches the normal vs abnormal states in ”traditional” systems
(where no SO mechanism is involved). As discussed in Section 2, the means
to reach dependability at run-time are: fault tolerance, fault removal and fault
forecasting. In each case, this consists in identifying the error state and under-
taking appropriate steps so that the system goes back to a normal state. The
Normal operational mode of these systems occurs when the system is not in an
error state. An identified error state triggers appropriate techniques (exception
handlers, patches, etc.) to bring the system back to normal. Dependability thus
extends to include all those error states. When the system cannot be brought
back to normal, then the error state leads to a Failure, where the fault causing
the error cannot be recovered.

4.2 Resilience at Run-Time - Self-Organizing Systems

The main difference between ”traditional” systems and SO systems resides in the
fact that an SO system recovers from an error without error detection, i.e. without
specifically identifying an erroneous state and applying a specific recovery action.

Figure 3 (b) shows the different states of a SO system. Normal represents
the ideal mode of operation of the system. The one when none of the faults
discussed in Section 3.2 occur. Self-* includes all the changes that the system
overcomes without changing its mode of operations. These changes occur from
the faults identified above. The SO system does not identify these changes as
errors, it just carries on with its normal behaviour (that is why we do not call
them errors). This is the area where the SO mechanism is enough to overcome
the perturbation. In fact the Normal states could extend to the Self-* ones. A SO
mechanism has its limits, i.e. there are cases where carrying on as usual doesn’t
solve the problem (e.g. system does not converge or is unstable). Resilience thus
refers to all the states where the SO system actually identifies an error and

(a) Traditional Systems (b) SO Systems

Fig. 3. Systems’ States

260 G. Di Marzo Serugendo

specifically and punctually applies a recovery action. The system goes back to
the Self-* area again, where the usual SO mechanism rules apply. Finally, Failure
refers to all the cases where the error cannot be recovered.

4.3 Analysis of Robustness and Dependability

In order to analyse robustness and dependability of SO systems, we need to
determine which perturbations (change or fault) lead to which property being
violated.
Properties. We consider the following properties:

Properties = Invariants - Robustness Attributes - Dependability Attributes

Invariants are all the invariant properties that the SO system has to preserve
during its execution. Robustness attributes are convergence, speed of conver-
gence, stability, and scalability (discussed in Section 3.3). Dependability at-
tributes are availability, reliability, safety, integrity, maintainability (discussed
in Section 2).

Perturbations. As we have seen above, the design elements of a SO system are
the Environment, Agents, SO mechanism and Artifacts. The perturbations are
any faults / changes / threats the system is likely to undergo originating from
these elements (discussed in Section 3.2).

Perturbation = Changes or Faults in:
Environment - Agents - SO Mechanism - Artifacts

Analysis. Similarly to the FMEA technique, the designer needs to question
each element of the design (environment, agents, SO mechanism and artifact),
establish for each of them any potential fault or change that can actually occur,
and determine its impact on the properties listed above.

Analysis = for all Design Elements
for all Changes and Types of Faults

if change / fault can happen
is any Invariant modified?
is any Robustness Attribute affected?
is any Dependability Attribute affected?

An example of such a questioning could be:

”Is it possible that in the considered system the environment behaves mali-
ciously, if yes then:

– how is this affecting any invariant property (e.g. the value of a sum that
has to be computed),

– how is this affecting any robustness property (e.g. will the system still
converge and at which speed), and

Robustness and Dependability of Self-Organizing Systems 261

– what is the impact on any dependability attribute (e.g. is the service
provided by the system always available or will there be disruptions)?”

Different faults, originating from different elements of the design, may have simi-
lar effects. For instance, a fault compromising the integrity of an artifact may be
due to a fault in the environment (responsible to maintain the artifact), or to a
malicious agent or to the artifact itself. In order to correct the fault, it becomes
important to determine the origin of the fault by identifiyng the appropriate
design element responsible for the fault.

Once a change or fault and its effect is identifed, a mean to attain dependabil-
ity has to be identified through design change or additional resilience mechanism
(see below).

4.4 Means to Attain Dependability in SO Systems

Let us discuss here the four means to attain dependability, as identified by
Avizienis et al. and reported in Section 2, for the specific case of self-organizing
systems (Figure 4).

Fault prevention. The design of self-* algorithms can be verified, to some
extent, with mathematical analysis, but simulations are the most preferred tool
at the moment.

Fault tolerance. For ”traditional” software, fault tolerance consists in detecting
an error and subsequently recovering from that error (with a bunch of diverse
techniques). As said above, this is where SO systems differ from ”traditional”
software. We distinguish two levels.

First, the intrinsic fault-tolerance: the SO mechanism is robust enough to
recover from errors without explicitly detecting an error and subsequently recov-
ering from it. The SO system then ”naturally” recovers from states which are
not part of the ideal mode of operation. If a source of food suddenly disappears
in an ant-based system, the SO system just carries on exploring the environment
for food until the system finds another source. The disappearance of the food

Fig. 4. Means To Attain Dependability in SO Systems

262 G. Di Marzo Serugendo

does not trigger any specific error, the system continues to run as in the normal
case and just recovers (Self-* in Figure 3).

Seond, similarly to fault tolerance in traditional software, the Resilience case
expresses the limits of the SO mechanism to recover from errors. This is similar to
”traditional” software: errors are detected (locally or globally) and appropriate
measures apply in order to tackle the error. Policies or punctual rules then apply
in order to recover from the error. These rules are different from the rules of the
SO mechanism that are applied permanently by the entities of the system.

Fault removal. This encompasses: enhanced SO mechanisms with policies be-
coming part of the rules, or modified rules (so that what was before an error
is now part of the normal operational behaviour); on-the-fly changes, such as
switching among different SO mechanisms (rules) or adapting the rules, depend-
ing on the environmental conditions, or replacing outdated SO mechanism or
policies with new ones on the fly during system execution.

As an example of enhanced SO mechanisms, we can mention the case of opti-
misation problems. The original Particle Swarm Optimisation algorithm detects
one static optimum only, but is not able to cope with multiple or dynamic op-
timums. QSO is an algorithm that overcomes this problem, but still there is
the problem of the swarm getting stuck in one optimum [9]. Multi-swarm is a
solution to this that allows to find all optimums [10].

Fault Forecasting. This is similar to the Resilience case, through monitoring,
exceeded thresholds are identified and policies punctually recover before the
system reaches an error state.

5 Stigmergy - Ant-Based System

This example is a simulation of an ant colony foraging (see Figure 5 (a)).

SO System Elements. The environment is the physical world where ants
evolve, where their nest is positioned, and where food is available. Ants deposit
pheromone in the environment for marking paths food. The nest diffuses also a
scent which helps the ants go back home with pieces of food. The agents are the
ants. The SO mechanism works as follows:

– Ants are either looking for food, or going back to the nest once they have
found food.

– When looking for food, ants leave the nest and walk randomly until they
sense a pheromone scent in their locality. They then move in the direction
where the pheromone scent is stronger.

– When they have found food, ants go back to the nest following the nest’s
scent. They follow the nest’s scent in the direction where it is stronger.

– When they go back to the nest with food, they drop a pheromone scent
at each step. This pheromone scent adds up to any other pheromone scent
already present at the same place.

Robustness and Dependability of Self-Organizing Systems 263

Finally, the artifacts are: the nest (in the center), the three food sources (upper-
left corner, bottom-left corner and middle-right), pheromone scent (marking the
path from food to nest) and nest’s scent. The pheromone has an evaporation
rate (how long it lasts) and a diffusion rate (how far it can be sensed). The
pheromone is updated regularly by the environment (diffused and evaporated).

As we see from this description, the environment plays an important role when
the SO system employs a SO mechanism using indirect communication such as
stigmergy. Agents rely strongly on the environment and an Environmental faults
can lead to a failure. In this example, the environment must host the pheromone
and update it properly.

This system has no particular invariant, we list here the robustness attributes.

SO Systems Robustness Attributes. They are as follows:

– Convergence takes two dimensions here.
Exploration: ants explore their environment properly - entirely and regularly
- so as to spot any source of food.
Exploitation: ants eventually bring back all the food to the nest.

– Speed of convergence:
Exploration: how quickly ants can spot a new source of food once the current
one is exhausted; Exploitation: how efficiently they can get the whole source
back to the nest.

– Stability: ants focus on exploiting a source of food.
– Scalability: convergence and speed of convergence are not affected by the

number of ants

We started from the original simulation of [11], which is part of the NetLogo
package. We altered it so as to insert different types of faults. We report here
on some experiments we made in order to illustrate our discussion. A thorough
investigation of the algorithm would require more experiments and precise mea-
surements.

Real world applications taking advantage of stigmergy include static and dy-
namic optimisation problems as well as coordination of unmanned vehicles [12].

5.1 Environmental Faults

Ants disappear (or die). The system continues finding food, it converges but at
a slower pace. If the number of agents is very low, then the pheromone path is
not maintained and exploitation is less efficient, stability is compromised, but
all food is eventually retrieved (Figure 5 (b)). This is similar to an agent crash
and can also be seen as an Agent Fault.

Obstacle (Physical World). An obstacle (hole or rock) is now part of the envi-
ronment mid-way between the upper-left source of food and the nest. The nest’s
scent on the obstacle is very low. Agents lay down the pheromone around the
obstacle, thus adapting the path to find the food (Figure 5 (c)). None of the
properties seems to be affected by this fault.

264 G. Di Marzo Serugendo

(a) Normal (b) Ants Die (c) Obstacle

Fig. 5. Normal Behaviour and Environmental Faults

5.2 Agents Faults

Malicious agents. A subset of agents (25%) are not looking for food, but deposit
pheromone at the wrong place (25% or 100% of the time) Depending on the
quantity of wrongly added pheromone, paths to the food are more or less com-
promised (speed of convergence is slower and lack of focus on a source of food
compromises stability). The system eventually converges and exploits all food.
(Figure 6 (a) and (b)).

No Pheromone. Agents look for food, bring it to the nest, but do not deposit
pheromone at all. Agents just look for food at random. All food is eventually
retrieved but slowly. This is similar to the evaporation rate of the pheromone
that is too quick.

5.3 SO Mechanism Faults

Pheromone Scent. Agents take a wrong direction when detecting the pheromone
scent. As a result, agents avoid the paths leading to the food. Paths tend to

(a) Malicious
Agents

(b) Malicious
Agents

(c) Wrong
direction -
Pheromone

(d) Wrong di-
rection - Nest

Fig. 6. Agents and SO Mechanism Faults

Robustness and Dependability of Self-Organizing Systems 265

disappear. There is no systematic exploitation. Food is eventually brought back
to nest, but the system converges slowly (Figure 6 (c)).

Nest’s Scent. Agents take a wrong direction when detecting the nest’s scent.
Agents avoid the nest, do not find it, cannot deposit food and remain stuck at
the opposite of the nest. The system does not converge at all (Figure 6 (d)).

5.4 Artifacts Faults

Evaporation rate of pheromone. Rate of 0% (or too slow): the pheromone scent
does not evaporate (or not quickly enough), it stays where it has been laid
down. The environment gets filled with pheromone, the ants continue following
the paths even when food is exhausted. The system converges (it eventually
retrieves all the food), but exploitation is not efficient (Figure 7 (a)). A small
evaporation rate (above 6%) is enough for maintaining the paths without filling
the environment with unnecessary scent. Rate of 100% (or too quick). Pheromone
evaporates before ants can build a path and maintain it. Similarly to above, the
system converges but is not efficient (speed is slow and stability is compromised).

Diffusion rate of pheromone. Rate of 0% (or too thin): the paths are thin and
do not build up fully. A small rate (10%) is enough to construct solid paths
(Figure 7 (b)). Rate of 100% (or too large): paths are large, ants do not go
straight to food.

Nest’s scent. The environment disperses the nest scent. In the simulation we
first put random values instead of increasing values leading to the nest. Ants
do not find the nest quickly anymore. Pheromone scent starts filling the whole
environment. Efficient exploitation is compromised, but ants eventually exhaust
all the food. Second, the nest’s scent is randomised in a restricted portion of the
environment, between the upper-left corner source of food and the nest, that
portion of the environment is filled with pheromone (Figure 7 (c)). Efficient
exploitation is compromised, but ants eventually exhaust all the food.

(a) Evapora-
tion Rate -
Slow

(b) Diffusion
Rate - Thin

(c) Nest Scent

Fig. 7. Artifacts Faults

266 G. Di Marzo Serugendo

Food disappearance. This is a case of a change in the environment instead of a
fault. After a short while the pheromone leading to the disappeared source of
food vanishes, the ants just continue looking for food as usual, find and exploit
other sources of food.

5.5 Analysis of Resilience

This example has no invariants, we discuss here robustness attributes; depend-
ability attributes are discusssed in the next section. There are basically 3 cate-
gories of perturbations that affect robustness attributes: those that affect speed
of convergence and stability (ants are moving randomly or not focusing on a
source of food, thus taking longer to exhaust it); those that do not particularly
affect the system (paths are maintained); and those that compromise conver-
gence. Globally, we can say that when the system converges with a convenient
speed of convergence and stability behaviour, it behaves normally (Normal box
of Figure 3(b)). When the system eventually converges (despite slow speed of
convergence and/or instability), the SO mechanism succeeded in overcoming the
perturbation (Self-* box of Figure 3(b)). If the system does not converge, an
invariant is not preserved, the speed of convergence is too slow to be acceptable
or if the instability becomes an issue, then we reach the limits of the ”natu-
ral” robustness. Extra resilience is needed to support the SO mechanism. For
instance, in the case of the ants, they may detect that they do not follow a path
but go at random, and may decide to lay down another type of pheromone. This
could overcome malicious ants trying to confuse them with pheromone deposited
at the wrong place. Regarding scalability, a low number of ants affects speed of
convergence and stability, while a large number helps building paths to find food.
A large number of sources of food scattered all over the environment may also
affect speed of convergence and stability.

6 Discussion

From the examples we have investigated so far, we can draw the following pre-
liminary conclusions regarding the robustness and dependability attributes.

Invariants and Robustness. Convergence and invariants are key elements to
determine the dependability limits of an SO system. A system that converges
and maintains its invariants despite perturbations ”naturally” overcomes those
perturbations. An SO system needs additional resilience techniques when con-
vergence cannot be reached, invariants are not satisfied, or speed of convergence
and stability are not acceptable.

Availability. SO systems are always ready to work, but the service they pro-
vide may not be correct at first. It may take a certain time before the system
converges.

Reliability. SO systems usually imply latency. Therefore, reliability is not nec-
essarily ensured: a service is (necessarily) discontinued while the SO system

Robustness and Dependability of Self-Organizing Systems 267

re-organises/adapts to the new conditions. It may not stop, but will not be
correct.

Safety. SO systems usually overcome a large range of changes/faults. However,
the adaptation may imply latency. During this period, safety may not be guar-
anteed. In addition, in some cases the SO system is at a loss of overcoming the
problem and may get stuck in a bad situation.

Integrity. Artifacts are at a high risk of integrity concerns/issues. They are not
necessarily equipped with specific protection and are vulnerable because agents
need the environment to exchange them, to modify or maintain them. Agents
themselves are also at risk of integrity: they depend on the environment for their
execution, their data or their physical movements.

Maintainability. We have seen that SO systems naturally adapt to changing
software / hardware on-the-fly. In the case of SO system, we can contemplate
changes at each level: changes in the environment, the agents, the SO mechanism
and the artifacts in order to determine the maintainability level of the system.

7 Conclusion

This paper discusses the notions of robustness and dependability in the context
of self-organizing systems. It proposes to analyse robustness and dependability
by identifying perturbations (changes or faults) arising from each design element
and studying their impact on invariants, robustness and dependability proper-
ties. Many research issues related to dependability of SO systems need to be
investigated. Among others testing and formal verification of SO systems, or
fault removal on the fly, which has not received much attention yet (e.g. switch-
ing SO mechanism, adapting the rules, applying specific policies to SO systems).

Acknowledgements

The author thanks John Fitzgerald for fruitful discussions on dependability and
resilience as well as the anonymous reviewers for their feedback and comments
on the paper.

References

1. Alderson, D.L., Doyle, J.C.: Can complexity science support the engineering of
critical network infrastructures? In: IEEE International Conference on Systems,
Man and Cybernetics, SCM 2007 (2007)

2. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Transactions on Dependable and
Secure Computing 1(1), 11–33 (2004)

3. Laprie, J.C.: From dependability to resilience. In: IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN 2008 - Fast Abstracts) (2008)

268 G. Di Marzo Serugendo

4. Anderson, T. (ed.): Resilient Computing Systems. Collins (1985)
5. Ricci, A., Viroli, M., Omicini, A.: Programming MAS with artifacts. In: Bordini,

R.H., Dastani, M.M., Dix, J., El Fallah Seghrouchni, A. (eds.) PROMAS 2005.
LNCS (LNAI), vol. 3862, pp. 206–221. Springer, Heidelberg (2006)

6. Picard, G., Gleizes, M.P.: The ADELFE Methodology-Designing Adaptive Coop-
erative Multi-Agent Systems. In: Bergenti, F., Gleizes, M.P., Zambonelli, F. (eds.)
Methodologies and Software Engineering for Agent Systems, pp. 157–175. Springer,
Heidelberg (2004)

7. Babaoglu, O., Canright, G., Deutsch, A., Di Caro, G., Ducatelle, F., Gambardella,
L., Ganguly, N., Jelasity, M., Montemanni, R., Montresor, A., Urnes, T.: Design
patterns from biology for distributed computing. ACM Transactions on Autono-
mous and Adaptive Systems 1(1), 26–66 (2006)

8. De Wolf, T., Holvoet, T.: Design patterns for decentralised coordination in self-
organising emergent systems. In: Brueckner, S.A., Hassas, S., Jelasity, M., Yamins,
D. (eds.) ESOA 2006. LNCS (LNAI), vol. 4335, pp. 28–49. Springer, Heidelberg
(2007)

9. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization - an overview.
Swarm Intelligence 1, 33–57 (2007)

10. Blackwell, T., Branke, J.: Multiswarms, exclusion, and anti-convergence in dynamic
environments. IEEE Transactions on Evolutionary Computation 10(4), 459–472
(2006)

11. Wilensky, U.: NetLogo Ants model. Center for Connected Learning and Computer-
Based Modeling. Northwestern University, Evanston (1997),
http://ccl.northwestern.edu/netlogo/models/Ants

12. Sauter, J.A., Matthews, R., Parunak, H.V.D., Brueckner, S.A.: Performance of digi-
tal pheromones for swarming vehicle control. In: 4th International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2005), The Netherlands,
pp. 903–910. ACM, New York (2005)

http://ccl.northwestern.edu/netlogo/models/Ants

	Robustness and Dependability of Self-Organizing Systems - A Safety Engineering Perspective
	Introduction
	Dependability and Resilience
	Self-Organizing Systems
	Design Elements
	Types of Faults in SO Systems
	SO Systems Properties

	Normal vs. Self-Organizing vs. Resilient
	Dependability at Run-Time - Traditional Systems
	Resilience at Run-Time - Self-Organizing Systems
	Analysis of Robustness and Dependability
	Means to Attain Dependability in SO Systems

	Stigmergy - Ant-Based System
	Environmental Faults
	Agents Faults
	SO Mechanism Faults
	Artifacts Faults
	Analysis of Resilience

	Discussion
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

