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A method fragments approach to methodologies for engineering
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This article summarises five relevant methods for developing self-organising multi-agent systems. It identi-
fies their most relevant aspects and provides a description of each one under the form of method fragments
expressed using SPEM (Software & System Process Engineering Meta-Model). The use of a “meta-model”
to describe fragments facilitates the comparison of the methods and their respective fragments. These frag-
ments can be combined and be part of a more general ad hoc methodology, created according to the needs of
the designer. Self-organising traffic lights controllers and self-organising displays are chosen as case stud-
ies to illustrate the methods and to underline which fragments are important for self-organising systems.
Finally, we illustrate how to augment PASSI2, an agent-based methodology which does not consider self-
organisation aspects, with some of the identified fragments for self-organisation.

1. INTRODUCTION
Nature provides many examples of self-organising systems: from non-living systems
(e.g. Bénard convection cells, crystal growth formation, glass cracks, sand dune rip-
ples, mud cracks) to living systems, such as biological processes of pattern formation
(e.g. zebra stripes, giraffe coat patterns, vermiculated rabbit fish, cone shells, plants
patterns) and collective behaviour (cells and immune system, social insects [swarms]
or human behaviour: social networks, small worlds, markets, game theory), etc.

These systems demonstrate desirable complex properties such as robustness, re-
silience or self-reconfiguration, while the individual entities forming these systems are
relatively simple. A large body of work has focused on translating self-organisation
mechanisms such as stigmergy, swarm behaviour, firefly synchronisation, trust, etc.
into artificial systems. Artificial (engineered) systems, made of relatively simple indi-
vidual entities interacting with each other and their environment then produce results
that go beyond the individuals’ behaviour.

Although they act as proofs of concepts, some of these examples remain ad hoc so-
lutions, usually highly dependent on finely tuned parameters. In order to convince
potential industrial buyers of such technologies, more systematic development and
validation techniques are necessary.

The aim of this article is to report on current development methods specifically ad-
dressing self-organisation aspects. It identifies relevant features of each method and
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provides corresponding fragments described using SPEM (Software & System Process
Engineering Meta-Model). Acting as a common language, SPEM is useful to express
features of different methods in a common formalism. This allows the comparison and
possible composition of features from different methods. Moreover the use of fragments
is useful to underline, identify and analyse in details, the self-organisation features
used in each method. According to their needs, developers can reuse fragments for
self-organisation in their own methods, to create a better self-organising system.

Organisation of the article:
In section 2, we briefly introduce our working definitions of self-organisation and emer-
gence, and then proceed to section 3 by presenting the concept of method fragments for
analysing and composing methodologies. Section 4 describes two case studies that we
will later use to illustrate the reviewed development methods. We then investigate
five software engineering methods (sections 5 to 9), which explicitly address the de-
velopment of self-organising systems. We report on the case studies applications as
well as the most relevant fragments. In section 10, we extract, analyse and compare
the most relevant fragments from each method, and then, in section 11, we create the
foundations for composing customised ad hoc methodologies and we illustrate how to
augment the PASSI2 (evolution of PASSI) methodology with self-organising features.
Conclusions follow in section 12.

2. SELF-ORGANISATION AND EMERGENCE
The scientific community has suggested many different definitions of self-organisation
and emergence. We report on a selection. It is not within the scope of this article
to review the literature on self-organising systems. The interested reader may refer
to [Bonabeau et al. 1999] and [Camazine et al. 2001].

In a definition inspired by swarm intelligence, self-organisation can be seen as ’a set
of dynamical interactions whereby structures appear at the global level of a system
from interactions among its lower-level components. (...) The rules specifying the in-
teractions are executed on the basis of purely local information, without reference to
the global pattern’ [Bonabeau et al. 1999].

A more general definition addressing engineered systems is: ’Self-Organisation is
the mechanism or the process enabling a system to change its organisation without
explicit external command during its execution time’ [Di Marzo Serugendo et al. 2005].

In [De Wolf and Holvoet 2005] we find: ’Self-organisation is a dynamical and adap-
tive process where systems acquire and maintain structure themselves, without ex-
ternal control.’ A system described as self-organising in [Gershenson 2007] is one ’in
which elements interact in order to achieve dynamically a global function or behaviour.’
In an engineered self-organising system ’the elements are designed to dynamically and
autonomously solve a problem or perform a function at system level.’

The definition of emergence is more controversial than the definition of self-
organisation. Consider the following: ’An emergent phenomenon is a functionality,
structure/organisation, characteristics or property of a system not explicitly coded in
the local components, visible by an observer at the macro-level but not necessarily at
the micro-level’ [Di Marzo Serugendo et al. 2005]. Similarly, ’a system exhibits emer-
gence when there are coherent emergents1 at the macro-level that dynamically arise
from the interactions between the parts at the micro-level. Such emergents are novel
with regard to the individual parts of the system’ [De Wolf 2007].

For some researchers, the concept of emergence is strongly connected to self-
organisation. According to [Camazine et al. 2001]: ’Self-organisation is a process in
which pattern at the global level of a system emerges solely from numerous interac-

1The term emergents refers to the emerging phenomenon, independent from its nature.
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Fig. 1. Self-organising systems

tions among the lower-level components of the system. Moreover, the rules specifying
interactions among the system’s components are executed using only local information,
without reference to the global pattern.’

A view focusing on evolutionary aspects is presented in the Principia Cybernetica
Web [Heylighen 1999], clarifying that self-organisation is different from emergence:

’Self-organization is a process where the organization (constraint, redun-
dancy) of a system spontaneously increases, i.e. without this increase being
controlled by the environment or an encompassing or otherwise external
system. Self-organization is basically a process of evolution where the effect
of the environment is minimal, i.e. where the development of new, complex
structures takes place primarily in and through the system itself.’

2.1. Engineering self-organising systems
It is intuitive to think of the active elements that compose an artificial self-organising
system as autonomous agents [Wooldridge 2002]. Agents follow local rules that apply
on the basis of local information. These rules may be fixed or can evolve as the sys-
tem executes. These rules constitute the self-organisation mechanism that drives the
behaviour of the system in a decentralised way. Agents are embedded into an environ-
ment. They have a certain degree of autonomy, pro-activity and ability to interact with
each other and the environment.

Self-organising systems are thus composed of the following ’ingredients’: agents, self-
organisation mechanisms and a dynamic environment [Di Marzo Serugendo 2009]. The
environment plays a very important role in self-organising systems because it provides
events that perturb the system and thus lead it to change its behaviour.

Figure 1 shows how the engineering of self-organising systems usually takes inspi-
ration from natural self-organising systems. Their behaviour follows self-organisation
mechanisms used as metaphors to derive / translate self-* mechanisms for artificial
systems, taking into account any constraint related to the artificial system to build.

The engineering process includes: designing and implementing agents, considering
the environment, establishing the system architecture, selecting / designing and im-
plementing self-organising mechanisms, using a development method for modelling
and simulation.

3. METHOD FRAGMENTS
Different existing methodologies can be helpful to build a multi-agent system, but not
every methodology provides a solution to any problem in any context. A methodology
may be so focused on a specific problem that it is difficult to reuse the same methodol-
ogy for different cases; on the other hand, methodologies may also be too generic to be
easily applicable. It is therefore convenient to join method parts or reusable fragments
from existing methodologies. This combines the designer’s need for a specific method-
ology with the advantages and the experience of existing and documented methodolo-
gies.
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Method fragments are process parts in which every methodology can be decomposed.
Different definitions or notions of fragments exist:

According to [Brinkkemper et al. 1998], a method fragment is a coherent piece of in-
formation system development. Two types of method fragment exist: the process frag-
ment that describes stage, activities and tasks; and the product fragment that concerns
the structure of a process product (deliverables, diagrams, etc.).

Method chunk [Ralyté and Rolland 2001] defines a fragment as a consistent and
autonomous component that represents a portion of process and its resulting work
products. It is represented using a meta-model (UML – Unified Modelling Language –
notation) composed of two parts: the process aspect and the product aspect.

The OPEN Process Framework (OPF) method fragment [Firesmith and Henderson-
Sellers 2002] is based on the object-oriented process, environment, and notation
(OPEN) approach, and it is generated and stored in a repository with all its guide-
lines based on the OPF meta-model. This approach considers five meta-classes that
produce a method fragment (process or product fragment).

The FIPA method fragment2 is a reusable part of a design process composed of a
set of activities performed by process roles in order to produce a kind of artefact (work
product). It is based on the process description model from the OMG SPEM (Software
& Systems Process Engineering Meta-Model)3 and uses the related notation.

In this article, we use the FIPA fragment type because it adopts the use of SPEM,
which is more suitable for describing methodologies and integrating different frag-
ments. SPEM is defined as a meta-model used to define systems development pro-
cesses and their components. It uses UML as a notation and takes an agent-oriented
approach. Its main goal is to accommodate a large range of development methods and
processes (fragments) of different styles, ideological background, levels of formalism,
etc. The SPEM specification is structured as a UML profile, and provides a complete
Meta Object Facility (MOF)4 based meta-model [Object Management Group 2002].
UML diagrams facilitate the integration of fragments from different methodologies.
SPEM helps describe method fragments which can then be chosen according to spe-
cific needs, and, using the UML notation, act as a common language (even though it
cannot be defined as a language itself), helping compare fragments. A standard nota-
tion is the best way to enable the reuse of methodology fragments.

Furthermore, the choice of FIPA fragments is supported by the following: 1) The
other fragment approaches consist of mere guidelines to define fragments, but it is
left to the designer to decide how to write a fragment. This may lead to a weakly
structured approach. 2) Contrary to other approaches, SPEM leads to homogeneous
fragments, which can be used like a language. 3) SPEM is well-suited for agent-based
methods.

The work described in this article was initiated in spring 2008. At this time, SPEM
version 2.0 was in its preliminary state and not stable yet. This is why the described
fragments follow SPEM v1.0.

A fragment, as we use it, is a subset of the following elements:

— A portion of a process, defined by a SPEM diagram.
— Deliverables which permit process reconstruction. They include references to a rec-

ommended notion/language/structure to be used for representation.
— Preconditions which represent constraints for the system.

2http://www.fipa.org/activities/methodology.html
3http://www.omg.org/spec/SPEM/
4http://www.omg.org/spec/MOF/2.0/
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— A list of concepts (related to the methodology’s meta-model) to be defined (designed)
or refined during the use of the process fragment.

— Guidelines for the fragment application and related best practice.
— A glossary of terms used.
— Composition guidelines: descriptions of the context/problem that is behind the source

methodology.
— Aspects of fragment: textual descriptions of special issues.
— Fragment dependency relationships useful to assemble fragments.

When presenting fragments, we use the following abbreviations: DL for deliverables
which are the output of a fragments, PC for preconditions which are the inputs of a
fragment, and GL for guidelines which help the user apply the fragment under the
correct conditions. The black dot stands for the starting point of the considered frag-
ment, and the circled black dot stands for end of the fragment. We can see an example
of fragment and its notation in Figure 4.

4. CASE STUDIES
To illustrate how the main aspects of the methods presented in sections 5 to 9 apply to
concrete examples, we consider the following two case studies.

4.1. Traffic lights control
The system is composed of cars and traffic light controllers (TL). The global goal of
the system is to optimise traffic throughput. Cars need to reach their destination as
fast as possible without stopping; TLs need to allow vehicles to travel as fast as pos-
sible while mediating their conflicts for space and time at intersections. Traffic lights
are independent of each other but may communicate with each other, and the global
system behaviour will appear from the traffic flow of the whole system. TLs have in-
formation on their local neighbourhood, such as the number of cars on the local lanes.
We consider traffic lights, disposed in a grid as shown in Figure 2(a). To simplify, cars
travel along horizontal and vertical lines only. TLs synchronise with each other using
the traffic flow information given by cars that pass by. Although simple, we chose this
example as it was one of the first used to illustrate methodologies for self-organising
systems [Gershenson 2007].

4.2. Self-organising displays
The system consists of networked displays, where the term display includes different
types of screens and speakers. The displays are in charge of dynamically and adap-
tively providing images, sound and information, in a coordinated and context-aware
manner. All users have their own displays, which accompany them everywhere, but
there are also static displays in the environment. When the user needs to reach a goal
(e.g. watch a movie or video-clip, listen to music or send an e-mail), the displays in
the local environment can compose their services to best serve the user. Displays can
interact with each other and coordinate what to disseminate and how to disseminate
it, as they can exist individually or in aggregation with others.

A take-over scenario is illustrated in Figure 2(b): a user enters a room while
watching a movie on its personal play station portable (PSP). In the room, there are
displays of various types. As the user enters, the PSP starts communicating with the
available displays and eventually finds partners for composition: an LCD screen may
show the movie, while the hifi-speakers provide enhanced sound quality. The PSP re-
mains available with its command function, for the user to control the playing of the
movie. Once the user has left the room, the composition dissolves and the PSP returns
to being the only device playing the movie.
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(a) Traffic lights case study (b) Self-organising displays case study

Fig. 2. Case studies

For this case study we make the following assumptions:

— Every user carries computing power in the form of a PSP or similar;
— Every PSP and every display is connected to a wireless communication network.

Possible display states are:

— disconnected from the network (no power supply, no network connection);
— connected to the network and:

— available for composition (if compatible and idle / alone);
— unavailable for composition (incompatible or occupied);
— failing.

We consider the following cases: Self-adaptation: For adaptive interaction with
the user, displays have to spontaneously react to the specific profile of users nearby,
without human configuration. Self-management: Displays in the environment can be
added, removed, changed or updated. Some of them may fail. Interoperability and
composability: The system has to compose itself considering the interoperability of
the accessible devices. A composite device must be able to act as a single logical display
while being composed of several ones.

The following sections detail the considered software engineering methods and how
they can be exploited to address the presented case studies.

5. ADELFE
Adelfe [Bernon et al. 2005] is an agent-based development methodology targeting self-
organising systems with decentralised control and emergent functionality. It is based
on UML (Unified Modelling Language) and AUML (Agent-UML) [Odell et al. 2001],
and proposes a design process based on the RUP (Rational Unified Process). Adelfe is
based on the AMAS (Adaptive Multi-Agent System) theory [Picard and Gleizes 2004]
where cooperation is fundamental.

During cooperation an agent tries: to anticipate problems; to detect cooperation fail-
ures, called Non Cooperative Situations (NCS); and to recover from NCS [Capera et al.
2004]. The designer not only needs to describe what an agent has to do in order to
achieve its goal, but also which situations must be avoided (NCS), and how to remove
them when they are detected. A cooperative agent in the AMAS theory is autonomous
and unaware of the global function of the system; it can detect NCSs and acts to return
to a cooperative state; it is not altruistic but benevolent.
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Adelfe is divided into six main phases or Work Definitions (WD): Preliminary Re-
quirements (WD1), Final Requirements (WD2), Analysis (WD3), Design (WD4), Im-
plementation (WD5) and Test (WD6) (see Figure 3). Each phase consists of several
activities (A), and each activity consists of several steps (S). We focus on the Adelfe ar-
chitecture directly related to self-organisation issues, fur further details on the other
activities see [Bernon et al. 2005].

Fig. 3. The ADELFE methodology [Picard and Gleizes 2004]

In WD2, A6 supports the identification of the environment (entities and context). It
is characterised as being accessible or not, deterministic or not, dynamic or static and
discrete or continuous. In A7, the designer identifies the possible cooperation failures
(S2). In WD3, an interactive tool helps decide if the use of the AMAS theory is suitable
or not for the considered system (A11), answering to some global level and local level
questions (examples of questions include: Is the global task incompletely specified? Is
an algorithm a priori unknown?; If several entities are required to solve the global
task, do they need to act in a certain order?; Can the behaviour of an entity evolve?
Does it need to adapt to the changes of its environment?; etc.). In A12 agents of the
system are identified starting from the analysis of the entities present in the system
itself. In A13, entity relationships useful for cooperation are defined, especially agents
relationships (S3). In WD4, protocol diagrams serve to study agent interactions (A15).
Adelfe provides a model to design cooperative agents (A16). A set of generic NCSs are
suggested, such as: incomprehension, ambiguity, uselessness or conflict. The designer
fills in a table for each NCS.

Adelfe and the AMAS theory have been applied to a large range of cases such as flood
forecast, robot transport, manufacturing control or emergent programming [Bernon
et al. 2005].

For each investigated software engineering method, we list the self-organising fea-
tures that characterise the method and for which we have developed SPEM fragments.

Characteristic self-organisation features:

(1) Environment
(2) Cooperation failures
(3) AMAS adequacy
(4) Agent
(5) Interactions between entities
(6) NCS
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5.1. Fragments
The above-mentioned features are now expressed as method fragments which describe
the most important steps for self-organising systems according to ADELFE. In each
fragment one of the feature is analysed and created (e.g. NCS are identified in the
fragment called “Agent Specification Fragment”).

(1) Environmental Description Fragment (A6 – Figure 4a). DL: an environment def-
inition document and UML diagrams (scenarios) which describe the situation in the
environment. PC: a requirement set document that defines the system requirements.
GL: determine entities, define the context and characterise the environment.

Fig. 4. (a) Environment Description Fragment, (b) Use Cases Description Fragment

(2) Use Cases Description Fragments (A7 – Figure 4b). DL: a functional description
model, and the now completed environment definition document. PC: the preliminary
environment definition document. GL: draw up an inventory of the use cases, identify
cooperation failures and elaborate on sequence diagrams.

(3) Adequacy Verification Fragment (A11 – Figure 5a). DL: the final AMAS adequacy
synthesis document. PC: the preliminary software architecture document, described
in the Adelfe domain description fragment (see [Capera et al. 2004] for details). GL:
verify the AMAS adequacy at local and global level.

Fig. 5. (a) Adequacy Verification Fragment, (b) Agent Identification Fragment

(4) Agent Identification Fragment (A12 – Figure 5b). DL: the software architecture
document, including the agents. PC: the preliminary software architecture document
and the final AMAS adequacy synthesis document. GL: study the entities in their
context, identify the potentially cooperative entities and define the agents.

(5) Interaction Between Entities Identification Fragment (A13). Important for agent
relationships, but also other fragments can be used; see [Capera et al. 2004]. textbfDL:
the relationships found will be used to update the final environment definition docu-
ment, the software architecture and the internal interaction between domain classes
UML diagram. PC: the software architecture document (including agents), and the
complete environment definition document. GL: consider interactions of of three types:
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active-passive entities relationships, active entities relationships, and agents relation-
ships.

(6) Agent Specification Fragment (A15, A16 – Figure 6). DL: the AUML protocol
diagrams, which specify the interaction language, the final interaction language docu-
ment and the detailed architecture document, including the agent model, skills, apti-
tudes, world representation and NCSs. PC: the initial detailed architecture document
defined in the Adelfe architecture definition fragment. GL: define and test agent be-
haviours.

Fig. 6. Agent Specification Fragment

5.2. Case study 1: traffic lights control
We used the Adelfe Toolkit5 to produce the documents and diagrams which are related
to the self-organising part of the methodology, and to simulate the created system in
the end. For further activities see [Puviani et al. 2009].

(1) Environment A6: The environment definition document here created states that
TL are active entities and cars are passive entities because they are simple resources.
Then the system is defined as accessible, non-deterministic, dynamic, and continuous.

(2) Cooperative failures A7-S2: Failures can occur when the traffic flow is equal in
both directions (horizontal flow and vertical flow), or when the number of cars in a
directions exceeds a chosen threshold.

(3) AMAS adequacy A11: the AMAS adequacy is verified by answering the AMAS
questions.

Global level:

(1) Q: Is the global task incompletely specified? Is an algorithm a priori unknown? A:
The global task is not completely specified and a priori algorithm is unknown.

(2) Q: If several entities are required to solve the global task, do they need to act in a
certain order? A: Components (TL and cars) are not subject to a fix order of action.

(3) Q: Is the solution generally obtained by repetitive tests, are different attempts re-
quired before finding a solution? A: Several attempts are required to find a solution.

(4) Q: Can the system environment evolve? Is it dynamic? A: The system environment
is dynamic because cars can enter and exit the system.

5http://www.irit.fr/ADELFE/Download.html
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Table I. Equal flow NCS and Too many cars NCS

Name Equal flow
State Any
Description The horizontal traffic flow is equal to the vertical traffic flow
Condition(s) flowhorizontal == flowvertical

Action(s) The TL decides which flow to consider first.
Name Too many cars
State Any
Description The number of cars exceeds the chosen threshold θ.
Condition(s) flowhorizontal > θ or flowvertical > θ
Action(s) Prevent cars from entering, let them leave quickly.

(5) Q: Is the system process functionally or physically distributed? Are several physi-
cally distributed entities needed to solve the global task? Or is a conceptual distri-
bution needed? A: The system is physically distributed.

(6) Q: Is a great number of entities needed? A: The system can consist of a great number
of components.

(7) Q: Is the studied system non-linear? A: The system is non-linear because TLs are
autonomous and have only local information.

(8) Q: Is the system evolutionary or open? Can new entities appear or disappear dynam-
ically? A: Some new components (cars) can appear and disappear dynamically.

Local level:

(9) Q: Does an entity only have a limited rationality? A: A component has limited ratio-
nality.

(10) Q: Is an entity ”big” or not? Is it able to do many actions, to reason a lot? Does it need
great abilities to perform its own task? A: It (TL) is able to perform several actions.

(11) Q: Can the behaviour of an entity evolve? Does it need to adapt to the changes of its
environment? A: It needs to adapt to the changes in its environment.

(4) Agent A12: TLs are agents because they: (a) are autonomous, (b) have a local
goal: optimize the traffic flow, (c) interact with other TLs exchanging flow information,
and (d) have a partial view of the environment: their state, the traffic flow in their local
area. Instead cars are non autonomous entities and cannot be viewed as agents; they
follow the TLs and progress at a given speed.

(5) Interactions A13 and A15: defining the relationship between agents and their
communication protocol. Consider a situation where Y is a TL, and X is a TL as well,
and they are in the same direction (same horizontal or vertical line). They have to
communicate to exchange their traffic flow information; with this information they
can change their status.

(6) NCS A16: design cooperative agents. For TL defines skills (e.g. ManageCon-
straints, ManageFlowInformtion and ManageLight), aptitudes (e.g. ChangeLight-
Colour and SendMessage), interaction language by messages and NCS; see Table I.

5.3. Case study 2: self-organising displays
(1) Environment A6: The environment definition document states that both users
and displays are active entities. Then the system is defined as accessible, non-
deterministic, dynamic, and continuous.

(2) Cooperation failures A7-S2: Failures can occur when trying to connect to a dis-
connected display; if a display attempts to connect to an equivalent display (e.g. a
touch screen can try to connect to another touch screen, which does supposedly not
make much sense). Summarised in Table II.
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Table II. Connection to a disconnected or equivalent display NCS

Name Connection to a disconnected display
State Any
Description Display X tries to connect to display Y that is not connected
Condition(s) X tries connection with Y AND status(Y) == not connected
Action(s) X verifies the status of Y, then connects to another display
Name Connection to an equivalent display
State Any
Description Display X tries to connect to display Y that has a functionality equivalent to X
Condition(s) X tries connection with Y AND Function(Y) ≡ Function(X)
Action(s) X verifies functionality of Y, then connects to another display

(3) AMAS adequacy A11: verified by answering the AMAS questions in the following
way (for questions see Subsection 5.2):

Global level:

(1) A: The global task is not completely specified and a priori algorithm is unknown.
(2) A: Components are not subject to a fix order of action.
(3) A: Several attempts are required to find a solution.
(4) A: The system environment is dynamic.
(5) A: The system is physically distributed.
(6) A: The system can consist of a great number of components.
(7) A: The system is non-linear because the displays are autonomous and act locally.
(8) A: Some new components (displays) can appear and disappear dynamically.

Local level:

(9) A: A component has limited rationality.
(10) A: It is able to perform several actions.
(11) A: It needs to adapt to the changes in its environment.

(4) Agents A12: Human users are agents because they: (1) are autonomous, (2) have
a local goal: getting their service request satisfied, (3) interact with displays, and (4)
have a partial view of the environment: their position, the state of their own displays,
and the state of displays near their position, when they interact with them. Also Dis-
plays are agents because they: (1) are autonomous, (2) have a local goal: optimising the
given function by collaborating with other displays, (3) interact with other displays, (4)
have a partial view of the environment: their position, their state, and the states of dis-
plays which they are able to connect to, and (5) can negotiate with other displays in
order to collaborate with them.

(5) Interactions A13 and A15: defining the relationship between agents and their
communication protocol. Consider a situation where display Y is a screen, and user
display X is a screen as well. As they cannot compose their services, the connection
between them must be cancelled.

(6) NCS A16: design cooperative agents. For user agent defines skills (e.g. Manage-
Constraints, ManagePosition and ManageOwnDisplay), aptitudes (e.g. SendListOfDis-
play). For display agents define skills (e.g. ManageStatus, ManageConstraints and
ManagePossibleConnection), aptitudes (e.g. AskForConnection and ManageOptimised-
Connection). Defines the interaction language (by messages) and NCS (see Table II).

6. THE CUSTOMISED UNIFIED PROCESS
The Customised Unified Process (CUP) [De Wolf 2007] is an iterative process that
provides support for the design of self-organising emergent solutions in the context
of an engineering process. It is based on the Unified Process (UP) [Jacobson et al.
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1999], and is customised to explicitly focus on engineering macroscopic behaviour of
self-organising systems (see Figure 7).

Fig. 7. Customised Unified Process Methodology [De Wolf 2007]

During the Requirement Analysis phase the problem is structured into func-
tional and non-functional requirements, using techniques such as use cases, feature
lists and a domain model that reflects the problem domain. Macroscopic requirements
(at the global level) are identified. The Design phase is split into Architectural Design
and Detailed Design addressing microscopic issues. Information Flow (a design ab-
straction) traverses the system and forms feedback loops. Locality is ’that limited part
of the system for which the information located there is directly accessible to the en-
tity’ [De Wolf 2007]. Activity diagrams are used to determine when a certain behaviour
starts and what its inputs are. Information flows are enabled by decentralised coordi-
nation mechanisms, defined by provided design patterns. During the Implementa-
tion phase, the design is realised by using a specific language. When implementing,
the programmer focuses on the microscopic level of the system (agent behaviour). In
the Testing and Verification phase, agent-based simulations are combined with
numerical analysis algorithms for dynamical systems verification at macro-level.

The CUP approach has been applied to autonomous guided vehicles and document
clustering [De Wolf 2007].

Characteristic self-organisation features:

(1) Locality
(2) Information flow

6.1. Fragments
We identified the following two main fragments for self-organisation in CUP:

(1) Locality Identification Fragment: (Figure 8a). DL: a UML diagram (e.g. an activ-
ity diagram) and a localities model. PC: a system requirement document that defines
the system requirements given by the users, and an agent model. GL: determine lo-
calities for each agent.

(2) Information Flow Definition Fragment: (Figure 8b). DL: a UML diagram (e.g. an
activity diagram) and an information flow model that describes the information flow
in the entire system, starting from each locality. PC: a system requirement document
that defines the system requirements given by the users, and the localities model. GL:
first decompose the system behaviour into sub-goals, then determine the information
flow.
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Fig. 8. (a) Locality Identification Fragment, (b) Information Flow Definition Fragment

We did not create specific fragments for the patterns of decentralised coordination
mechanisms as the pattern list is only useful for the developer to choose the com-
munication and coordination mechanism. It is therefore not possible to define a real
fragment. It is, however, important to consider this list while defining a self-organising
system. The list can be integrated into other fragments while building the system.

6.2. Case study 1: traffic light control
We do not describe the Requirement Analysis phase, but we only define the main struc-
ture of the system: TLs are defined as agents; and cars are considered as entities.

(1) Localities: For the Design phase, the circles around the TLs define the localities
(see Figure 2(a)) which are represented by each TL within the information of its states
and of the traffic flow in the surrounding area.

(2) Information flow: The main goal of the system (flow optimization) can be decom-
posed into sub-goals, which consist of flow optimisation for each TL. The information
needed for each TL to act in the system are: the status of its light, the horizontal and
vertical flow in its area. We chose gradient fields as patterns of decentralised coordina-
tion mechanism [Mamei et al. 2004]: spatial, contextual, and coordination information
is automatically and instantaneously propagated by the environment as computational
fields. Agents simply follow the ’waveform’ of these fields to achieve the coordination
task. So here the traffic flow automatically propagates information between TLs.

6.3. Case study 2: self-organising displays
Displays as well as users are agents. There are no passive entities.

(1) Localities: The circle around the user and the next displays in Figure 2(b) illus-
trates the relevant user locality; display localities are not shown, but they consist of an
area around the display and all the entities within. The sub-goals in which the main
one can be divided are connecting displays and verifying the quality of service of the
new devices (created by the composition of displays).

(2) Information flow: The information needed for each user is the user’s position and
the list of displays in the respective locality. For each display the information needed
is its state (connected or not) and the possibility of connection. Each displays attempts
to connect to peers, until the composite display being formed can fulfil the requested
function F . Optimising F means matching the user quality of service. Again, we chose
the gradient fields explained in the previous sub-section as patterns of decentralised
coordination mechanism. The communication is automatically propagated by display
connections.
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7. METASELF
MetaSelf proposes both a system architecture and a development pro-
cess [Di Marzo Serugendo et al. 2010]. It addresses the development of dependable
self-* systems (both self-organising and self-managing). MetaSelf considers a self-
organising system as a collection of loosely coupled autonomous components (agents
or services). Metadata describes the components’ functional and non-functional
characteristics, such as availability levels, and environment-related metadata (e.g. ar-
tificial pheromones). The system’s behaviour (self-organisation and self-management,
e.g. reconfiguration to compensate for component failure) is governed by rules for
self-organisation and policies for dependability and self-management that describe the
response of system components to detected conditions and changes in the metadata.
When the system is running, both the components and the run-time infrastructure
exploit updated metadata to support decision-making and adaptation in accordance
with the rules and policies.

The MetaSelf system architecture involves autonomous components, repositories
of metadata, rules for self-organisation and policies for dependability and self-
adaptation, and reasoning services which dynamically enforce the policies on the basis
of metadata values. Metadata may be stored, published and updated at run-time by
the run-time infrastructure and by the components themselves, both of which can also
access rules and policies at run-time (Figure 9). Guiding policies are high-level goals
(e.g. starting or stopping a swarm of robots); bounding policies define environmental
limitations; sensing/monitoring policies define reflex behaviour for the components.

Fig. 9. MetaSelf Run-time Generic infrastructure [Di Marzo Serugendo et al. 2010]

The MetaSelf development process consists of 4 phases (Figure 10).
The Requirement and Analysis phase identifies the functionality of the system

along with self-* requirements specifying where and when self-organisation is needed
or desired. The required quality of service is determined.

The Design phase consists of two sub-phases: D1 - the designer chooses architec-
tural patterns (e.g. autonomic manager or observer/controller architecture) and self-
* mechanisms (governing the interactions and behaviour of autonomous components
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(e.g. trust, gossip, or stigmergy). Generic rules for self-organisation and dependability
policies are defined. In the second part; D2 - the individual autonomous components
(services, agents, etc.) are designed. The necessary metadata, rules and policies are se-
lected and described. The self-* mechanisms are simulated and adapted or improved.

The Implementation phase produces the run-time infrastructure (Figure 9) in-
cluding agents, metadata and executable policies.

In the Verification phase, the designer makes sure that agents, the environment,
artefacts and mechanisms work as desired. Potential faults arising on one of these de-
sign elements and their consequences are identified, similar to the way failure modes
and effects analysis (FMEA) [Leveson 1995] works. Corrective measures (redesign or
dependability policies) to avoid, prevent or remove the identified faults are taken ac-
cordingly [Di Marzo Serugendo 2009].

Fig. 10. MetaSelf Development Process

The MetaSelf development process has been applied to dynamically resilient Web
services [Di Marzo Serugendo et al. 2008] and to self-organising industrial assembly
systems [Frei et al. 2008].

Characteristic self-organisation features:
(1) Architectural patterns
(2) Self-* mechanism
(3) Run-time infrastructure

7.1. Fragments
The most relevant MetaSelf fragments are:

(1) Architectural Patterns Fragment: (Figure 11a). DL: the architectural design pat-
tern and the adaptation and coordination mechanism. PC: a list of self-* requirements
which represents the required system proprieties. GL: define the self-organisation
/ self-adaptation architectural design pattern and the adaptation and coordination
mechanism.

(2) Identification of Software Architecture Fragment: (Figure 11b). DL: the meta-
data model, the agent model and the policies model. PC: the self-* requirements docu-
ment, the architectural design patterns document and the adaptation and coordination
mechanism document. GL: define design phase entities.

(3) Run Time Infrastructure Definition Fragment: (Figure 12). DL: the final version
of the agent model, the executable policies, the metadata repository, and adaptation
/ coordination services repository. PC: the adaptation and coordination mechanism
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Fig. 11. (a) Architectural Patterns Fragment, (b) Identification of Software Architecture Fragment

document, the architectural design pattern document, as well as the agent model, the
policies model and the metadata model. GL: define everything which is needed to build
the run time infrastructure.

Fig. 12. Run Time Infrastructure Definition Fragment

7.2. Case study 1: traffic lights control
We determine the following components: TLs are active (agents), and cars are passive
entities (artefacts that change their state only due to environmental change).

(1) Architectural Patterns: Self-* requirements: Traffic flow is optimised as a re-
sult of self-organisation. Architectural Patterns: The generic observer/controller ar-
chitecture is chosen [Schoeler and Mueller-Schloer 2005]. Each TL comes with its ob-
server and controller components.

(2) Self-* mechanism: Self-organisation mechanism: Gradient Fields (traffic
flows) created by cars movement. Cars follow gradients, TL react to gradients by
changing lights. Coordination mechanism: TL knows colour of light in both lanes
backwards.

(3) Run-time infrastructure: Guiding Policies: Optimise traffic flow on each direc-
tion. Coordination policies for TLs: Green Wave: ’Keep green light if TL backwards
also has green light’. Bounding policies: No cars are allowed at the intersections (to
avoid blockage): ‘If distance to car in outgoing lane is too small, switch to red light’.
Sensing/Monitoring policies: ‘If horizontal flow is bigger than vertical flow (gradi-
ents fields), switch the horizontal TL to green and the vertical TL to red.’ ’If vertical
flow is bigger than horizontal flow, switch vertical TL to green and horizontal TL to
red.’ Metadata: Traffic flow on each incoming lane for each TL; distance to car in each
outgoing lane for each TL.
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7.3. Case study 2: self-organising displays
We identify the components: users and displays are agents.

(1) Architectural Patterns: Self-* requirements: Every time a user moves in the
environment, the self-organising process creates a new configuration of displays. This
includes self-selection of displays and self-composition to form a composite device.

(2) Self-* mechanism: Self-organisation mechanism: The mechanism chosen for
letting the different displays self-organise when a user arrives at a new location is self-
assembly. Components progressively attach to each other following matching rules and
according to the current configuration of the structure to build. Coordination mech-
anism: Self-assembled displays coordinate their tasks, e.g. audio and video synchroni-
sation.

(3) Run-time infrastructure: Guiding Policies: User agents request service func-
tions F . Display agents need to fulfil and optimise F ; they need to find compatible
displays for collaboration; and they compose when other displays are: in range, compat-
ible, available and selected. Display coordination policies: Coordination of tasks:
audio and visual information need to be synchronised. Bounding policies: A display
connects to local displays only. Sensing/Monitoring policies: If a display changes its
status, it has to upload this status to remain connected. If a display is near the user
location and can help fulfil the requested function, it adds itself to the user’s list. A
display with a low power capability searches for an equivalent display to replace itself.
Self-description metadata: For each user agent: position and the list of personal
displays. For each display: its position, its status (connected or not), and possibilities
of composition with other displays.

8. A GENERAL METHODOLOGY
The General Methodology [Gershenson 2007] provides guidelines for system develop-
ment. Particular attention is given to the vocabulary used to describe self-organising
systems. For the five iterative steps or phases see Figure 13.

Fig. 13. Methodology steps, adapted from [Gershenson 2007]

In the Representation phase, according to given constraints and requirements,
the designer chooses an appropriate vocabulary, the abstractions level, granularity,
variables, and interactions that have to be taken into account during system develop-
ment. Then the system is divided into elements by identifying semi-independent mod-
ules, with internal goals and dynamics, and with interactions with the environment.
The representation of the system should consider different level of abstractions.

In the Modeling phase, a control mechanism is defined, which should be internal
and distributed to ensure the proper interaction between the elements of the system,
and produce the desired performance. However, the mechanism cannot have strict
control over a self-organising system; it can only steer it. To develop such a control
mechanism, the designer should find aspects or constraints that will prevent the neg-
ative interferences between elements (reduce friction) and promote positive interfer-
ences (promote synergy). The control mechanism needs to be adaptive, able to cope
with changes within and outside the system (i.e. be robust) and active in the search of
solutions. It will not necessarily maximise the satisfaction of the agents, but rather of
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the system. It can also act on a system by bounding or promoting randomness, noise,
and variability. A mediator should synchronise the agents to minimise waiting times.

In the Simulation phase, the developed model(s) are implemented and differ-
ent scenarios and mediator strategies are tested. Simulation development proceeds
in stages: from abstract to particular. The models are progressively simulated, and
based on the results, the models are refined and simulated again. The Application
phase is used to develop and test model(s) in a real system. Finally, in the Evalua-
tion phase, the performances of the new system are measured and compared with the
performances of previous ones.

This methodology was applied to traffic lights, self-organising bureaucracies and
self-organising artefacts [Gershenson 2007].

Characteristic self-organisation features:

(1) Control mechanism and friction reduction

8.1. Fragments
We extracted the following fragments:

(1) Control Mechanism Definition Fragment (Figure 14). Creates a communication
model based on how to optimise the system. DL: a UML diagram which describes
the communication protocol of the control mechanism. PC: an agent model and a list
of constraints. GL: divide the labour, to promote synergies and reduce friction. The
two produced documents define the model of the specified system and help during the
creation of the communication and control model.

Fig. 14. Control Mechanism Definition Fragment

8.2. Case study 1: traffic lights control
Define requirements: Develop a feasible and efficient traffic light control system.

(1) Control mechanism and friction reduction: Representation phase: The system
can be modelled on two levels: car level and TL level. The cars’ goal is to maximise
their satisfaction σ (travelling freely and without stopping at intersections). σ = 0
corresponds to a car stopping indefinitely. The TL system’s goal is to maximise the
system’s satisfaction σsystem (all cars travel as fast as possible, and are able to flow
through the city without stopping). σsystem = 0 corresponds to a traffic jam where all
cars stop indefinitely. Modeling phase (1): Find a mechanism to coordinate TLs so
that these mediate between cars, to reduce their friction (try to prevent them from
arriving at the same time at the crossing). This will maximise the satisfactions of the
cars and the TLs. As all vehicles contribute equally to σsystem, frictions are minimised
through compromise. Modeling phase (2): Each TL keeps a count (κi) of the number
of cars time steps (c∗ts) approaching only the red light, from a distance ρ. κi can be seen
as the integral of waiting/approaching cars over time. When it reaches a threshold θ,
the opposing green light turns yellow, and in the following time step it turns red with
κi = 0, while the red light turns green. Modeling (3): The following constraints were
added to prevent fast changing: a traffic light will not be changed if the time passed
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since the last light change is less than a minimum phase ψmin. Once ψi ≥ ψmin, the
lights will change when κi ≥ θ.

For the complete result of possible simulations related to these and other traffic
light control models with more constraints, see [Gershenson 2007].

8.3. Case study 2: self-organising displays
Requirements: Optimising a function F representing a user requested service.

(1) Control mechanism and friction reduction: Representation phase: The system
can be modelled at the level of the user and the displays. The user’s goal is to obtain
a service: the satisfaction σ is maximal when the function F is satisfied; the device is
accessible. σ = 0 corresponds to a situation with no available displays. The displays’
goal is to collaborate with each other in order to optimise a given function F . The sys-
tem satisfaction σsystem is maximal when the quality of service requested by the user
is reached. Modeling phase: Find a mechanism which can coordinate the displays by
reducing their friction (try to prevent them from disconnecting one from the others).
Taking the function F and the list L of active user and environment devices, each de-
vice creates a list Ltemp with all the devices that can be used to satisfy F . Knowing how
many displays are necessary to fulfil F , for each display Di ∈ Ltemp the system has to
find possible compositions. The best composition found will be kept in a temporary
variable f . Friction minimisation happens through compromise.

9. A SIMULATION DRIVEN APPROACH
The Simulation Driven Approach (SDA) [Gardelli et al. 2008] to build self-organising
systems is not a complete methodology, but rather a way of integrating a middle phase
into existing methodologies. To describe the environment, suitable abstractions for
environmental entities are necessary: the Agent & Artefact metamodel [Ricci et al.
2005] considers agents as autonomous and proactive entities driven by their internal
goal/task. Artefacts are passive, reactive entities providing services and functionalities
to be exploited by agents through a user interface. To overcome many methodologies’
limitations regarding the environment, environmental agents are introduced. They are
responsible for managing artefacts to achieve the targeted self-* properties. Environ-
mental agents are different form standard agents (user agents), which exploit artefact
services to achieve individual and social goals.

SDA is situated between the analysis and the design phase, as an Early design
phase (Figure 15(a)). It assumes that system requirements have just been collected
and the analysis has been performed, identifying the services to be provided by en-
vironmental agents. To design environmental agents, a model of agents and environ-
mental resources is needed. This model is analysed using simulation, with the goal to
describe the desired environmental agent behaviour and a set of working parameters.
These are calibrated in a tuning process.

SDA consists of three iterative phases. During the Modeling phase, strategies are
formulated to make the system behaviours explicit. To enable further automatic elab-
orations and reduce ambiguity, these descriptions should be provided in a formal lan-
guage (not specified in [Gardelli et al. 2008]). The model is expected to provide a char-
acterisation of user agents, artefacts and environmental agents. Feedback loops are
necessary in the entire system. In the Simulation phase, the created specifications
are used in combination with simulation tools, to generate simulation traces. These
will provide feedback about the suitability of the created solution. In the Tuning
phase, the model has to be tuned until the desired qualitative dynamics is reached,
which depends on initial conditions. The tuning process may provide unrealistic pa-
rameter values, or may not reach the required behaviour. This means that the chosen
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(a) Design phases. Adapted from
[Gardelli et al. 2008].

(b) Describe the Environment Fragment

Fig. 15.

model cannot be implemented in a real scenario. The designer then needs to return to
the modelling phase and start again with a new model.

This methodology was applied to collective sorting and to plain diffusion [Gardelli
et al. 2008].

Characteristic self-organisation features:
(1) Environmental agents and artefacts

9.1. Fragments
(1) Describe the Environment Fragment (Figure 15(b)). It is relevant because the main
innovations of this methodology are the introduction of environmental agents and the
perspective on resources as artefacts. This fragment can be very useful in systems
where the environment plays an important role, but it may be difficult to combine
with fragments from other methods, which do not share this view on the environment.
DL: UML diagrams, the agent model, the artefact model and the environmental agent
model. PC: the system requirements. GL: first describe the environment by extracting
agent and artefacts, then create the environmental agents which manage artefacts to
achieve the system’s self-* properties.

9.2. Case study 1: traffic lights control
This approach is very similar to the one described in section 8.2. They are both based
on modelling, simulation and testing (here called tuning). In the follow we only detail
the modelling phase; the simulation phase is up to the developer experiences with
simulation tools.

(1) Environmental agents and artefacts: We consider four environmental agents
(TL). Each TL performs a partial system observation of the space: traffic flow and cars
(near and far). The light itself can be considered as an artefact, managed by the TL to
achieve the target self-* properties. Each agent has the goal of optimising the traffic
flow. Cars are also considered as artefacts: passive entities that provide a service (the
traffic flow) and mediate TL interactions (by providing traffic flow information).

The TL calculates the number of cars C that are present (in both directions) in its
neighbourhoods. This information is useful to calculate the local traffic flow, and to
decide which light to turn green or red. Moving cars modify the traffic flow and thus
influence the TL switching. Passing from one TL to another, cars transmit traffic flow
information between TLs.

9.3. Case study 2: self-organising displays
(1) Environmental agents and artefacts: Users are considered as environmental
agents. Each agent manages its device information to achieve the global goal: opti-
mising a service requested by the user. Displays are considered as artefacts, with their
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properties, such as position and type of device. Each user has a list L of active devices
in the surroundings (with position and type). When the user changes her position, the
agent updates L. Then, starting from the user’s list of artefacts, the devices try to
compose themselves in order to optimise the service requested by the user.

10. METHODOLOGIES COMPARISONS
After studying methodologies for creating self-organising systems and their important
fragments, we shed light on advantages and weaknesses of these methodologies. Fig-
ure 17 (in the electronic appendix) shows the main characteristics of each methodology
as identified by the fragments (a tick indicates the presence of the specified phase). In
this way it can be easier to understand what a developer may need for his/her purpose,
to improve his/her methodology for self-organising systems.

10.1. Adelfe
Adelfe is the only methodology that focuses on specific self-organisation characteris-
tics. However, if the AMAS adequacy verification fails, the Adelfe process cannot be
applied. Additionally, this verification strongly depends on the user, who has to an-
swer by giving his/her opinion without any kind of scientific test. It is for instance
difficult to determine if the system is linear or not. It is also difficult to find and select
the essential NCS. Adelfe forces the use of cooperation between the agents, which may
be beneficial for many systems, but not for all. In this methodology there are several
supporting tools that will help developers build their system.

10.2. The Customised Unified Process
An important innovation of CUP is the information flow diagram. It is useful for under-
standing how a system works and how information can be exchanged between agents.
The information flow diagram can be integrated in a communication protocol. CUP
also provides a formal technique for the evaluation of macroscopic properties. Patterns
of decentralised coordination mechanisms are important to help the developer find the
best mechanism. However, no indications for the actual application of these patterns
are directly given.

10.3. MetaSelf
MetaSelf focuses on self-organising mechanisms and dependability support, which pro-
vide respectively low-level and high-level control. MetaSelf relies on loosely coupled
components, metadata and executable dynamically changing policies. It only provides
a guidance for modeling agents, environments, artefacts, self-organising mechanisms,
and for identifying dependability issues. There is no development or verification tool.

10.4. A General Methodology
In this methodology the designer receives assistance for understanding how to develop
a system, but none for actual development. The system model needs to be chosen,
and simulation attempts realised. No guidance for simulation program choice is given.
Besides, the author states that the novelty of this methodology lies in the vocabulary
used to describe self-organising systems, but then the vocabulary is not really defined
(left to the user).

10.5. A Simulation Driven Approach
This approach considers the environment, agents and artefacts as first class entities.
It is not a complete methodology per se, it must be combined with other methodologies,
which do not necessarily support elements like environmental agents and artefacts.
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11. AUGMENTING A METHOD OR METHOD PROCESS
The above proposed methodologies, except for Adelfe, are rather like guidelines for
the developers of self-organising systems. This is why we extracted the most relevant
fragments regarding self-organisation. These fragments help developers who want to
create their own method process: they may combine existing fragments to create a new
or customised development method or integrate them into existing methodologies.

To this end, we propose to use the Prioritisation algorithm [Seidita et al. 2010] to
define the fragments’ order in a methodology. This algorithm starts from the elements
presented in the source-methodology meta-model (i.e. the fragments). It identifies the
relations which every element can have in the meta-model and, depending on the num-
ber of dependencies, we determine the right position of each fragment. This approach
is very useful when we start from scratch and only have a preliminary meta-model
to work with. On the other hand, when we have an existing methodology which we
want to adapt, we will not use the entire approach but only follow the strategy to inte-
grate a fragment with the chosen methodology. We study how the outputs of the initial
fragments can be used as inputs to the new one, and vice versa for the outputs.

It is unfortunately impossible to have fragments for simulation and implementation,
as these activities are not ‘guidelines’ for design phases. Every methodology can have a
simulation phase that may be based either on the user’s knowledge (free from method-
ology guidelines) or on a specific tool that will be supported by a specific platform.
The same applies to the implementation phase; it is not possible to create a fragment
general enough for every kind of implementation because this is based on a specific
platform. It would be possible to create a fragment for implementation starting from
a specific methodology and for a specific implementation platform; but this is beyond
the scope of this article.

We subsequently present, as an example, the integration of some fragments in an
existing methodology. We show how to augment the PASSI2 methodology [Cossentino
and Seidita 2009] with some important self-organisation fragments for the develop-
ment of the traffic lights system. PASSI2 is an agent-based method which does not
consider self-organisation. SPEM fragments of this methodology are already available.

Firstly, we evaluate the PASSI2 methodology and what is necessary to develop the
self-organising system we need. Naturally, not all the self-organising fragments we
have analysed in this article are necessary for a specific application. Here, we find that
the concepts of environment, locality and information flow do not exist in PASSI2, but
would be very useful for this kind of systems. Afterwards, we study PASSI2 fragments
and the fragments which define the previously mentioned concepts, which we have
extracted from the ‘self-organisation methodologies’.

11.1. The PASSI2 methodology
PASSI2 [Cossentino and Seidita 2009] is based on PASSI (Process for Agent Societies
Specification and Implementation). It is a step-by-step requirement-to-code methodol-
ogy, for the design and development of multi-agent societies, using the UML notation.
It aims at using standards whenever it is possible: its chosen target environment is
the standard Foundation for Intelligent Physical Agents (FIPA) architecture.

PASSI2, like PASSI, is based on a meta-model describing the elements that consti-
tute the system to be designed (agents, tasks, communications, roles) and the rela-
tionships among them. PASSI2 has been designed with the aim of developing systems
that can be: (i) highly distributed, (ii) subject to a (relatively) low rate of requirements
changes, and (iii) openness (external systems and agents that are unknown at design
time will interact with the system to be built at runtime).
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It is composed of three models or process components, which include different phases
or work definitions [Cossentino and Seidita 2009]:

(1) The System Requirement Model models the system requirements in terms of
agency and purpose. It consists of a functional description of the system: system re-
quirements are defined in term of use case diagrams. There is a separation of respon-
sibility concerns: the agents’ responsibilities are represented through role-specific sce-
narios; the agents’ structure is defined in terms of tasks required for accomplishing
the agents’ functionalities; the agents’ capabilities are specified separately.

(2) The Agent Society Model models the social interactions and dependencies be-
tween agents involved in the solution. It describes domain categories (concepts),
agents’ communications in terms of the referred ontology, as well as interaction pro-
tocol and message content language. It shows distinct roles played by agents, the
tasks involved in the roles, communication capabilities and inter-agent dependencies
in terms of services. It also depicts the agents’ structure and their behaviour at the
social level of abstraction.

(3) The Implementation Model models the solution architecture in terms of methods,
classes, deployment configuration, code and testing directives. There are two levels of
abstraction: multi-agent level and single-agent level. The agents’ structure and their
behaviour are described at the implementation level of abstraction.

11.2. Fragment integration
If PASSI2 was not previously decomposed using SPEM, we would now have to do that,
using the prioritization algorithm: we could start from the methodology meta-model,
then add the new entities and while decomposing PASSI2, directly integrate the new
fragments. In our case, because we have all the necessary fragments, we study the
process and highlight where to insert the fragments.

Starting from the System Requirements Model, we find that the entity environ-
ment will help define the domain requirements, so we can add the Environment De-
scription fragment from Adelfe before the PASSI2 Domain Requirements Description
fragment. We notice that the entity scenario that was originally given externally (e.g
by the user or system developer) in PASSI2; however, it can now be defined in the
Environment Description fragment and reused in the Domain Requirements Descrip-
tion fragment. Then, the problem statement used in PASSI2 can be seen as an input
instead of the requirements set of Adelfe, because the meaning of the two entities is
very similar. Moreover, to complete the process, it is better to take the environment
definition and the new scenario as inputs for the Domain Description fragment, be-
cause they are more complete and at the same time they give the information previ-
ously used in the fragment. To better understand how the fragments integrate, see
Figures 18(a) and 18(b) in the electronic appendix which show the entire system re-
quirements model.

Afterwards, we proceed with PASSI2’s Agent Society Model. Studying this phase,
we find that the concept of locality is useful to describe roles and the information flow
will help, together with the PASSI2 communication ontology, to build the communica-
tion protocol. Thus we decide to introduce the Locality Identification fragment and the
Information Flow Definition fragment from CUP.

In Figures 19(a) and 19(b) (in the electronic appendix), we see which fragments we
add and how. During the composition we notice that the Task Specification Diagram,
which is developed within PASSI2, represents the same output as the Decompose be-
haviour activity in the CUP fragment. Therefore, we exchange the original fragment
(from CUP) with the Task Specification Diagram as we can see in Figure 16.
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Fig. 16. Information Flow Definition fragment (modified)

Then we introduce the concept of locality through the information flow, as an input
to the Multi-Agent Behaviour fragment because it helps define the agents’ behaviour
in a self-organising system. The last Model will remain the same.

The new methodology is now complete: we have modified PASSI2 to introduce fea-
tures that permit to develop a self-organising system.

12. CONCLUSIONS
The developers of self-organising systems need the support of customised methodolo-
gies. In this article we suggest how designers could extract method fragments and
reuse them. To compose customised methodologies, ad hoc fragments, that will under-
line specific features of the starting methodology (or method), can be used in combina-
tion with readily available fragments of different methods or methodologies. These dif-
ferences need to be considered while building the system and more fragments have to
be added or modified, according to the developer’s experience and needs. The example
proposed in section 11 is intended to clarify how fragments can be added to an exist-
ing methodology to develop a self-organising system, starting from an agent-oriented
methodology which is not focused on self-organisation.

Composing methodologies is not a simple activity but can be very useful when the
existing methodologies do not provide features for specific systems. In this case the use
of fragments is sensible and gives promising results. Fragments can be also created
from scratch if we know how to work up a specific feature we need in our process; but
this is a very difficult work (if we do not have a methodology or method at the base),
and it is not the aim of this article to discuss it. We regret that to be flexible enough for
fragments reuse, it is not possible to create quite general fragments for simulation and
implementation. An increasing number of researchers, particularly in self-organising
systems, nowadays consider simulation as an integral part of a methodology.
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(a) System Requirements phase (original)

(b) System Requirements phase (modified)

Fig. 18. PASSI2: System Requirements Phase
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(a) Agent Society phase (original)

(b) Agent Society phase (modified)

Fig. 19. PASSI2: Agent Society Phase
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