
Chemically Inspired Rules for Self-Healing Assembly Systems

Giovanna Di Marzo Serugendo1, Regina Frei2, and Jose Luis Fernandez-Marquez1

1Institute of Services Science, University of Geneva, Rte de Drize 7, CH-1227 Carouge, Switzerland
2EPSRC Centre in Through-life Engineering Services, Cranfield University, Bedfordshire MK43 0AL

giovanna.dimarzo@unige.ch, work@reginafrei.ch, joseluis.fernandez@unige.ch

Abstract
Self-organising assembly systems (SOASs) are advanced assembly systems that play an active role
in their own design and during production. Agentified modules participate in their own arrangement in
the system layout, monitor themselves and self-adapt to production conditions. In previous works, we
addressed the design phase of the assembly system. We defined a self-organising process based on
specific rules, inspired by chemical reactions, such that given a specified product order provided as an
input to the system, the system modules select suitable partner modules and choose their own position in
the assembly system layout. This paper, specifically tackles the second aspect: self-management of the
SOAS to production conditions. We define here a series of rules, similarly inspired by chemical reactions,
supporting the SOAS during production. Whenever a failure occurs in one or more of the modules, the
current modules adapt their behavior (change speed, force, task distribution, etc.) to cope with the current
failure, potentially degrading performance but maintaining functionality. They may also decide to replace
a faulty module or trigger a reconfiguration, thus leading to a repaired system. In addition to the rules
addressing self-healing and self-management during production, this paper also discusses a specific
framework to support the execution of the rules.
Keywords:
Industrial robots, self-management, chemical reactions.

1 INTRODUCTION

Industrial assembly systems are often rather rigid in
their structure and limited in the flexibility of their func-
tionalities. Adapting them to necessary changes as
well as coping with failures is often a work-intensive
and error-prone process, given that assembly sys-
tems are complex systems composed of a multitude
of heterogeneous units that need to collaborate to
successfully assemble the desired product. In this
situation, it is highly beneficial to allow assembly sys-
tems to increasingly take care of themselves, i.e., to
adopt self-* properties.

In previous works, we explained ways for assembly
systems to become more agile, adaptive and grad-
ually more autonomous. We proposed the notion of
Self-Organising Assembly Systems (SOAS) [10, 11],
which become self-organising in their creation phase
(spontaneous (re-)organisation of the modules with-
out external control) and self-managing in their pro-
duction (autonomous adherence of the system to
high-level policies). Both phases are based on a
model of transitions exploiting the chemical rules
metaphor. We described the self-organising phase
in previous works [12]. This paper focuses exclu-
sively on self-managing and self-healing aspects dur-
ing production.

A difficulty consists in defining the right policies and

rules for the assembly systems to exhibit the desired
self-* properties at run-time. This paper describes
a set of chemical rules allowing us to deal with self-
managing issues such as: collision avoidance, self-
optimisation or dynamic replacement of a faulty robot
during production. We express the rules through the
SAPERE [9, 28] framework, specifically meant for de-
veloping self-* systems (both self-organising and self-
managing) with chemical rules.

Organisation of this paper: Section 2 reviews
related work in approaches to self-* properties in
robotics as well as self-management in software
systems. Section 3 presents the essence of Self-
Organising Assembly Systems (SOAS). Section 4 de-
tails the product used as a case study. Section 5 illus-
trates the software architecture. Section 6 introduces
the SAPERE approach, and Section 7 explains how
self-management of industrial robots is achieved in
SAPERE. Finally, section 8 draws conclusions and
indicates future work.

2 RELATED WORKS

2.1 Self-* Properties in Robotics

Most robotic systems that implement some kind of
self-* properties do so through modularity and redun-
dancy; a failing module or robot will be replaced by a

TESConf 2012



functional one. Usually, the robots or modules used in
these approaches are physically and functionally ho-
mogeneous, which means that they all have the same
physical and functional characteristics. The robotic
modules can connect with each other through some
mechanism. Often, they exhibit some degree of self-
adaptivity and self-organisation. A wide range of self-
reconfigurable robots exists [26]. Self-reconfigurable
robots are sometimes also referred to as being poly-
morphic because of their ability to change their shape
and move in various ways.

Under the title of ‘self-repairing mechanical sys-
tems’, the principles used in reconfigurable robotics
- namely self-assembly and self-repair through mod-
ule replacement - were discussed [22]. This requires
component redundancy and functional redundancy,
meaning that the system includes several of the same
modules, and that a function can be achieved through
various module combinations1. The idea is that faulty
components are excluded from the system and re-
placed by peers.

As for agility and work heading towards self-* prop-
erties in industrial robots, Holonic Manufacturing Sys-
tems [27, 20] concentrate on morphologic aspects
(every item is a whole as well as part of a bigger
whole). ADACOR [18, 19] combines holonics with
the idea of self-organisation by using pheromones.
At their inception, holonic systems were strongly bio-
logically inspired; however, with time, the approaches
have become mainly top-down, and thus less suited
for quick changes.

Reconfigurable manufacturing systems (RMS) [17,
21, 8] are modular and allow the engineer to add /
remove functionalities according to the needs. Evolv-
able Assembly Systems (EAS) [23, 4] offer a solution
which includes finely granular modules with local in-
telligence and a multi-agent control system. Product
class characteristics are closely related with assem-
bly processes and assembly systems. In the con-
text of EAS, evolvability refers to a system’s ability to
continuously and dynamically undergo modifications
of varying importance: from small adaptations to big
changes. SOAS [10] take the EAS paradigm further
by letting the systems play an active role and mak-
ing systems more autonomous and thus more user-
friendly.

An architecture for self-adapting and self-managing
robotics systems is presented in [7]. It uses distinct
meta-level components for sensing, computation and
control, which in turn are monitored, managed and
adapted by other (higher layer) meta-level compo-
nents. The components’ behaviours are guided by
changeable adaptation policies which may be used
to activate a set of recovery mechanisms.

To account for the self-adaptability required in
robotic systems, a policy and architecture based ap-
proach is presented in [14]. The architecture con-
sists of several layers, including a reactive connec-

1The principle of degeneracy as discussed in [13] additionally
includes structural and functional plasticity, meaning that a compo-
nent can fulfil more than one function.

tor topped by a sequencing connector and then a
deliberative connector. Successful applications were
made with self-adaptive Robocode and Mindstorms
robots.

The SHAGE (Self-Healing, Adaptive, and Growing
SoftwarE) framework [16] was made to be dynami-
cally adapted to behavioral, situational and environ-
mental changes in complex systems, in particular in-
telligent service robots. SHAGE consists of [16]:

• a situation monitor to identify internal and exter-
nal conditions of a software system,

• ontology-based models to describe architecture
and components,

• brokers to find appropriate architectural reconfig-
uration patterns and components for a given sit-
uation,

• a reconfigurator to change the architecture
based on the selected reconfiguration pattern
and components,

• a decision maker able to learn to find the optimal
solution of reconfiguring software architecture for
a situation,

• and repositories to effectively manage and share
architectural reconfiguration patterns, compo-
nents, and problem solving strategies.

The work described in this paper is different from the
related works in various ways; for one, takes agile
manufacturing systems a step beyond reconfigurabil-
ity, as it makes the system participate in its own de-
sign and redesign; it includes both self-organisation
and self-management and uses in both cases mech-
anisms modelled by chemical reactions.

2.2 Approaches to Self-Management

Recently, many initiatives related to the develope-
ment of self-managing systems have been proposed,
mainly: Autonomic Computing [15] (IBM), Adaptive
Infrastructure (HP2), N13 (Sun), Dynamic Systems
Initiative4 (Microsoft), Adaptive Network Care (Cisco),
Proactive Computing (Intel), Organic Computing [24]
(Fujitsu) (from [25])

The main idea behind autonomic computing 5 is to
address complexity by using technology to manage
technology. The self-management process is divided
in 4 functional areas: self-configuration, self-healing,
self-optimisation, and self-protection. In autonomic
computing, IBM proposed autonomic managers - “ A
component that manages other software or hardware
components using a control loop”. The control loop
of the autonomic manager includes monitor, analyze,
plan, and execute functions [5]. Mainly, the monitor
function provides mechanims for collecting, aggregat-
ing, filtering, and reporting details (such as metrics

2http://h20000.www2.hp.com/bc/docs/support/SupportManual/
c01755823/c01755823.pdf

3www.e-business.com/software/software-pdf/n1.pdf
4http://download.microsoft.com/download/e/5/6/e5656886-

ad18-4afd-945f-3680278dfd58/DSI%20overview.doc
5http://www.research.ibm.com/autonomic/overview



and topologies) from a managed source. The analyze
function provides the mechanisms that correlate and
model complex situations, allowing the autonomic
manager to learn about the environment, and pre-
dicting future situations. The plan function provides
mechanisms for constructing the actions needed to
achieve goals and objectives. The execute function
provides mechanisms for controling the execution of
a plan [5].

Policy Management for Autonomic Computing
(PMAC) is a generic policy middleware platform that
can be used to manage multiple aspects of a large
scale distributed system such as QoS, configuration.
In [1], authors provide an overview of the Policy Man-
agement for Autonomic Computing (PMAC) platform,
and shows how it can be used for the management
of networked systems. A policy is a rule that contains
four components: (1) conditions, that determine if the
rule is applicable, (2) actions, that are executed if the
conditions are true, (3) priority, define which rule is
going to be applied when there is a set of rules which
conditions are true, and finally (4) role, define which
agents are going to be subject to the rules. For ex-
ample, a policy defined for mail servers, may have the
role “mail-server”. Analogously to autonomic comput-
ing, the Agent Manager is a policy-based manager,
which monitors, analyzes, and plans according to the
policies defined for the resources managed by the
Agent Manager.

In [3] show that the chemical reaction paradigm
approach naturally models self-organisation and self-
management and propose a high-order extension of
the Gamma chemical programming model [2], for the
modelling and description of autonomic systems.

Analogously to Autonomic Computing, Organic
Computing [24] focuses on self-* properties, in or-
der to control the global behaviour that emerge from
the local interactions. However, while autonomous
computing is mainly focused on server architectures
that can be managed without active human interfer-
ence, Organic computing is focused on large collec-
tions of intelligence devices providing services to hu-
mans adapted to the current requirements of their ex-
ecution environment. Thus, beside self-organisation,
man-machine interaction is an essential part of Or-
ganic Computing.

Deriving from principles similar [3], the SAPERE
approach, used in this paper, is a chemical reac-
tion based approach supporting in a unified and
homogeneous way both self-organisation and self-
management of eco-systems of services. The
SAPERE infrastructure runs specific middleware ex-
ecuting chemical reactions among mobile nodes.

3 SOAS Overview

Self-organising assembly systems (SOAS) are a spe-
cific category of assembly systems where first, a
self-organisation process supports the modules in
creating the design of the assembly system: in re-
sponse to an incoming product order, modules (such

as grippers, robots, axis or feeders) progressively se-
lect their own partners and their location in a lay-
out; and second, the so obtained assembly system
self-manages during production time (Figure 1). The
self-* processes follow the chemical abstract machine
(CHAM) principles.

Figure 1: SOAS: creation and production time

In previous research we focused first on the de-
scription of SOAS model [11]. In this model, each
individual module (e.g. gripper, axis, etc.) is "agen-
tified", i.e. it is represented by a software agent that
acts on its behalf and provides the capability or the
skill of the module under the form of a service to the
other modules (e.g. a gripper agents provides the
service "open" and "close", while an axis agents pro-
vides the service "move"). We denote by Module Re-
source Agent (MRA) such software agents. When
two or more modules are combined together, the re-
sulting robot is called a coalition and provides a com-
posite service (e.g. a gripper and a linear axis to-
gether provide the "pick and place" service) (Figure
2).

Figure 2: SOAS modules and services

Second, we established the self-organising pro-
cess that guides the modules to design the assem-
bly system in response of an incoming product order.
The approach was inspired by the chemical abstract
machine paradigm where "molecules" (e.g. descrip-
tion of tasks to be fulfilled in relation with the prod-
uct order, services provided by modules) are inserted
into a common set or "soup of molecules", where a
series of "chemical reactions" (matching tasks and
services, linking modules according to their physical
characteristics, matching fulfilled tasks with positions
in a layout, providing precise movements to assem-
ble the product) progressively helped the modules in
designing the assembly system [12] (Figure 3).



Figure 3: Chemical reactions guiding the design of
the assembly System

This paper focuses on the remaining part, i.e.
the self-management of the obtained assembly sys-
tem during production time. Here too, we con-
sider a chemically-inspired approach. Indeed, the
SOAS model considers a framework where self-
management and self-organisation could be both ac-
commodated in a homogeneous way.

3.1 Production Time Self-* Requirements

During production, modules and compositions of
modules coordinate their actions and take care of
themselves and their neighbours. Self-* requirements
in relation with production are as follows:

• Task sequencing: modules coordinate their work
according to the current status of the product be-
ing built. The results of each operation is writ-
ten on a radio-frequency identification (RFID) tag
carried by the product being assembled. The
next composition of modules in the assembly
system will read the RFID and apply the appro-
priate next steps in the assembly operation.

• Collision avoidance: modules must maintain a
minimum distance among each other and the
outside environment (e.g. walls, people) while
moving.

• Self-optimisation/adaptation to production con-
dition: modules adapt their behavior (change
speed, force, task distribution, etc.) in order to
cope with the current performance of neighbours
or to correct their own precision;

• Self-healing (a): in case of failure of a module
or a composition of modules, other modules or
robots can overtake tasks of the failing modules.

• Self-healing (b): in case of failure that cannot be
overtaken by the current assembly of modules,
the layout is changed at production time (addi-
tion/exchange/relocation of modules), and thus,
the system triggers a self-organisation process
to produce a new composition of module, lead-
ing to a repaired assembly system.

4 CASE STUDY

For illustration purposes, we assume the following
simple product to be assembled: an adhesive tape
roller dispenser, consisting of two body case parts
(Part1 and Part3), a tape roll (Part2) and a screw
(Part4), assembled on top of a carrier, as shown in
Figure 4. The assembly is made on a workpiece car-
rier circulating on the conveyors. For more details
see [10].

Figure 4: The adhesive tape roller dispenser

For reasons of simplicity, the choice of system
modules will for now be very limited: a Z-axis moving
in a vertical direction, an X-axis working horizontally,
and a feeder receiving screws in bulk (Figure 5).

Figure 5: Modules and their workspace

Figure 2 shows a combination of the two robotic
axes with a two-finger gripper mounted on the Z-axis.
This configuration can be used for executing all the
movements required to assemble the tape roller dis-
penser.

We assume also that the assembly system ob-
tained as a result of the self-organising phase is as
shown in Figure 6. All the robots are identical and
as shown in Figure 2. Due to the layout’s circular
structure, workpiece carriers revisit robot R1, which
executes two different tasks. In this example, we as-
sume that R1 works faster than robot R2 and robot
R4, and thus, assembles Part1 as well as Part3 .
IN represents the entry of the empty workpiece carri-
ers and OUT means that the carrier with the finished
product leaves the system. Feeders F1 to F4 are
placed next to robots and deliver Part1 to Part4 re-
spectively. Robots are linked by a conveyor system.

We consider the following coordination and self-
management cases happening during production:
task sequencing, changes in parts delivering (Fig-
ure 9), collision avoidance, adaptation to production



Figure 6: Assembly System Designed through the
Self-Organising Process: Grippers (Gi), Robots (Ri)
and Feeders (Fi) modules are positioned in the lay-
out

conditions, and self-healing. These cases are devel-
oped and explained in Section 7.

5 Architecture

The SOAS architecture follows a service-oriented ar-
chitecture where MRAs (agents), on behalf of robotic
modules, provide services. The architecture inte-
grates both rules for self-organising mechanisms and
policies for self-management. It has been adapted
from MetaSelf [6] and exploits dynamically collected
and maintained metadata to support decision-making
and adaptation based on the dynamic enforcement
of explicitly expressed rules and policies. Metadata,
rules, and policies are themselves managed by ap-
propriate services (e.g. agents of the underlying in-
frastructure).

The MRAs (providing services), metadata, rules,
and policies are all decoupled from each other and
dynamically updated (or changed). Additional ser-
vices to build the run-time infrastructure encompass
the following: a registry/broker that handles the ser-
vice descriptions and services requests supporting
dynamic binding; an acquisition and monitoring ser-
vice for the self-* metadata (e.g., performance); a reg-
istry that handles the policies; and a distributed rea-
soning tool that matches metadata values and poli-
cies and enforces the policies on the basis of meta-
data. Metadata is either directly modified by compo-
nents or indirectly updated through monitoring. Meta-
data and policies cause the reasoning tool to deter-
mine whether or not an action must be taken.

All MRAs register their skills and constraints (self-
description metadata). They have access to global or
local coordination metadata (e.g., assembly status of
current product item) and resilience/self-* metadata
(e.g., current level of precision or speed of a module
itself or of a partner module).

Policies, to which the system as a whole has to ad-
here, are global to all components (for instance, “fulfill
the GAP“, “no MRA is allowed to move outside the al-
lowed global workspace“ or “the user favors a circular
layout‘) or locally attached to individual components
(such as “avoid collisions“ or “adapt your own speed
to the speed of your partner“).

Figure 7 shows the architecture distributed at the
level of individual modules (MRA-1) and groups of
modules (semishared, in the middle of the picture,

group MRA-2, MRA-3, MRA-4) and for the whole
assembly system (shared, on the right-hand side).
Compositions of modules do not have a controller
(only modules have) but have metadata and policies
shared by the agents in that composition; the same
applies for the system as a whole and subsystems
thereof.

Examples of metadata include the performance of
the coalition as a whole, such as how many pieces a
certain module has processed in the last 10s. Notice
that because coalitions are dynamically created in re-
sponse to an incoming production order or a produc-
tion condition, the corresponding policies are created
or linked to the coalition on the fly.

Finally, policies and metadata applying at the level
of the whole system are shared by all agents.

Figure 7: Architecture: component view

6 SAPERE Overview

We summarise here the SAPERE framework and
how SOAS are mapped to it. For a more extensive
discussion of the SAPERE framework, readers are
referred to [9, 28]. The main concepts of a SAPERE
system are as follows (see also Figure 8):
“Live Semantic Annotation” (LSA): An LSA is a tu-
ple that represents any information about an agent or
service. LSAs are injected in the LSA’s space repre-
senting the (updated) state of its associated compo-
nent. Relating to SOAS, LSAs are carrying all infor-
mation MRAs want to exchange with each other: data
such as MRAs services requests or MRAs services
descriptions, coordination data such as assembly sta-
tus of the current product being assembled, metadata
such as monitored performance, and policy’s descrip-
tions.
LSA’s Space: a distributed, shared space where
context and information are provided by a set of
LSAs stored at given locations (in specific comput-
ing nodes). To simplify the design, we consider here
only one computing node and one LSA space. In-
dividual MRAs, coalition or the whole assembly sys-
tem access/update their respective LSAs information
through the LSA space. Not all MRAs or coalitions
have access to all LSAs. They have access only to
those LSAs they have produced themselves (i.e. in-
formation about themselves - description, own perfor-



mance, etc.) and to information to which they register
or are bound do (i.e. performance of neighbours).

ECO-LAWS: Eco-laws are chemical rules that act on
the LSAs stored in each LSA’s Space by deleting,
updating, creating or moving LSAs between LSA’s
Spaces. Eco-laws reside in the LSA’s Space and
are invoked following an implicit invocation pattern. In
SOAS, two types of eco-laws are considered: those
that define the chemical rules that support the self-
organising process of a SOAS creation (design of
the assembly system); and those that support self-
management. This paper is concerned only with the
second type. Eco-laws supporting self-management
work as follows: based on an LSA describing a pol-
icy attached to an MRA or a coalition, and an LSA
inserted by an MRA requesting some action from on
another MRA, the self-managing eco-law seamlessly
grants or not the request.

LSA Bonding: An LSA bond acts as a reference to
another LSA and provides fine-tuned control of what
is visible or modifiable to each Agent and what is not.
If an LSA of a given Agent includes a bond to an LSA
of another Agent, the former Agent can inspect the
state and interface of that other Agent (through the
bond) and act accordingly. In SOAS, MRAs of a coali-
tion are linked with bonds to the LSAs of the different
MRA part of the coalition, describing their current sta-
tus, as well as to an LSA describing the status of the
coalition as a whole. In addition, individual MRAs or
coalitions are bond to additional LSAs specifying poli-
cies.

Agents: Agents execute in hosts and are able to lo-
cally access the LSA’s Space available in that host.
In SOAS, the Agents are the MRAs and the different
coalition agents.

Figure 8: SAPERE Framework

7 SELF-MANAGEMENT IN THE SAPERE
FRAMEWORK

This section describes an instantiation of the SOAS
architecture and the handling of policies and self-
managing cases in the SAPERE infrastructure for the
case study discussed in Section 4 and show how they
are handled in the SAPERE framework.

7.1 Case Study Revisited

Task sequencing: a carrier containing the product
being assembled circulates along the layout carrying
an RFID tag logging the tasks applied on the prod-
uct. According to the current status reported in the
RFID, R1 that sees each product twice, applies the
appropriate operation (i.e. adding Part1 or Part3
).This is a coordination activity. Here we have the
LSA (corresponding to the RFID tag) of the product
being built that describes its current assembly status.
In this case, this LSA stores the following informa-
tion: 〈productID, Part1, Part2〉: it specifies that prod-
uct with id 〈productID〉 is currently made of Part1 and
Part2, thus the MRAs coalition R1 by accessing the
information stored in this LSA, knows that it has to
add Part3. Once Part3 is successfully added to the
product, the product agent updates the LSA, which
will now read as: 〈productID, Part1, Part2, Part3〉.

Figure 9: Stick Tube: change in the delivery

Changes in tape roll conditioning: instead of being
delivered in a tube, the tape rolls are delivered on a
stick. Gripper G2 thus grabs the tape roll from the out-
side instead of from the inside, see Figure 9.This is
also a coordination activity. Feeder of Part2 provides
and updates an LSA that describes the way parts
are delivered: in a tube 〈Feeder2, tube〉, or updates
this information when they are delivered on a stick:
〈Feeder2, stick〉. By accessing the LSA of feeder F2,
the MRA for Gripper G2 adapts its way of handling the
pieces.
Collision avoidance (a): the distance between
MRAs must always be bigger than a safety thresh-
old, unless they are members of the same compo-
sition of modules. Robots R1, R2, R3 must not in-
terfere with each other. This case needs a bound-
ing environmental policy, stating the minimum dis-
tance between two robots coalitions is above a cer-
tain threshold, or that workspaces never overlap:
〈PolicyENV, NO_OVERLAPPING_SPACES〉. Each time
one of the robots Ri moves, the LSA representing the
status of the corresponding coalition is updated with
a value representing the current 3D workspace occu-
pied or by the robot: 〈Ri, workspacei〉. An avoidance
collision eco-law then considers the environmental
policy and the current workspaces and injects or not a
specific LSA 〈ID, STOP〉 for stopping the MRAs work:

avoidCollisionEcolaw ::
〈PolicyENV, NO_OVERLAPPING_SPACES〉,
〈R1, workspace1〉, 〈R2, workspace2〉, 〈R4, workspace4〉
7→
〈PolicyENV, NO_OVERLAPPING_SPACES〉,
〈R1, workspace1〉, 〈R2, workspace2〉, 〈R4, workspace4〉
〈ID, STOP〉, if workspaces overlap

(1)



Robots and MRAs permanently check for the stop-
ping LSA is in the LSA space, and stop moving if it
is present. In real case scenarios, priorities among
policies need to be considered for ensuring the sys-
tem stops immediately.
Collision avoidance (b): Whenever a colli-
sion sensor detects something irregular in the
workspace (a human hand or a loose screw),
the operation is stopped until the intrusion has
gone.The sensor updates its corresponding LSA
〈sensorID, IRREGULARITY〉, to inform the system
about an irregularity. As soon as the sensor LSA with
the information about the irregularity is injected in the
LSA space, a safety eco-law produces the stopping
LSA 〈ID, STOP〉 :

safetyEcolaw ::
〈sensorID, IRREGULARITY〉
7→
〈sensorID, IRREGULARITY〉
〈ID, STOP〉

(2)

Self-optimisation/adaptation to production condi-
tions: feeders F1 to F4 adapt the feeding speed to
the part removal speed provided by the joint work of
robots and the grippers G1 to G4. Feeders always
need to deliver parts at their output. If the parts are
taken away quicker, their feeding speed should be
higher. This is a coordination task, where Gripper
Agents update regularly their corresponding LSA with
their speed 〈Gripperi, speedi〉. Feeder Agents, with
bonds to Gripper Agents, read the Grippers LSA and
adapt their speed accordingly.
Self-healing (a): R2 performance decreases (e.g.
decrease in speed or too many broken pieces). Ei-
ther R1 or R2 itself notices the slowing down perfor-
mance reflected in the performance metadata associ-
ated with R2. R1 takes over from R2 until the latter is
replaced. LSA of Robot R2 indicates the current per-
formance 〈R2, speed〉. A self-healing takeover eco-
law modifies the LSA of R1 indicating that it should
take over from R2:

takeOver ::
〈R2, speed〉
7→
〈R2, speed〉, 〈R1, TakeOverFromR2〉,
if speed < threshold

(3)

Self-healing (b): After overtaking from R2, R1 expe-
riences a high level of queuing. This leads the system
to ask for a reconfiguration and, therefore, triggers
the self-organising process to provide a new design
of the assembly system. This is performed with the
following eco-law:

newDesign ::
〈R1, TakeOverFromR2, queueLevel〉
7→
〈R1, TakeOverFromR2, queueLevel〉,
〈ID, STOP〉, 〈systemID, REDESIGN〉,
if queueLevel > threshold

(4)

The main distinction between the SAPERE ap-
proach and conventional approaches lies in the fact
that control and management occurs locally and in
a decentralised manner. There is no central control
entity that supervises all the modules and triggers re-
pairs or halts when necessary. Instead the different
modules go ahead in their work, it is only when their
actual respective configurations (such as speed, po-
sitions reflected in the LSAs) fires a chemical reaction
that the latter, by inserting the appropriate LSA, then
triggers the expected behaviour in the modules.

8 CONCLUSION

This paper describes how using a chemically-inspired
technique, we can perform coordination and self-
managing tasks within industrial robots at production
time. The specific examples have been instantiated
in the SAPERE framework, an EU project defining a
chemically-inspired framework for self-organising and
self-managing context-aware systems. Future work
will concern the development of more self-managing
cases for SOAS and the development of correspond-
ing simulations.

ACKNOWLEDGEMENT

This work is partially supported by the EU-FP7-FET
Proactive project SAPERE Self-aware Pervasive Ser-
vice Ecosystems, under contract no.256873.

REFERENCES

[1] D. Agrawal, Kang-Wong Lee, and J. Lobo.
Policy-based management of networked com-
puting systems. IEEE Commun. Mag.,
43(10):69–75, October 2005.

[2] J.-P. Banâtre, P. Fradet, and D. Le Métayer.
Gamma and the chemical reaction model: Fif-
teen years after. In WMP, volume 2235 of LNCS,
pages 17–44. Springer, 2000.

[3] J.-P. Banâtre, Y. Radenac, and P. Fradet. Chem-
ical specification of autonomic systems. In In:
Proc 13th International Conference on Intelligent
and Adaptive Systems and Software Engineer-
ing, pages 72–79, 2004.

[4] J. Barata. Coalition based approach for
shopfloor agility. Edições Orion, Amadora - Lis-
boa, 2005.

[5] IBM Corporation. An Architectural Blueprint
for Autonomic Computing - White Paper. June
2006.

[6] G. Di Marzo Serugendo, J. Fitzgerald, and
A. Romanovsky. MetaSelf - an architecture and
development method for dependable self-* sys-
tems. In Symp. on Applied Computing (SAC),
pages 457–461, Sion, Switzerland, 2010.



[7] G. Edwards, J. Garcia, H. Tajalli, D. Popescu,
N. Medvidovic, G. Sukhatme, and B. Petrus.
Architecture-driven self-adaptation and self-
management in robotics systems. Int. Workshop
on Software Engineering for Adaptive and Self-
Managing Systems, pages 142–151, 2009.

[8] H.A. ElMaraghy. Flexible and reconfigurable
manufacturing systems paradigms. Int. Journal
of Flexible Manufacturing Systems, 17(4):261–
276, 2006.

[9] F. Zambonelli et al. Self-aware pervasive ser-
vice ecosystems. Procedia Computer Science,
7:197–199, 2001.

[10] R. Frei. Self-organisation in Evolvable Assembly
Systems. PhD thesis, Department of Electrical
Engineering, Faculty of Science and Technology,
Universidade Nova de Lisboa, Portugal, 2010.

[11] R. Frei and G. Di Marzo Serugendo. Self-
organising assembly systems. IEEE Transac-
tions on Systems, Man and Cybernetics, Part
C: Applications and Reviews, 41(6):885–897,
November 2011.

[12] R. Frei, G. Di Marzo Serugendo, and T.F. Ser-
banuta. Ambient intelligence in self-organising
assembly systems using the chemical reaction
model. J. of Ambient Intelligence and Human-
ized Computing, 1(3):163–184, 2010.

[13] R. Frei and J. Whitacre. Degeneracy and
networked buffering: principles for supporting
emergent evolvability in agile manufacturing sys-
tems. Accepted for publication in Journal of Nat-
ural Computing - Special issue on Engineering
Emergence, 2011.

[14] J.C. Georgas and R.N. Taylor. Policy-based
self-adaptive architectures: a feasibility study
in the robotics domain. In Int. Workshop
on Self-Adaptation and Self-Managing Systems
(SEAMS), pages 105–112, New York, NY, USA,
2008. ACM.

[15] Jeffrey O. Kephart and David M. Chess. The
vision of autonomic computing. Computer,
36(1):41–50, January 2003.

[16] D. Kim, S. Park, Y. Jin, H. Chang, Y.S. Park,
I.Y. Ko, K. Lee, J. Lee, Y.C. Park, and S. Lee.
SHAGE: a framework for self-managed robot
software. In Int. Workshop on Self-Adaptation
and Self-Managing Systems (SEAMS), pages
79–85, New York, NY, USA, 2006. ACM.

[17] Y. Koren, U. Heisel, F. Jovane, T. Moriwaki,
G. Pritchow, A.G. Ulsoy, and H. Van Brussel.
Reconfigurable manufacturing systems. CIRP
Annals - Manufacturing Technology, 48(2):6–12,
1999.

[18] P. Leitão. An agile and adaptive holonic archi-
tecture for manufacturing control. PhD thesis,
Department of Electrical Engineering, Polytech-
nic Institute of Bragança, Portugal, 2004.

[19] P. Leitao and F.J. Restivo. Implementation of a
holonic control system in a flexible manufactur-
ing system. Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews,
38(5):699–709, 2008.

[20] V. Marik, V. Vyatkin, and A.W. Colombo, editors.
Holonic and Multi-Agent Systems for Manufac-
turing. Springer, Heidelberg, 2007.

[21] M.G. Mehrabi, A.G. Ulsoy, and Y. Koren. Recon-
figurable manufacturing systems: Key to future
manufacturing. Journal of Intelligent Manufac-
turing, 11:403–419, 2000.

[22] S. Murata, E. Yoshida, H. Kurokawa, K. Tomita,
and S. Kokaji. Self-repairing mechanical sys-
tems. Autonomous Robots, 10:7–21, 2001.

[23] M. Onori. Evolvable assembly systems - a new
paradigm? In 33rd Int. Symposium on Robotics
(ISR), pages 617–621, Stockholm, Sweden,
2002.

[24] H. Schmeck. Organic computing - a new vi-
sion for distributed embedded systems. Object-
Oriented Real-Time Distributed Computing,
IEEE International Symposium on, 0:201–203,
2005.

[25] R. Sterritt and M. Hinchey. SPAACE IV: Self-
Properties for an Autonomous & Autonomic
Computing Environment - Part IV A Newish
Hope. In Proceedings of the 2010 Seventh IEEE
International Conference and Workshops on En-
gineering of Autonomic and Autonomous Sys-
tems, EASE ’10, pages 119–125, Washington,
DC, USA, 2010. IEEE Computer Society.

[26] K. Stoy, D.J. Christensen, and D. Brandt. Self-
Reconfigurable Robots: An Introduction. MIT
Press, 2010.

[27] P. Valckenaers and H. Van Brussel. Holonic
manufacturing execution systems. CIRP An-
nals - Manufacturing Technology, 54(1):427–
432, 2005.

[28] M. Viroli, D. Pianini, S. Montagna, and
G. Stevenson. Pervasive ecosystems: a co-
ordination model based on semantic chemistry.
In Sascha Ossowski, Paola Lecca, Chih-Cheng
Hung, and Jiman Hong, editors, 27th ACM
Symp. on Applied Computing (SAC 2012), Riva
del Garda, TN, Italy, 26-30 March 2012. ACM.


