COALA - A Formal Language for
Coordinated Atomic Actions*

Julie Vachon, Didier Buchs, Mathieu Buffo
and Giovanna Di Marzo Serugendo
Software Engineering Laboratory (LGL-DI)
Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland.

Brian Randell, Sascha Romanovsky, Robert Stroud and Jie Xu
Department of Computing Science

University of Newcastle upon Tyne, Newcastle upon Tyne, UK.

Abstract

A Coordinated Atomic Action (CA action) is a unified scheme for coordinat-
ing complex concurrent activities and supporting error recovery between multiple
interacting objects in distributed object-oriented systems. They constitute a very
interesting concept for the structured development of fault-tolerant distributed appli-
cations. To formalize the design of CA actions, this paper introduces a new language
called COALA (COordinated Atomic actions LAnguage). COALA provides both a
concrete syntax to write CA actions and a semantics which formally explains the
concept. The semantics is given in the formal object-oriented specification language
CO-OPN/2. COALA can thus benefit from the formal techniques developed around
CO-OPN/2 and use them for the validation and the test of applications written with
COALA CA actions.

*This work has been sponsored partially by the Esprit Long Term Research Project 20072 “Design for
Validation” (DeVa) with the financial support of the OFES (Office Fédéral de ’éducation et de la Science),
and by the Swiss National Science Foundation project “Formal Methods for Concurrency”.

1 Introduction

General concepts

The Coordinated Atomic Action (or CA action) concept ([XRR95], [RRS*97a], [RRST97b])
is a unified scheme for coordinating complex concurrent activities and supporting error re-
covery between multiple interacting objects in distributed object-oriented systems. A CA
action provides a mechanism for performing a group of operations on a collection of (local
or external atomic) objects. These operations are performed cooperatively by one or more
roles executing in parallel within the CA action. The interface to a CA action specifies the
objects that are to be manipulated by the CA action and the roles that are to manipulate
these objects. In order to perform a CA action, a group of execution threads must come
together and agree to perform each role in the CA action concurrently, with each thread
undertaking its appropriate role.

CA actions present a general technique for achieving fault tolerance by integrating the
concepts of conversations (that enclose cooperative activities), transactions (that ensure
consistent access to shared objects), and exception handling (for error recovery) into a
uniform structuring framework. More precisely, CA actions use conversations ([Ran75]) as
a mechanism for controlling concurrency and communication between threads that have
been designed to cooperate with each other. Concurrent accesses to shared objects that
are external to the CA action are controlled by the associated transaction mechanism that
guarantees the ACID (atomicity, consistency, isolation, and durability) properties [GR93].
In particular, objects that are external to the CA action, and can hence be shared with other
actions concurrently, must be atomic and individually responsible for their own integrity.
In a sense CA actions can be seen as a disciplined approach to using multi-threaded nested
transactions [Gro96], and to providing them with well-structured exception handling.

The CA action framework is based on a disciplined and rigorously-defined exception han-
dling [XRR98] which relies on several important principles: involving all action roles in
handling any exception raised inside action, associating exception propagation with the
nested action structure and resolving concurrently-raised exceptions. When a single (in-
ternal) exception is raised by a role within a CA action, other roles of the same action
are informed and all activate handler corresponding to this exception. If exceptions are
raised concurrently within a CA action, an exception graph is used to determine which
exception handler has to be activated by each role to recover the action (the exception
graph imposes a partial order on all action exceptions in such a way that a covering, or,
resolving exception can be found for any exceptions which can be raised concurrently in-
side the action). The CA action is completed with a normal outcome if all exception
handlers are completed successfully, otherwise each handler signals a common (interface)

exception to the enclosing CA action. Among these interface exceptions, abort and fail are
two special exceptions which are respectively used to signal action abort (implies that the
action has been aborted and all of its effect have been undone) or action failure (indicates
that an attempt has been made to abort the action but it was not possible to complete it
successfully).

COALA

The aim of this paper is to describe a new formal specification language, COALA (CO-
ordinated Atomic actions LAnguage), specifically developed to outline a precise semantics
of the CA actions and to allow complex concurrent systems to be formally designed and
specified using CA actions. This language includes a minimal set of instructions captur-
ing the essence of CA actions; it has been developed as an extension of the CO-OPN/2
language. Its semantics has also been expressed in the CO-OPN/2 specification language.
COALA can thus benefit from the formal techniques and tools developed for CO-OPN/2
and use them to verify and test applications that are written in COALA and use CA
actions ([BBP96], [PBB9S]).

This paper introduces COALA and demonstrates how it can be applied. The next section
presents the specification language CO-OPN/2 which is used to express the COALA se-
mantics. Section 3 describes in detail the main concepts of CA actions (roles, exception
handling, objects, etc.) and the way in which they are included into COALA. Section 4
gives the complete description of the COALA syntax. The following section (Sect. 5)
presents an overview of COALA semantics in terms of CO-OPN/2 objects. Finally, Sec-
tion 6 presents a small banking example which illustrates how the language can be used
for program design based on CA actions

2 Specifying Object Systems with CO-OPN/2

This section presents a short introduction to the concurrent O-O specification language
called CO-OPN/2 (Concurrent O-O Petri Nets), which will be used to express the principles
of COALA semantics. CO-OPN/2 is a formalism developed for the specification and design
of large O-O concurrent systems ([Bib97], [BBG97a] and [BBG97b]). Such system consists
of a possibly large number of entities, which communicate by triggering parameterized
events (sending messages). The events to which an object can react are also called its
methods. The behavior of the system is expressed with algebraic Petri nets. A CO-OPN/2
specification consists of a collection of two different kinds of modeling entities: algebraic
abstract data types (ADTs) and classes. Algebraic sorts are defined together with related

functions, in ADT modules. Algebraic sorts are used to specify values such as the primitive
sorts (integer, boolean, enumeration types, etc.) or purely functional sorts (stacks, etc.).
Class’ type sorts are defined together with their methods in a distinct class module. Such
a module corresponds to the notion of encapsulated entity that holds an internal state and
provides the outside with various services. Cooperation between objects is performed by
means of a synchronization mechanism, i.e. each event may request synchronization with
the methods of one or of a group of partners using a synchronization expression. Three
synchronization operators are defined: ”//” for simultaneity, ”..” for sequence, and ”+”
for alternative. The syntax of the behavioral axiom that includes synchronization is

BehAxiom := FEvent [With SynchroExpression | ::
[Condition =>] Precondition —> Postcondition

Condition is a condition on algebraic values, expressed with a conjunction of equalities
between algebraic terms. FEwvent is an internal transition name or a method with term
parameters. SynchroEzpression is the (optional) expression described above, in which the
keyword With plays the role of an abstraction operator. Precondition and Postcondition
correspond respectively to what is consumed and to what is produced in the different places
within the net (in arcs and out arcs in the net).

3 Fundamental concepts of CA actions

Roles

A CA action is viewed as a collection of roles, each of them being associated with a portion
of code (a subprogram). The ultimate goal of a CA action consists in coordinating its roles
so as to coherently manage all the system’s software entities, i.e. the system’s objects.

An execution thread enters a CA action by activating the role it wants to execute. When
each role has been activated, the CA action starts and each thread thus executes its role.
This execution is coordinated by the CA action which sees to it that all ACID properties,
ensuring the consistent state of objects, are respected.

Objects

More precisely, the CA action concept defines two kinds of objects, namely internal and
erternal objects. An internal object is an object local to CA action; it is shared between

some or all its roles; it is used for the coordination of the roles or for the internal compu-
tation of a role. An external object is a global object which can be accessed by the roles
of different CA actions (according to the visibility constraints). External objects may also
be used for the coordination of the roles; operations on these objects are constrained by
the ACID properties.

As explained later on, every internal object of an enclosing CA action may be used as an
external object in a nested CA action. External objects may be shared simultaneously by
several CA actions but the effect of the operations (read/write) applied to them must be
the same as if the CA actions had been executed one after another. In other words, the
schedule of operations applied to external objects must be serializable.

Outcomes

The execution of a CA action actually consists in coordinating the execution of the subpro-
grams associated to its roles. A CA action always ends with one of the following outcomes:

e Normal outcome. Indicates that the ACID properties were satisfied during execu-
tion and the CA action commits its operations;

e Exceptional outcome. Indicates that the ACID properties were satisfied but an
exception has been signalled to the enclosing CA action;

e Abort outcome. Indicates that the CA action has aborted and has undone its
operations while satisfying the ACID properties;

e Failure outcome. Indicates that a major problem occured, preventing the CA
action not only from commiting but also from aborting (i.e. the CA action ends
without guarantying the satisfaction of the ACID properties).

All the roles of the CA action end with the same outcome; in the case of an exceptional
outcome all the roles signal the same exception to the enclosing CA action.

Exceptions and Handlers

Two types of exceptions may be found in CA actions: internal and interface exceptions.
Internal exceptions (noted {ei,...,e,}) are totally local to a given CA action, which must
therefore handle them on its own ; each role of a CA action has a set of subprograms
(called handlers) to handle these exceptions or a combination of them. Internal exceptions

can be raised by roles. When some roles of a CA action raise different internal exceptions
concurrently, a resolution algorithm (using a resolution graph) determines which handler
must be activated by the roles so as to handle the concurrent exceptions. Let’s however
remark that handlers are not authorised to raise internal exceptions.

As for interface exceptions (noted {¢y, ..., €,}), they are signalled®, that is to say they are
propagated to the enclosing CA action. Both roles and handlers can signal interface excep-
tions. The signalled exceptions are propagated and thus correspond to raised exceptions
at the level of the enclosing CA action.

Consider two CA actions A and B, such that A is nested in B. Roles of B can call roles in
the nested CA action A. It is worth noting that interface exceptions of A must correspond
to internal exceptions of B. For that reason, the set of internal exceptions {ey,...,e,} of B
implicitly contains the set of interface exceptions {e;, ..., €, } of A.

In addition, two generic interface exceptions are made available to all CA actions: the
Abort exception and the Fail exception.

CA actions’ behaviour

The execution of a CA action always corresponds to one of the following scenario:

e Each role executes and ends successfully. The CA action ends with a normal outcome;

e Some of the roles concurrently raise internal exceptions during the execution. These
raised exceptions can be identical or different (recall that they can correspond to
exceptions signalled by nested CA actions). In any case, the CA action uses a reso-
lution graph to decide which exception handler has to be executed to cope with these
concurrent exceptions. All the roles of the CA action are informed of the exceptions
raised and of the exception handler which they must start executing. The following
cases may Occur:

— If all the exception handlers end successfully, the CA action thus ends with a
normal outcome;

— If some of the exception handlers signal an interface exception to the enclosing
CA action and if these exceptions are the same, then the underlying system
forces all the handlers to signal this exception to the enclosing CA action. The
CA action ends with an exceptional outcome;

! Raising an exception implies that some resolution and handling phases follow, while signalling an
exception entails stopping the current execution and propagating the exception at a higher level.

— If some of the exception handlers signal an interface exception to the enclosing

CA action but these are different, the underlying system tries to perform an
abort. If it succeeds the CA action ends with the abort outcome and all the roles
signal an Abort exception to the enclosing CA action; if the abort operation fails,
the CA action ends with the failure outcome and a Fuil exception is signalled
to the enclosing CA action.
The underlying system behaves the same way if an exception is raised during the
execution of a handler. This case may occur when a nested CA action, called
during the execution of a handler, signals an exception which is consequently
raised at the handler level. Since raised exceptions can’t be solved in handlers,
the underlying system must abort the action.

e Some of the roles signal an interface exception and these exceptions are all the same.
In this case, the underlying system forces all the roles to signal this exception to the
enclosing CA action. The CA action ends with an exceptional outcome;

e Some of the roles signal an interface exception but these exceptions are different. In
this case, the underlying system performs an abort operation and if it succeeds all
the roles signal an Abort exception; if it fails, they all signal a Fail exception;

e A role signals an interface exception while another role raises an internal exception.
The raised exception is ignored, and the CA action continues executing accordingly
to one of the two last cases explained above.

Pre and Post Conditions

A pre-condition and a set of post-conditions (i.e. each outcome, normal or exceptional, has
an associated post-condition) can be inserted in a CA action interface as assertions about
the behaviour of the CA action. These assertions entail a CA action to fulfill the following
rules:

e A CA action can’t start unless its pre-condition is satisfied;

e If the post-condition associated to the outcome of the exiting CA action is not sat-
isfied, the CA action must abort.

The next section presents a description of COALA (COordinated atomic Action LAn-
guage), a formal specification language for CA actions. This language allows the descrip-
tion of CA actions, along with their roles, exceptions and handlers.

4 COALA Syntax

COALA is the formal language used for the design of CA actions. COALA’s instructions
are used to describe the coordinated behaviour of threads executing the CA action (descrip-
tion of roles and exception handlers). COALA also introduces declarations (1) giving the
name of exceptions which may be raised or signalled, (2) defining the exception resolution
graph, (3) stating the name of objects on which the threads may operate.

COALA relies on the specification language CO-OPN/2 to describe the behaviour of objects
(internal and external) implied in CA actions.

4.1 Interface and Body

The COALA definition of a CA action is made of two parts: an Interface section, which is
visible to other CA actions, and a Body section, which is private and hidden to the outside
world.

The Interface of a CA action defines:

e the name of the CA action;
e the list of its (parameterised) roles;

e the list of CO-OPN/2 modules (adts and classes) which are being used in the Interface
part;

e the list of the (parameterised) interface exceptions which the CA action can signal
to an enclosing CA action.

e the pre-condition which the CA action should satisfied before it begins. At the
moment, this pre-condition has no meaning in COALA’s formal semantics. It simply
plays the role of a structured comment and is thus not verified at execution time.

e for each possible outcome (normal or exceptional), the post-condition which the CA
action should satisfied before exiting. As for pre-conditions, post-conditions are sim-
ply considered as structured comments at the moment.

The Body of a CA action defines:

e the list of CO-OPN/2 modules (adts and classes) which are being used in the Body
part;

4.2

the list of nested CA actions;

the list of the CA action’s internal objects. The behaviour of these objects are
specified in separate CO-OPN/2 specification modules;

the list of (parameterised) internal exceptions that roles can raise within a CA action.
The interface exceptions of all nested CA actions are implicitly considered part of this
list. It is not necessary to mention these exceptions here since it is easy to retrieve
their name given the list of nested CA actions declared in the body;

the list of the (parameterised) ezception handlers of the CA action;

the resolution graph of the CA action. In COALA, this graph lists the combinations
of internal exceptions which can be raised concurrently, together with the handler
which must be activated in each case. If a combination of internal exceptions can’t
be found in the list during execution, it is that no handler was foreseen to handle the
case : an abort exception is therefore signalled by the underlying system;

a Where field declaring local variables and their types;

a specification for each role, which is comprised of:

— the parameterised name of the role;

— an instruction block (subprogram);

a Where field declaring local variables and their type;

— a specification for each exception handler, containing its parameterised name,
an instruction block, and a Where field.

Roles and Handlers

The behaviour of a role or a handler is described by an instruction block, that is a sequence
(which may be empty) of instructions separated by commas. COALA’s instructions are
listed and explained hereafter. They may contain variables but also expressions, conditions
and synchronizations referring to CO-OPN /2 specifications and terminology (c.f. [Bib97]).

4.2.1 COALA variables, expressions, conditions and synchronizations

Variable. Name to which a (typed) value is associated. A variable must be in the
scope of the instruction block where it is used. Variables are declared in the Where
field of a role, a handler or a CA action’s body.

According to the context where they are used, COALA variables may behave like
both classical and logical variables. When used in COALA’s instruction Execute,
variables behave as logical variables and thus follow unification rules. Otherwise,
they behave as classical variables and different values can be assigned to them.

e Expression. As mentioned, COALA uses CO-OPN/2 specifications for the defi-
nition of data types and object classes. The global signature of these CO-OPN/2
specifications is noted ¥. An expression a is thus simply a term written over this
sorted signature 3 and over some sorted set Vars of declared COALA variables (i.e.
a € TZ,Vars)-

e Condition. This notion refers to CO-OPN/2 ’s definition of condition. Conditions
are expressed with the usual equality and boolean predicates. Equality predicates
apply to expressions (a; = ay). Composed conditions ared formed using predicates
I for negation (! condition), & for conjunction (condition; & conditions) and || for
disjunction (condition; || conditions).

e Synchronization. A synchronization? is a term noted o.m(ay, ..., a,) where

— o is the name of a CO-OPN/2 object declared in the Object field of a CA action
or is a COALA variable refering to a CO-OPN/2 object.

— m is a typed method defined in the specification of the CO-OPN/2 class to
which o belongs.

— ai,...,aq, are expressions whose types are consistent with the type of object o’s
method m.

4.2.2 COALA’s instructions

An instruction block (instructionBlock) is written:

begin instruction (; instruction)* end

An instruction (instruction) is either empty or is one of the followings:

e Assign a To v

This instruction assigns expression a to variable v.

2Reference is here made to CO-OPN/2 synchronizations which thereupon do not differ from usual
object method calls, apart from relying on unification for the evaluation of the arguments.

e Execute o.m(ay,...,a,)
This instruction tries to execute synchronization o.m(as,...,a,). If method m of
the object referenced by o is firable given parameters a4, ..., a, and according to the

corresponding CO-OPN/2 specification, then the instruction succeeds®. If m is not
firable then an internal exception® is raised.

If ¢ Then wnstructionBlock,; Else instructionBlock,

If condition c is true (according to the model of the given CO-OPN /2 specification),
then instructionBlock, is executed. If c is false, then instructionBlocks is executed.

e Raise exceptionName(ay,...,a,)

This instruction allows a role to raise an internal exception within a CA action.
exceptionName must be the name of an internal exception defined in the body of
the CA action. aq,...,a, are expressions which parametrise the exception raised. A
resolution phase and an exception handling phase normally follow the raising of an
exception.

Signal exceptionName(ay,...,a,)

This instruction allows a role or an exception handler to signal an interface exception
to an enclosing CA action. The name of the exception is either one of the exceptions
defined in the interface of the CA action, or the Abort or Fail exception. When
signalling an exception, a role/handler interrupts its execution and waits for the
other roles/handlers to end so as to pass the acceptance test with the exceptional
outcome signalled.

e Call roleName(ay,...,a,) 0f caaName

This instruction allows the activation of role roleName in (nested) CA action
caaName. If an instance of caaName already exists and its role roleName hasn’t
yet been fulfilled, then role Name is activated with its actual parameters aq,...,a,
passed on. Otherwise, the underlying system first creates a new instance of caa Name,
(with its own internal objects®), before activating the role role Name.

The actual parameters a4, ..., a, are expressions which may contain variables refer-
ring to objects. In this case, these objects are considered as ”external” by the role
which is called (roleName) and will operate on them.

Note that the role/handler executing the call instruction must wait for the outcome
of caaName before pursuing its own execution.

3Note that unbound variables may take new values according to the unification principle which is
applied in CO-OPN/2 .

4i.e. a predefined exception raised by the underlying system

5When an instance of CA action is destroyed, its internal objects are also destroyed

4.3 COALA’s Concrete syntax and Statics Semantics

The concrete syntax of COALA is defined by a BNF grammar, which can be found in
appendix B. To maintain a coherent and uniform set of languages, COALA’s syntax has
been designed so as to be similar to the concrete syntax of CO-OPN/2 .

Likewise, the statics semantics (i.e. the typing system) of COALA is consistent with the
static semantics of CO-OPN/2. In fact, COALA uses the same typing system as CO-
OPN/2; types used by COALA are CO-OPN/2 types, and COALA supports subtyping
just like CO-OPN/2 does. Subtyping can be used anywhere in a COALA program where
a typed expression appears. For instance, if a role in a CA action accepts a parameter of
type t, then it can also accept any parameter of type t', as long as type t' is a subtype of
type t according to the CO-OPN/2 specification used by the CA action.

A tool, named coalacheck, has been developed to check the correctness of COALA source
texts. This tool verifies the COALA syntax, as well as its static semantics. The banking
example in the next section has thus been verified with it. Coalacheck is based on the
checking tool developed for CO-OPN/2 source texts.

5 COALA’s Semantics

5.1 An Overview

The following lines should give the reader a short overview of COALA’s semantics. Details
can be found in [VB98]. The object-oriented specification language CO-OPN/2 | which
is based on Petri nets and algebraic data types, was chosen as the target language for
COALA’s semantics. The aim of this work thus consisted in providing translation schemes
of COALA constructions to CO-OPN/2 objects. There are no formal translation rules. The
translation from COALA to CO-OPN/2 rather consists in applying translation schemes
and specializing the basic CO-OPN/2 templates proposed so as to describe the particular
behaviour of each COALA program.

Efforts were spent writing CO-OPN/2 classes to be used as templates for the semantic
description of CA actions and their roles. Hence, two main abstract classes, named Caa
and Role, have been defined to specify the fundamental bahavioral properties common to,
respectively, any CA action and any role. The semantics of particular CA actions and roles
can thus be expressed by creating new sub-classes which inherit from the basic abstract
classes (Caa or Role) and which define new axioms to specify these specific behaviors.

This inheritance relationship is illustrated on Figure 1. This figure also shows the subtyping
relation which exists beween the CO-OPN/2 objects representing CA actions or roles.
Among others, subtyping allows to gather under a common subtype (e.g. Role of _Caal,
Role of Caa2, etc.) all the role objects of a given CA action. Since CA actions are
entities which coordinate roles, a clientship relation (Fig. 2) exists between classes Caa and
Role. Indeed, as it will be explained in the semantics, caa objects use services (methods)
provided by role objects. Methods of role instances can be seen as hands held to caa
objects allowing for their coordination.

Besides classes Caa and Role, many other CO-OPN/2 classes and abstract data types
were defined to explain the interpretation of role programs (COALA instructions), the
evaluation of CO-OPN/2 expressions used in COALA, the handling of exceptions, the
consistent access to external objects, etc. Figure 2 also illustrates part of the ” Use” relation
which exists between CO-OPN/2 modules.

Considering the mechanisms and the properties specific to CA actions, the next subsections
explain with more details the semantics of COALA CA actions and roles, as well as their
translation into object instances of class Caa and Role.

(Class Caal) Class Caa2) -+ (Class CaaN

Rol e_of _CaaN

AN

[Ro\ el_of 7(};aN] [Ro\ e2_of 7(};aN]

Rol e3_of Caal

- : isasubtype ———= :inheritsfrom

Figure 1: Inheritance and subtyping hierarchies

Adt Exception

/ Adt Qut come

Adt Li st OfF Expr
isaclient of Adt Instruction

Adt Cont xt

Adt Substitution

Figure 2: Clientship and use hierarchies

5.2 Translating COALA’s CA actions to CO-OPN/2 objects

COALA’s CA actions are coordinating entities which are represented in the CO-OPN/2
semantics by object instances of an abstract class named Caa (cf. Appendix C.1). This
abstract class specifies the general behavior of all COALA CA actions. Specific CA actions
with their particular behavior are described by subclasses which inherits from class Caa.

The principal coordinating activity of a CA action is ensured by the internal transition
syncRoles :

syncRoles With
Self.startRoles(rlist, clist, caalbj) ..
Self.acceptTest(rlist, outc) ..
Self.endRoles(rlist, clist, outc) ::
Objs caalbj, Roles rlist —> 0Objs caaObj, Roles rlist;

According to the semantics of CO-OPN/2 | transition syncRoles can fire if and only if the
synchonization expression, which follows the keyword With, can itself fire. Let us recall
that operator ”//” specifies a simultaneous execution of two events, while operator ”..”
denotes a sequential execution. The reader can refer to [Bib97], [BBG97a] and [BBG97b]
for details about CO-OPN/2 ’s syntax and semantics.

Transition syncRoles thus consists in (1) synchronizing the beginning of all the roles of
the CA action (startRoles), then (2) coordinating the acceptance test (acceptTest) and
finally (3) signalling the outcome of the ending roles (endRoles).

Parameters rlist and caaObj can be considered as input values which respectively denote
the list of internal objects and the list of roles of the CA action. Parameters outc and
clist are output values denoting respectively the CA action’s outcome and the list of
threads (roles) which have called and synchronized with a role in the CA action. (N.b.
rlist and clist thus have the same length.)

Here follows some details about each of the three coordination activities mentioned above
and which are specified by a synchronization sub-expression in the With part of the
syncRoles axiom:

1. The recursive method startRoles specifies that a CA action must start all the roles
simultaneously. For this, the CA action must synchronize sequentially with first an
object representing a calling thread (c.callRole) and then the object reprensenting
the role to be started (r.start). This is done simultaneously for all the roles of
the CA action i.e. those which are listed in argument (r’rlist). If there are many
simultaneous calling threads for a same role, one of them is chosen randomly and the

variable ”c” takes the identity of that object by unification.

startRoles([], [1, caaObj):: —>;

startRoles((r ’ rlist), (¢ ’ clist), caaObj)
With (c.callRole(r, arg) .. r.start(arg, caaObj))
// Self.startRoles(rlist, clist, caaObj):: ->;

2. Method acceptTest specifies how a CA action coordinates the acceptance test. All
the roles must agree on the final outcome. Thus, according to the second axiom
of method acceptTest, if all the roles end with the same outcome (be it normal
or exceptional), the acceptance test returns the value of this outcome. The third
axiom specifies that if roles have different outcomes but none of them failed, then
the acceptance test returns abort. The last axiom considers the case where at least
one role fails and thus entails the acceptance test to return the outcome fail.

acceptTest((r > [1), outc) With r.outcome(outc):: ->;

acceptTest ((r ’ rlist), outcl)
With (r.outcome(outcl) // Self.acceptTest(rlist, outc2))
eq(outcl, outc2) and not(empty?(rlist)) = true => ->;
acceptTest ((r ’ rlist), abort)
With (r.outcome(outcl) // Self.acceptTest(rlist, outc2))
not (eq(outcl, outc2)) and not(eq(outcl, fail))
and not(eq(outc2,fail)) and not(empty?(rlist)) = true => ->;
acceptTest ((r ’ rlist), fail)
With (r.outcome(outcl) // Self.acceptTest(rlist, outc2))
(eq(outcl, fail) or eq(outc2, fail))
and not(empty?(rlist)) = true => ->;

3. Method endRoles is responsible for transmitting the roles’ outcomes (normal or
exceptional) to each of the calling threads simultaneously. As specified by the third
axiom of endRoles, if the outcome is abort, each role must abort before it is signalled.

endRoles([], [], outc):: ->;

endRoles((r ’ rlist), (c ’ clist), abort)
With (r.abort .. c.signalOutcome(abort))
// Self.endRoles(rlist, clist, outc):: ->;
endRoles((r ’ rlist), (c ’ clist), outc)
With c.signalOutcome(outc) // Self.endRoles(rlist, clist, outc)
eq(outc, abort) = false => ->;

It is important to recall that transition syncRoles is performed only if all the sychroniza-
tion sub-expressions sequentially succeed. This all-or-nothing semantics therefore guaran-
tees that a CA action behaves as specified or does not execute at all.

Moreover, CA actions are also responsible for coordinating the resolution of concurrently
raised exceptions. The axiom defining transition solveExceptions allows to specify this
mechanism which consists in (1) collecting simultaneously all the exceptions concurrently
raised by roles, (2) determining the global exception which corresponds to the set of raised
exceptions according to the CA action’s resolution graph, and (3) for each role simultane-
ously, activating the handler which must cope with this global exception.

These tasks are described by the methods appearing in the synchronization erpression of
transition solveException:

solveExceptions With
Self.getExceptions(rlist, exlist) ..
Self.solve(exlist, e)
Self.handleExcept (rlist, e)
eq(e, nil) = false => Roles rlist -> Roles rlist;

1. The recursive method getExceptions simultaneously asks every role the exception
it has just raised (r.exRaised). The exception returned by a role is ”nil” if it has
raised no exception.

getExceptions([], [1):: ->;

getExceptions((r ’rs), (e ’ es))
With r.exRaised(e) // Self.getExceptions(rs, es):: ->;

2. Method solve proceeds to the exception resolution phase and thus determines the
”global” exception which corresponds to the list of collected exceptions (cf. 1.). Since
this method encodes the CA action’s resolution graph, its axioms are thus different
for each particular CA action. Only two axioms of method solve are common to all
CA actions. (The others are defined in the subclasses.)

solve(l, fail) :: fail isIn? 1 => ->;
solve(l, abort) :: not (fail isIn? 1) and (abort isIn? 1) => —>;

These axioms correspond to the abort and failure cases: if at least one role fails then
the fail exception must be globally raised; if at least one role aborts but no role
fails, then the abort exception is globally raised.

3. Method handleExcept tells each role simultaneously the ”global” exception to be
handled. All the roles thus activate their appropriate handler (r.handle).

handleExcept ([1,):: ->;
handleExcept ((r ’rs), e)
With r.handle(e) // Self.handleExcept(rs, e) :: ->;

5.3 Translating COALA’s roles to CO-OPN/2 objects

Roles are translated into CO-OPN/2 objects belonging to the abstract class Role which
specifies the generic mechanisms and the basic behavior that any role must have. Part of
the specification of class Role is given in Appendix C.2.

Specific roles are described by individual classes which inherit from the abstract class
Role. These subclasses are specialized following some given scheme and according to
the specific programs which the roles have to execute. Besides inheritance, other object-
oriented features of CO-OPN/2 have been used in the definition of COALA’s semantics.
In particular, subtyping has been especially useful for gathering all the roles of a same CA
action under a particular type (Fig. 1). Thanks to this last feature, a given caa object can
refer to types to identify the role objects it coordinates.

As for caa objects, role objects also have methods and internal transitions specifying their
behavior. The interface of class Role is the following:

Class Role ;
Interface

Use Name, ListOfExpr, ListOfObjects, Outcome;
Type roleType;

Methods
callRole _ _ : roleType objlist;
outcome _ : exception;
exRaised _ : exception;
handle _ : exception;
evtReq _ : event;
objMgrAns _ : outcome;
Create
start _ _ : objlist objlist;
End Role;

For the most part, the methods declared in this interface are services used by caa objects to
coordinate role objects and to direct their execution according to their state and evolution.

Role objects also have many hidden® methods and transitions. Their main internal tran-
sition is called eval and is used for interpreting COALA instructions. Figure 3 illustrates
the evaluation of the instruction ”Call roleName(as,...,a,) 0f caaName”. The axiom
describing the behavior of this instruction is the following:

6declared in the body section and not in the interface.

calRole (r, args)

RoleToCall

Instr ¢) C
start(args, Q eval
CazObj) A

CallRoler withargs args

Role object ¢

Figure 3: Role object ¢ evaluating a Call role instruction

eval :: Instr (CallRole r withArgs args), Ctxt c,
-> RoleToCall r (subst args c), Ctxt c;

As illustrated, the instruction is read from place Instr. To interpret it, the evaluation
context (containing the values assigned to the variables) is required and is thus taken from
place Ctxt and put back into it right after. When evaluating a Call instruction, transition
eval puts the identity of the role to be called along with its evaluated parameters in place
RoleToCall. These values will be fetch from this place as soon as the CA action object
whose role is being called can synchronize with the method callRole of the calling object.
This synchronization is illustrated by Figure 4.

CA action Object

endRoles

(r'rlis)
CaaObj

Roles Objs
acceptTest

CazObj

syncRoles

syncRoles With
Self.startRoles(rlist, clist, caaObj)..
. Self.acceptTest(rlist, outc) ..
startRoles (rlist); (€ list), CaaObj) Self.endRoles(rlist, clist, outc) ::
AN Objs caaObj, Rolesrlist ->
Objs caaObj, Rolesrlist

callRoler args //
4

A O O

oide
RoleToCall
— O | E—
O start (args, CaaObj)
Role Object ¢ Role Object r

Figure 4: Synchronization between the calling role object ¢ and the called role object r

In this figure, the Call instruction is performed by Role object ”¢” while the role object
being called is identified by ”r”. As specified by the eval axiom above, the interpretation

of this instruction consists in evaluating the arguments in the context and then putting the
result together with the identity of the role object to be called (i.e. r) in place RoleToCall.
Appropriate tokens in this place allow method callRole of role object ¢ to eventually
fire. It does indeed as soon as the method startRoles of the caa object coordinating role
r, tries to synchronize sequentially with (1) the method callRole of object ¢ and (2) the
method start of object r.

Role objects have many other methods which are used to define the exception handling
mechanism, the way roles operate on CA actions external objects, etc. These were not
introduced here for the explanation of their axioms would go beyond the scope of this

paper.

5.4 Other concepts of the semantics

Some important concepts of CA actions, such as the serializability of operations applied to
external objects, haven’t been explained here. A technical report ([VB98]) describing the
complete semantics of COALA is available. Detailed explanations and all the corresponding
translation schemes of COALA in CO-OPN/2 can be found in this report.

6 The banking example

This section introduces a small case study to illustrate how COALA’s CA action concepts
and syntax are used for the design of fault-tolerant distributed applications. The complete
COALA specification of this example is given in Appendix A.

The banking example illustrates how a joint withdraw, implicating two clients and two
joint accounts, can be specified using CA actions designed in COALA.

More precisely, the bank of this case study offers its clients a special kind of account called
”joint account”. A joint account is owned by two clients, called co-owners. Each owner is
given a personal identification number (or pin) which he must use to identify himself.

The conditions applied to joint accounts and pins are the following.

Joint accounts

e A Withdraw operation on a joint account requires the authorisation of both co-
owners.

e Money may be deposited on the joint account without any authorisation.

e The balance of the account may be consulted by both co-owners.

Personal identification numbers

e A client agrees for the execution of a transaction by giving his pin, which must
henceforth be validated.

e A client is authorized to perform an operation if he can identify himself with a valid
pin. If he makes a mistake, the operation is immediately aborted.

The COALA program corresponding to this banking example is made of two parts:

1. a CO-OPN/2 specification of the objects to be used (IntegerContainer, PIN and
Account);

2. a COALA description of the required CA actions (JointWithdraw, Withdraw and
Wait)

The COALA description itself consists of two principal CA actions (JointWithdraw and
Withdraw) and of three complementary one (WaitPIN, WaitInfoAmount and
WaitReadAmount) which are simply used to force the synchronization of threads. The
following subsections give more details about the behavior of these particular CA actions.

CA action JointWithdraw

The JointWithdraw action presents two clients, named clientl and client2. They are
the co-owners of two joint accounts, account_1 and account_2.

Each joint account has an appointed co-owner who takes care of the main transactions
operated on the account: hence, client1 is responsible for transactions on account_1
while client?2 is responsible for transactions on account_2.

In CA action JointWithdraw, role clientl describes the behavior of a client who wants
to withdraw a certain amount of money out of one of two given joint accounts. More
precisely, the money must be withdrawn from the account having the greatest balance.
client1 thus informs the other co-owner, client2, about the amount to withdraw. Each
client consults his appointed account and tells the other how much money there is left.
Each client henceforth knows on which account the money must be taken from. The client
responsible for the account having the highest balance thus performs the withdraw by
calling role withdrawer of CA action Withdraw. On his side, the other client calls role
partner of this same CA action.

Moreover, if there is not enough money on a single account, the missing amount is drawn
out the other account. If some money is still missing, the exception NotEnoughMoney must
be signalled. Figure 5 describes the COALA interface of CA action JointWithdraw. Its
body and the complete COALA program is given in the appendix. (Pre and post-conditions
were not really necessary to solve the banking problem and thus have not been introduced
in this example.)

As for Figure 6, it illustrates one of the normal (i.e. with no exception) execution of CA
action JointWithdraw. Boxes delimit the execution part under the control of each CA
action. Circles represent objects. As for ”X” symbols, they denote Execute intructions in
the role programs. Details about the CA actions which are nested in JointWithdraw are
given in the next subsections.

Caa JointWithdraw;
Interface

Use

Account, Integers;

Roles
clientl : accountType,
client2 : accountType;
Exceptions
NotEnoughMoney ;

End JointWithdraw;

)
2

)

This CAA uses the COOPN/2 modules
specifying the object class representing
accounts and the data type for integers.

integer;

» The first client is the one who

; determines the amount of money to
; be withdrawn. This role is thus

; parameterised by the account used by
; the client and the money he plans

; to withdraw.

; The second client works in

:; partnership with the first client.

; This role is simply parameterised
; by the account the client uses.

; This exception is signalled when
; there is not enough money on
: both accounts.

Figure 5: COALA interface of CA action JointWithdraw

CA Action JointWithdraw

CA Action CA Action CA Action
WaitInfoAmount WaitReadAmount Withdraw
Clientl first | |first . withdrawer .
N NN N N NN
Client2 | second second partner
X X X X X X

Internal objects Q Q
L=

templ commonAmount temp2

External objects Q Q
L=

account amount

Figure 6: A (normal) execution of CA action JointWithdraw

CA action Withdraw

As mentioned, a withdraw operation requires the authorization of both co-owners. Hence,
the client withdrawing the money (the withdrawer) must not only give is own pin but
must also get the pin of the other co-owner (his partner).

Note that clients have a single try to enter their pin when they are prompted for it. If the
wrong pin is entered, then an Abort exception is raised, and the whole CA action Withdraw
is aborted.

If the pin validation process succeeds, two cases may occur:

1. There is enough money on the account. The required money is drawn out the account
and the balance is updated.

2. There is not enough money on the account. All the money on the account is thus
being drawn out (the balance is put to 0) and the exception missing is raised. The
withdrawer’s exception handler takes up the execution and indicates the amount of
missing money to the enclosing CA actions by assigning this amount to the external
object commonAmount. If no problem occurs during this handling phase, CA action
Withdraw simply ends with a normal outcome.

Figure 7 illustrates the normal execution of CA action Withdraw.

CA Action Withdraw

|
1
CA Action |
WaitPIN |
|
Withdrawer first |
N N AN A N |
|

Partner second

N

Internal objects Q Q |
[. |

partnerPIN withdrawerPIN

External objects Q Q
L=

account amount

Acceptance Test

Figure 7: A (normal) execution of CA action Withdraw

CA actions WaitPin, WaitInfoAmount and WaitReadAmount

These CA actions are used to coordinate the work of two threads, more precisely to syn-
chronize two threads. They all have the same shape: a first thread enters the CA action
by calling one of the two roles; this thread is suspended until the other role is called by a
second thread. Since the body of the roles are empty, these CA actions end (with a normal
outcome) right after the initial sychronization of the roles.

7 Conclusions

The CA action concept constitutes an attractive and promising approach to structuring
complex concurrent object-oriented systems and to providing their fault tolerance in a
disciplined and rigorous way. It occupies a crucial place in the conceptual framework
proposed by the DeVa project which concerns with the development of reliable applications
and with applying advanced structuring techniques for improving our ability to validate
the developed systems and to reason about their behaviour.

COALA is introduced as a formal language for designing and specifying systems which
are developed using CA actions. It is based on object-oriented specification language
CO-OPN/2 . A COALA formal semantics is described in terms of CO-OPN/2 objects.
Writing the semantics of COALA, we had the chance to benefit from many of the high-

level features of CO-OPN/2 : synchronization expressions, object-oriented mechanisms,
abstractions, etc. Among others, inheritance and subtyping helped to provide a structural
and modular description of CA actions and their roles.

Since COALA’s semantics is expressed in CO-OPN/2 | all existing development meth-
ods and tools built for CO-OPN/2 can be employed while writing COALA specifications
([BB97], [PBB98] and [SGI8]). In addition to this a first COALA-oriented tool has recently
been developed and is now integrated into the CO-OPN/2 set of tools: it allows checking
both syntax and static semantics (i.e. the typing system) of the COALA specifications.

Further works include the development and the formalisation of the translation rules which
compute the semantics of the COALA programs in terms of CO-OPN/2 object systems.
A JAVA implementation of the CO-OPN/2 language should then allow for the simulation
and the testing of COALA programs.

8 References

[BB97] M. Buffo and D. Buchs. A coordination model for distributed object systems. In
Proceedings of the Second International Conference on Coordination Models and Languages
COORDINATION’97, September 1997, volume 1282 of Lecture Notes in Computer Science.
Springer-Verlag, 1997.

[BBGI7a] O. Biberstein, D. Buchs, and N. Guelfi. Object-oriented nets with algebraic
specifications: The CO-OPN/2 formalism. In DeVa Second Year Report Delivrables, pages
103-168. Esprit Long Term Research Project 20072 - DeVa, December 1997.

[BBGI7b| O. Biberstein, D. Buchs, and N. Guelfi. Object-oriented nets with algebraic
specifications: The CO-OPN/2 formalism. In G. Agha and F. De Cindio, editors, Advances

in Petri Nets on Object-Orientation, Lecture Notes in Computer Science. Springer-Verlag,
1997.

[BBP96] S. Barbey, D. Buchs, and C. Péraire. A theory of specification-based testing
for object-oriented software. In Proceedings of EDCC2 (European Dependable Computing
Conference), Taormina, Italy, October 1996, LNCS (Lecture Notes in Computer Science)
1150, pages 303-320. Springer-Verlag, 1996. Also available as Technical Report (EPFL-DI
No 96/163), Published in DeVa first year report (December 96).

[Bib97] O. Biberstein. CO-OPN/2: An Object-Oriented Formalism for the Specification
of Concurrent Systems. PhD thesis, University of Geneva, 1997. Thesis No 2919.

[GR93] J.N. Gray and A. Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann Publ., 1993.

[Gro96] Object Management Group. Object transaction service. Draft 4, OMG document,
November 1996.

[PBB98| C. Péraire, S. Barbey, and D. Buchs. Test selection for object-oriented software
based on formal specifications. In IFIP Working Conference on Programming Concepts
and Methods (PROCOMET’98), Shelter Island, New York, USA, June 1998, pages 385
403. Chapman & Hall, 1998. Also available as Technical Report (EPFL-DI No 97/252),
Published in DeVa second year report (January 98).

[Ran75] B. Randell. System structure for software fault tolerance. IEEE Trans. Soft.
Eng., SE-1(2):220-232, 1975.

[RRST97a] B. Randell, A. Romanovsky, R. Stroud, J. Xu, and F. Zorzo. Coordinated
atomic actions: from concept to implementation. Technical Report 595, Computing Dept.,
University of Newcastle upon Tyne, 1997.

[RRST97b] A. Romanovsky, B. Randell, R. Stroud, J. Xu, and A. Zorzo. Implementation
of blocking coordinated atomic actions based on forward error recovery. Journal of System
Architecture (Special Issue on Dependable Parallel Computing Systems), 43(10):687-99,
1997.

[SG98] G. Di Marzo Serugendo and N. Guelfi. Using object-oriented algebraic nets for
the reverse engineering of java programs: A case study. In Proceedings of the International
Conference on Application of Concurrency to System Design (CSD’98). IEEE Computer
Society Press, 1998.

[VB98] J. Vachon and D. Buchs. The semantics of COALA in CO-OPN/2. Technical
Report EPFL-DI No 98/300, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Suisse,
1998.

[XRR195] J. Xu, B. Randell, A. Romanovsky, C. Rubira, R. Stroud, and Z. Wu. Fault
tolerance in concurrent object-oriented software through coordinated error recovery. In
Proc. 25th Int. Symp. on Fault-Tolerant Computing, pages 499-508, Pasadena, June 1995.

[XRR98] J. Xu, A. Romanovsky, and B. Randell. Coordinated exception handling in
distributed object systems: from model to system implementation. In Proc. of the Int.
Conference on Distributed Computing Systems, ICDCS-18, Amsterdam, May 1998.

Appendix

A COALA specification of the banking example
A.1 Specification of Objects in CO-OPN/2

Abstract Class PIN;

;; Represents a Personal Identification Number.
;; This class is left abstract; its body is not described.

Interface
Use Booleans;
Type PINType; ;; The name of the type

Method
;; Test for equality of PINs; the last parameter returns the
;; corresponding boolean value
equals _ _ : PINType, boolean;

;; this methods prompts a user for a PIN code. The PIN object
;; 48 hence modified accordingly.
queryForPIN;

;; Body not described.
End PIN;

Abstract Class Account;
;; Represents a joint account
Interface
Use PIN, Integers, Booleans;
Type accountType; ;; The name of the type

Methods
;; Test for the PINs validity. The last argument
;; returns true if the two PINS are valid for this account;
;; the boolean false is returned otherwise.
correctPINs _ _ _ : PINType, PINType, boolean;

;; Return the balance
balance _ : integer;

;; Balance increment and decrement
increment _, decrement _ : integer;

Creation
;; The creation of a new joint account requires both PINs

newAccount _ _ : PINType, PINType;
Body
Places
PINs _ : PINType;
sum _ : integer;
Axioms
correctPINs (pl,p2, (bl and b2) or (b3 and b4)) With
(pinl.equals(pl,bl) // pin2.equals(p2,b2)) //
(pinl.equals(p2,b3) // pin2.equals(pl,b4))
PINs pl1, PINs p2 : -> PINs pl, PINs p2;
balance x :: sum X -> sum X;
increment x :: sum y -> sum (y+x);
((y-x)>=0)=true => decrement x :: sum y -> sum (y-x);
newAccount pl p2 :: -> PINs pl, PINs p2, sum O;
Where

pinl, pin2, pl, p2 : PINType;
bl, b2, b3, b4 : boolean;
X,y : integer;

End Account;

Class IntegerContainer;
;; Container for an integer;
Interface
Use BlackTokens, Integers;
Type integerContainer;

Methods
;; Puts a new integer value in the container;
put _ : integer;
;; Reads the integer value in the container;
get _ : integer;

Body

Places
empty _ : blackToken;

hold _ : integer;

Initial
empty Q;

Axioms

put x :: empty @ -> hold x;
put x :: hold y -> hold x;
get x :: hold x : -> ;

Where

X,y : integer;

End IntegerContainer;

A.2 Description of CA actions in COALA

;; This CAA allows two clients (co-owners of two joint accounts) to
;; agree on a banking operation, namely o withdraw operation on their
;5 joint accounts; after this agreement step, both clients call a

;; nested CAA performing the withdraw itself. the clients decide to

;5 withdraw money from the account having the greatest balance. If

;; there is not enough money on a single account, they try to get the
;5 missing amount from the other account. To do this, both clients

;; enter another nested CAA which performs the withdraw on the other
;5 account.

Caa JointWithdraw;

Interface
Use
Account, Integers; ;; This CAA uses the COOPN/2 modules
;5 specifying the object class representing
;; accounts and the data type for integers.
Roles

clientl : accountType, integer;
;; The first client is the one who
;; determines the amount of money to
;5 be withdrawn. This role is thus
;; parameterised by the account used by
;; the client and the money he plans
;; to withdraw.

client2 : accountType;
;; The second client works in
;; partnership with the first client.

~

;; This role is simply parameterised
;5 by the account the client uses.

Exceptions
NotEnoughMoney; ;; This exception is signalled when
;; there is not enough money on
;; both accounts.
Body

Use Booleans;

Use Caa Withdraw, WaitInfoAmount, WaitReadAmount;

Object

templ, temp2, commonAmount: integerContainer; ;; Define local objects

Handler
FailHandler; ;; Default Handler
Aborthandler;

Resolution

Abort -> Aborthandler;

Role clientl (account, amount);

Begin

Execute commonAmount.put(amount); ;; store the amount to withdraw
Call first Of WaitInfoAmount; ;5 wait for / wake up client2
Execute account.balance (money) ; ;; Get the balance of

;; clientl’s account
Execute templ.put(money) ;
Call first Of WaitReadAmount; 55 wait for client2 to fill temp?2
Execute templ.get(tl); ;; fetch the values
Execute temp2.get(t2);
If ((t1>=t2)=true) Then Begin ;; clientl is the withdrawer
Call withdrawer (account,commonAmount) Of Withdraw;
Execute commonAmount.get(ca) ;
If (ca > 0 = true) Then ;5 still some money to withdraw
Call partner Of Withdraw;
End
Else Begin ;; clientl is the partner
Call partner Of Withdraw;
Execute commonAmount.get(ca);
If (ca > 0 = true) Then ;; still some money to withdraw
Call withdrawer (account,commonAmount) Of Withdraw;
End;

Execute commonAmount.get(ca);

If (ca > 0 = true) Then
Signal NotEnoughMoney; ;5 still money missing
End

Where
tl, t2, ca, money: integer;
amount : integer;
account: accountType;

Handler FailHandler;
Begin
Signal Fail;
End
End FailHandler;

Handler Aborthandler;
Begin
Signal Abort;
End
End Aborthandler;

End clienti;

Role client2 (account);

Begin
Call second Of WaitInfoAmount; ;5 wait for amount to withdraw
Execute account.balance (money) ; ;; get the balance of

;; client2’s account
Execute temp2.put(money) ;

Call second Of WaitReadAmount; ;; wait for / wake up clientl
Execute templ.get(tl); ;; fetch the values
Execute temp2.get(t2);

If ((t2 > t1)=true) Then Begin ;; client2 is the withdrawer

Call withdrawer (account,commonAmount) Of Withdraw;
Execute commonAmount.get(ca) ;
If (ca > 0 = true) Then ;; still some money to withdraw
Call partner Of Withdraw;
End
Else Begin ;; client2 is the partner
Call partner Of Withdraw;
Execute commonAmount.get(ca) ;
If (ca > 0 = true) Then ;; still some money to withdraw
Call withdrawer (account,commonAmount) Of Withdraw;
End;

Execute commonAmount.get(ca);

If (ca > 0 = true) Then
Signal NotEnoughMoney; ;5 still money missing
End

Where
tl, t2, ca, money : integer;
account : accountType;

Handler FailHandler;
Begin
Signal Fail;
End
End FailHandler;

Handler Aborthandler;
Begin
Signal Abort;
End
End Aborthandler;

End client2;

End JointWithdraw;

;; The aim of this CAA is to allow two clients to withdraw a predefined
;5 amount of money from a predefined account; it is supposed that both
;; clients already agree on the transaction before this CAA is called.

Caa Withdraw;

Interface

Use
Account, IntegerContainer; ;; This CAA uses the COOPN/2 modules
;; specifying object classes representing
;5 accounts and integer containers.

Roles
withdrawer : accountType, integerContainer;
;; The withdrawer s the role responsible
;; for the withdraw. It is parameterised
;5 by the account from which to money has
;; to be taken from and by an object
;5 containing the amount to withdraw.

partner; ;; The partner has no parameters;
;; The partner has no other mission then
55 simply giving his authorisation for
;; the withdraw by providing his PIN.

Body

Use
PIN, Booleans; ;3 This CAA uses the COOPN/2 modules
;5 specifying the object class representing
;; PIN and the data type for booleans.
;5 accounts and integer containers.
Use Caa
WaitPIN; ;; CAA WaitPIN is used to
;5 synchronize the threads executing
;; the roles.
Object
withdrawerPIN: PINType; ;; Definition of a local object
partnerPIN: PINType; ;; Definition of a local object
Exceptions
missing : integer, integerContainer; ;; Not enough money on the
;; withdrawer account; parameters are
;; used to indicate the missing amount
;; and the object containing the amount
;; which should have been withdrawn by
;; this CAA.
Handlers
FailHandler; ;; Default Handler
missingHandler : integer, integerContainer;
Resolution
missing(missingAmount, am) -> missingHandler (missingAmount ,am) ;
Where

missingAmount : integer;
am : integerContainer;

Role withdrawer (account, amount);

Begin
Execute account.balance (balance); ;; get the balance of the
;5 withdrawer’s account
Execute withdrawerPIN.queryForPIN; ;; prompt the withdrawer
;; for his PIN
Call first Of WaitPIN; ;5 wait for the partner’s PIN

Execute account.correctPINs(withdrawerPIN, partnerPIN,b);
Execute amount.get(a); ;; get the amount to withdraw

If (b=true) Then Begin
If ((balance>=a) = true) Then Begin

Execute account.decrement (a)
End
Else Begin
Execute account.decrement(balance) ;
Raise missing(a-balance,amount)
End
End
Else Begin
Signal Abort; ;; PIN error
End
End

Where
balance,a : integer;
amount : integerContainer;
account : accountType;
b: boolean;

Handler FailHandler;
Begin
Signal Fail;
End
End FailHandler;

Handler missingHandler (mAmount, amount) ;
Begin
Execute amount.put (mAmount) ; ;; store the missing amount
End
Where
mAmount: integer;
amount : integerContainer;
End missingHandler;

End withdrawer;

Role partner;

Begin
Execute partnerPIN.queryForPIN; ;; asks the partner’s PIN
Call second Of WaitPIN; ;; awake withdrawer
End

Handler FailHandler;
Begin
Signal Fail
End
End FailHandler;

Handler missingHandler (mAmount, amount) ;

Begin
;’
End
Where
mAmount: integer;
amount : integerContainer;
End missingHandler;

End partner;
End Withdraw;

CA actions used for Synchronization

Caa WaitPIN;
Interface

Roles
first;
second;

Body

Role first;
Begin
End

End first;

Role second;
Begin
End

End second;

End WaitPIN;

Caa WaitInfoAmount;
Interface

Roles
first;
second;
Body
Role first;
Begin
End
End first;
Role second;
Begin

; does nothing

End
End second;
End WaitInfoAmount;

Caa WaitReadAmount;
Interface

Roles
first;
second;
Body
Role first;
Begin
End
End first;
Role second;
Begin
End
End second;
End WaitReadAmount;

B The BNF grammar of COALA

The BNF grammar of COALA follows below.

In this grammar, name refers to some

valid identifier. As for the generators coopnM odule, expression, condition and type, they
correspond respectively to the generators modules, expressions, condition and types found
in the grammar of CO-OPN/2 (which is not given here).

program
caaModule
caalnterface

caaBody

useSection
useCaaSection
roleSection
objectSection
handlerSection
exceptionSection
precondSection
postcondSection
resolutionSection
excList
whereSection
role

handler

instructionBlock
instruction
empty

assign

execute

if

raise

signal

callRole
namelList
expressionList
typeList

(caaModule | coopnModule) *

Caa name ;' [caalnter face] [caaBody| End name *;
Interface [useSection] [roleSection| [exceptionSection)]
[precondSection| [postcondSection|

Body [useSection] [useCaaSection] [objectSection]
[handlerSection| [exceptionSection]

[resolutionSection] [whereSection] (role)*

Use (nameList)+

Use Caa (nameList ")+

Role (namelList [*:’ typeList] ")+

Object (namelList ¢ type ")+

Handler (nameList [typeList] ")+

Exception (nameList [’ typeList] ‘;’)+

Precondition expression ‘3

Postcondition [expression ;'] (nameList *’ expression ‘;’)+
Resolution (excList ‘->’ name [‘(’ expressionList ¢)’] ")+
name [‘(’ namelList ‘)] (‘,;) name [‘(" nameList ‘)’])*
Where (namelList ‘2 type ")+

Role name [‘(’ nameList ¢)’]

instructionBlock [whereSection] (handler)* End name ‘3
Handler name [‘(’ nameList ‘)] ¢}

instructionBlock [whereSection] End name *;’

Begin instruction (‘;’ instruction)* End

empty | assign | execute| if | raise | signal | callRole

Assign expression To name

Execute expression

If condition Then instructionBlock

[Else instructionBlock]

Raise name [‘(’ expressionList ‘)’]

Signal name [‘(* expressionList ‘)’]

Call name [‘(’ expressionList ¢)’] Of name
name (‘, name)*

expression (‘) expression)*

type (‘) type)*

C COALA’s semantics of CA Actions and roles in CO-OPN/2

The abstract classes which follows are only partially described. See [VB98] for the complete
CO-OPN/2 specification.

C.1 Abstract Class Caa

29999999

Class Caa ;

2993939393933

Interface
Type caaType;
Create
initCaa;
S
Body
Use Exception, ListOfExcepts, List0fObjects, List0fRoles;

Method

createlocalCaalbj _ : objlist;

startRoles _ _ _: rolelist rolelist objlist;
acceptTest _ _ : rolelist outcome;

endRoles _ _ : rolelist rolelist outcome;
getExceptions _ _ : rolelist, exceptlist;
solve _ _ : exceptlList exception;
handleExcept _ _ : rolelist, exception;

Transitions
syncRoles;
solveExceptions;
executeEvt;
Places
Objs - : objlist;
Roles _ : rolelist;
CalledRoles _ _ : roleType roleType;

Axioms

GENERAL COORDINATION OF ROLES

syncRoles With
Self.startRoles rlist clist caalbj
Self.acceptTest rlist outc ..
Self.endRoles rlist clist outc ::
Objs caaObj, Roles rlist -> Objs caalbj, Roles rlist;

2

2

startRoles [] [] Caalbj :: ->;

startRoles (r ’ rlist) (c ’ clist) Caalbj With
(c.callRole r arg .. r.start arg caalbj)
// Self.startRoles rlist clist Caalbj:: ->;

acceptTest (r ’> []) outc With r.outcome outc:: ->;

acceptTest (r ’ rlist) outcl
With (r.outcome outcl // Self.acceptTest rlist outc2)
(eq outcl outc2) and (not empty? rlist) = true => ->;

acceptTest (r ’ rlist) abort
With (r.outcome outcl // Self.acceptTest rlist outc2)
not(eq outcl outc2) and not(eq outcl fail)
and not(eq outc2 fail) and not(empty? rlist) = true => ->;
acceptTest (r ’ rlist) fail
With (r.outcome outcl // Self.acceptTest rlist outc2)

((eq outcl fail) or (eq outc2 fail))
and (not empty? rlist) = true => -> ;

endRoles [] [] outc :: ->;

endRoles (r ’ rlist) (c ’ clist) abort
With (r.abort .. c.signalOutcome abort)
// Self.endRoles rlist clist outc:: ->;

endRoles (r ’ rlist) (c ’ clist) outc
With c.signalOutcome outc // Self.endRoles rlist clist outc ::
eq outc abort = false => ->;

SOLVING AND HANDLING RAISED EXCEPTIONS

solveExceptions With
Self.getExceptions rlist exlist ..
Self.solve exlist e
Self.handleExcept rlist e ::
(eq e nil = false) and (e isIn? el) => Roles rlist -> Roles rlist;

getExceptions [1 []1 :: —->;
getExceptions (r ’rs) (e ’ es)
With r.exRaised e //Self.getExceptions rs es :: ->;
solve 1 fail :: fail isIn? 1 => ->;
solve 1 abort :: not (fail isIn? 1) and (abort isIn? 1) => -> ;

** To be completed in the subclass according to the specific
CAA’s resolution graph. **

handleExcept [] _ :: ->;
handleExcept (r ’rs) e

With r.handle e // Self.handleExcept rs e ::

HH
End Caa;

C.2 Abstract Class Role

299993993

Class Role ;

299939939939

Interface
Use Name, List0fExpr, List0fObjects, Outcome;
Type roleType;

Methods
callRole _ _ : roleType objlist;
outcome _ : exception;
exRaised _ : exception;
handle _ : exception;
evtReq _ : event;
objMgrAns _ : outcome;
Create
start _ _ : objlist objlist;
Body

Use Instruction,
Contxt, Substitution;

Methods
putExtObj _ : objlist;
putIntObj _ : objlist;
suspended? ;
execute _ : event;

Transitions
eval ;

Places
RoleToCall _ : roleType objlist;
ObjMgrReq _ : event;

RaisedExcept _ : exception;

Outcome _ : outcome;

Instr _ : instruction;

Instr’ _ : instruction;

Ctxt _ _ : varName expr; ;; local variables

Ext0bj - : objType; ;; external objects

)

)

)

)

IntObj - : objType; ;; internal objects
State _ : state;

Axioms

; Calling another role

callRole r args :: RoleToCall r args -> ;

; Receiving the outcome of another role

signalOutcome normal :: -> Instr End;

signalOutcome (ex! en exps)
State terminating -> State terminating, Outcome (abort);

signalOutcome (ex! en exps)
State executing, RaisedExcept nil ->
State suspended, RaisedExcept (ex! en exps);

outcome outc :: Outcome outc -> ;

Collecting concurrently raised exceptions

exRaised e ::
RaisedExcept e, State executing, Instr i ->
RaisedExcept nil, State suspended;

exRaised e ::
RaisedExcept e, State suspended, Instr i ->
RaisedExcept nil, State suspended;

exRaised abort
RaisedExcept e, State terminating, Instr i ->
RaisedExcept nil, State suspended;

Calling handler for exception recovery

** Method ”handle” must be specified in the **
** subclass specification. **

For each exception, the appropriate handling
program must be put in place Instr to be executed.

handle abort
State s, Outcome outc -> State terminating, Outcome
abort;

;; Bvaluation rules

)

;3 "Call roleName(el,.., en) 0f caaName"
eval :: Instr (CallRole r withArgs args), Ctxt c,
-> RoleToCall r (subst args c), Ctxt c;
;35 " If ¢ Then instrl Else instr2"

eval :: (subst cond c) = M-true =>
Instr (If cond Then il Else i2), Ctxt c
-> Instr il, Ctxt c;

eval :: (subst cond c) = M-false =>
Instr (If cond Then il Else i2), Ctxt c
-> Instr i2, Ctxt c;
HH "nstrl ; instr2"

eval :: Instr (Sequence il i2), Imnstr’ i3
-> Instr il, Instr’ (Sequence i2 i3);

eval :: (eq i iEnd) = false =>
Instr iEnd, Instr’ i -> Instr i, Instr’ iEnd ;

eval :: Instr iEnd Instr’ iEnd -> Outcome normal;

HE P
End Role;

