Using Object-Oriented Algebraic Nets for the Reverse
Engineering of Java Programs: A Case Study*

Giovanna Di Marzo Serugendo':?

1QUI, University of Geneva
Switzerland
dimarzo@di.epfl.ch

Abstract

The problem addressed in this paper is the following:
"How to use high-level Petri nets for the reverse engi-
neering of implemented distributed applications ?7. We
present a reverse engineering methodology applied on
a real (simple) Java applet based client/server applica-
tion. First, starting from the Java program, several ab-
straction steps are described using the CO-OPN/2 for-
mal specification language. Then, we present a brand
new research that studies properties preservations dur-
ing a refinement process.

Keywords: Reverse Engineering, Petri Nets, Alge-
braic Specifications, Concurrent and Distributed Sys-
tems, Java, Property Verification.

1. Introduction

If we consider an already developed distributed ap-
plication from a software engineering viewpoint, we are
interested in having a methodology based on a formal
specification language allowing a reverse engineering
process that can be used for verification and validation
purposes or for re-engineering.

In order to address these aspects, we are working
on a methodology based on the joint use of a formal
specification language and of a temporal logic. The
advantage of formal specifications is that they allow a
precise system description necessary for property verifi-
cation. We have chosen to use the CO-OPN/2 (Concur-
rent Object-Oriented Petri Nets) specification formal-
ism [3]. CO-OPN/2 integrates, in an object-oriented
approach, Petri nets for the description of concurrent
behaviors, and algebraic specifications [11] for the spec-
ifications of the structured data evolving in the Petri

*Copyright 1998 IEEE. Published in the Proceedings of
CSD’98, March 1998 Fukushima, Japan. This work has been
sponsored partially by the Esprit Long Term Research Project
20072 “Design for Validation” (DeVa) with the financial support
of the OFES (Office Fédéral de 1'éducation et de la Science),
and by the Swiss National Science Foundation project “Formal
Methods for Concurrent Systems”.

Nicolas Guelfi?

*LGL-DI, Swiss Federal Institute

of Technology, Switzerland
guelfi@di.epfl.ch

nets. The advantage of a temporal logic is that it al-
lows to express verification and validation requirements
as a set of properties. Moreover, temporal logics are
well suited for Petri nets because of their operational
state-event based approach. We are currently studying
several temporal logics in order to choose the one that
best fits our needs. Thus, this paper does not explain
the use of temporal logic for expressing properties.

In order to apply a real reverse engineering process,
first we have implemented a Java application, that we
use as a case study. Then, we have performed several
abstraction steps (programming language, communica~
tion layer, client/server, data distribution), and consid-
ered some properties at each step.

The plan of the paper is the following: first, we intro-
duce the basic concepts of the specification formalism
CO-OPN/2; second, we present in details several ab-
straction steps performed on our real Java application;
third, we present the methodology we intend to assess
concerning the validation of properties during a reverse
engineering process.

2. The CO-OPN/2 specification
formalism

CO-OPN/2 [3] is an hybrid specification formalism
based on algebraic specifications [11] and Petri nets
which are combined in a way that is similar to alge-
braic nets [9]. Algebraic specifications are used to de-
scribe the data structures and the functional aspects
of a system, while Petri nets allow to model the sys-
tem’s concurrent features. To compensate for alge-
braic Petri nets’ lack of structuring capabilities, CO-
OPN/2 provides a structuring mechanism based on a
synchronous interaction between algebraic nets, as well
as notions specific to object-orientation such as the no-
tions of class, inheritance, and subtyping. A system is
considered as being a collection of independent objects
(algebraic nets) which interact and collaborate together
in order to accomplish the various tasks of the system.

Object and class. An object is considered as an
independent entity composed of an internal state and
which provides some services to the exterior. The only
way to interact with an object is to ask for its services;
the internal state is then protected against uncontrolled
accesses. CO-OPN/2 defines an object as being an en-
capsulated algebraic net in which the places compose
the internal state and the transitions model the concur-
rent events of the object. A place consists of a multiset
of algebraic values. The transitions are divided into two
groups: the parameterized transitions, also called the
methods, and the internal transitions. The former cor-
responds to the services provided to the outside, while
the latter composes the internal behaviors of an ob-
ject. Contrary to the methods, the internal transitions
are invisible to the exterior world and may be consid-
ered as being spontaneous events. A class describes all
the components of a set of objects and is considered as
an object template. Thus, all the objects of one class
have the same structure. A class may inherit all the
features of another class and may also add some ser-
vices or change the description of some services already
defined. The usual dot notation has been adopted.

Object interaction. In our approach, the inter-
action with an object is synchronous, although asyn-
chronous communications may be simulated. Thus,
when an object requires a service, it asks to be synchro-
nized with the method (parameterized transition) of
the object providing the service. The synchronization
policy is expressed by means of a synchronization ex-
pression (declared after the Wi t h keyword), which may
involve many partners joined by three synchronization
operators (one for simultaneity / /’, one for sequence
‘..’, and one for alternative or non-determinism ‘+’).
For example, an object may simultaneously request two
different services from two different objects, followed by
a service request to a third object.

For each transition (parameterized or not), one or
more behavioral axioms are defined using: (1) an op-
tional condition imposed on the algebraic values in-
volved in the axiom, (2) an optional synchronization
expression, (3) pre- and post-conditions corresponding
respectively to what is consumed and what is produced
in the different places composing the net, once the tran-
sition is executed.

Object identity. Within the CO-OPN/2 frame-
work, each class instance has an identity, which is also
called an object identifier, that may be used as a ref-
erence. Moreover, a type is explicitly associated with
each class. Thus, each object identifier belongs to at
least one type. Since object identifiers are algebraic val-
ues they can be stored in the places of algebraic nets.
Moreover it is possible to define data structures which

are built upon object identifiers, e.g. a stack or a queue
of object identifiers.

Constructors. Class instances can be dynamically
created. Particular creation methods which create and
initialize the objects can be defined; these methods may
be used only once for a given object. A pre-defined cre-
ation method is provided. Usually classes are used to
dynamically create new instances but it is also possible
to declare static instances.

Semantics. The formal semantics of CO-OPN/2 is
given in terms of concurrent transition systems express-
ing all the possible evolutions of objects’ states. State
changes are associated to a multiset of events which are
simultaneously executable. The firing of an object’s
method causes internal transitions to be fired sponta-
neously. The internal transitions are fired as long as
their pre-condition is fulfilled. An object’s method can
be fired only if no internal transition is firable. The full
concurrency of the specification is expressed in the se-
mantics including intra-concurrency (between services
of an object) and inter-concurrency (between services
of several objects). The complete semantics of CO-

OPN/2 can be found in [3].

3. Reverse engineering:
from Java to CO-OPN/2

This section presents (1) the informal requirements
and the Java program P of a real application, and (2)
several abstraction steps (A1 to A4) which lead to even
more abstract CO-OPN/2 specifications of the given
application.

3.1. Informal requirements

The Gamma paradigm [2] advocates a way of pro-
gramming which is close to the chemical reactions. One
or more chemical reactions are applied on a multiset: a
chemical reaction removes some values from a multiset,
computes one or more results and inserts them into the
multiset.

Global Multiset

Figure 1. Gamma addition

We consider the following example: computing the
sum of the integers present in a multiset. Figure 1

depicts a multiset and a possible Gamma computation
achieving the result 8.

The application must allow several users to insert
integers into a multiset that would be possibly dis-
tributed. According to the Gamma paradigm, chem-
ical reactions are applied on the multiset, they have
to perform the sum of all the integers entered by all
the users. The system made of the users, the multi-
set and the chemical reaction is called the DSGamma
(Distributed Gamma) system. We present the infor-
mal requirements in two parts. The first part presents
the system operations which must be provided to the
users, and the second part, the details about the data
and internal computations.

System operations: [1] A new user can be added
to the system at any moment; [2] A user may enter
new integers into the system, at any moment, between
his entering time and his exit time; [3] At any moment,
the application can give a partial view of the state of
the multiset; [4] A user may exit the system provided
he has entered it.

State and internal behavior: [5] The integers
entered by the users are stored in a multiset; [6] The
application computes the sum of all the integers en-
tered by all the users; [7] The sum is performed by
chemical reactions according to the Gamma paradigm,;
[8] A chemical reaction removes two integers from the
multiset, adds them up, and inserts the sum into the
multiset; [9] There is only one type of chemical reac-
tions, but several of them can occur simultaneously and
concurrently on the multiset; [10] A chemical reaction
may occur as soon as the state of the multiset is such
that the chemical reaction can occur, i.e. as soon as
there are at least two integers in the multiset.

3.2. The Java program P

The Java [1] program, P, of the distributed Gamma-
like addition follows a Java applet based client/server
architecture, as depicted by figure 2. It is running at
the following address http://1lglsun.epfl.ch/Team/
GDM/DSGamma.html. An applet is downloaded and ex-
ecuted by an Internet Web browser, but the applet
can communicate only with servers located on the host
where the applet comes from.

A server, the RandomRelayServer thread, acts as a
random relay between the applets, the server main-
tains a FIFO of integers, GlobalRelay, and waits for
applet’s connections (position 1 on figure 2). The
DSGammaClientApp applet maintains a graphical user
interface and a local multiset of integers MSInt (im-
plemented as a Java Vector). The user can enter in-
tegers directly into the local multiset by the means
of the graphical user interface. As soon as an ap-

plet is started, a socket is created between the applet
and the server. In addition, two threads InputRelay,
OutputRelay are created at the server side in order
to handle integers incoming from and going to the
socket linking the server and the applet. Similarly, two
more threads TakeoffGlobal and TakeoffLocal are
created at the applet side (position 2 on figure 2). The
TakeoffLocal thread is responsible for taking integers
off the local multiset and for sending them to the server.
The InputRelay thread receives these integers and for-
wards them to the GlobalRelay FIFO (positions 3 on
figure 2). The OutputRelay thread takes integers at
the head of the GlobalRelay FIFO and sends them to
the applet. The TakeoffGlobal thread is responsible
for waiting for two integers incoming from the server,
making their sum and inserting this sum into the lo-
cal multiset maintained by the applet (positions 4 on
figure 2).
Host 2

Host 1 ’7

Java

DSGammgClientApp "]%
o s

TakeoffLocal TakeoffGlobal
@ s
InputRelay Oulpu!RéAy Host 0

O Sty SN

r|w RandomRelayServer

]

B
JavaApplet
O Multiset of Integers %@

D Thread
[]

w)

Figure 2. DSGamma implemented architecture

A user who wants to leave the system informs the
applet by the means of the graphical user interface.
The TakeoffLocal and TakeoffGlobal threads prop-
erly send to the server all the integers remaining in the
local multiset, and stop receiving any new integer from
the server. For that purpose a two-way handshake pro-
tocol is used.

A deadlock occurs as soon as the number of integers
present in the global multiset (the union of the local
multisets) is smaller than or equal to the number of
applets (which is also the number of local multisets).
Indeed, consider a system with only two integers in the
global multiset and two or more applets in the system.

If these two integers are taken by two different applets
without timeout, each of these two applets would be
blocked indefinitely waiting for a second integer. Con-
sequently, the whole system would be in a deadlock
state. The TakeoffGlobal thread uses a timeout in
order to avoid that deadlock.

3.3. First abstraction A1l:
from Java to CO-OPN/2

Abstraction A1l translates the program, written in
the Java programming language, into specifications ex-

pressed with CO-OPN/2.

3.3.1. Abstraction process. Abstraction Al
leads to CO-OPN/2 specifications which take into
account both the semantics of the Java programming
language and the application’s behavior (the given
program). A Java program is built upon existing
classes, i.e. the basic classes provided by the Java
programming language. Similarly we build the CO-
OPN/2 formal specifications of the Java application
upon CO-OPN/2 formal specifications of the Java
basic classes. In this manner, we cope with the
problem of expressing both the Java semantics and
the application’s behavior: a first layer of CO-OPN/2
specifications of Java basic classes is provided (as
building blocks), and the CO-OPN/2 specifications of
the application is built on top of this layer.

3.3.2. Building blocks. We have specified a ded-
icated CO-OPN/2 class for each Java basic class. The
inheritance tree of these CO-OPN/2 classes repro-
duces exactly the inheritance tree of the Java classes.
The Object Java class is the superclass of all Java
classes. The corresponding CO-OPN/2 class is called
the JavaObject class and is the superclass of all
the CO-OPN/2 classes related to Java. The CO-
OPN/2 JavaObject class specifies the wait, notify,
notifyall methods and the way they affect a thread’s
execution, as well as the locks associated to each ob-
ject. For the needs of the application described in this
paper, we have specified the Java Thread, Applet and
Socket classes. The complete CO-OPN/2 specification
of these Java basic classes is given in [6].

3.3.3. CO-OPN/2 specification. We have spec-
ified a dedicated CO-OPN/2 class for each Java class
defined by the program P. These CO-OPN/2 specifi-
cations are constructed using the CO-OPN/2 specifi-
cations of the Java basic classes, either by sub-classing
them or by using them. The graphical user interface
has not been specified. Except for the socket that has
been specified simply with two buffers (for the two
streams), any other implementation detail is fully spec-

applets: host:
CP(Applet,Tnteger) String
<a,usr>
result(i,usr) with port:

Counter.get(cnt) .. I< <a,usr> Integer
a.start_result(<cnt,self>) ..
a.end_result(i,<cnt,self>) ..
Counter.put(cnt)

ified. Every data structure and algorithm has been
specified in order to reflect the Java semantics. Ab-
straction A1 provides the complete specifications of the
Java program. It is fully described in [6].

In addition to the CO-OPN/2 specifications of the
Java classes of program P, we have specified the over-
all system with the CO-OPN/2 DSGammaSystem class of
figure 3. This class specifies the beginning of the sys-
tem (constructor new-DSGammaSystem(port) creates
the RandomRelayServer waiting on port), and the in-
teraction of the users and the system.

Class DSGammaSystem
new-DSGammaSystem (port) with
Counter.get(cnt) ..
;r(;i:e’iitc_::::-ll:‘;;u%f)mRelayServer(
rr.end_new-RandomRelayServer(

<cnt,self>) ..
Counter.put(cnt)

\)

port

user_exit(usr) with
Counter.get(cnt) ..
a.start_user-exit(<cnt,self>) ..
a.end_user—exit(<cnt,self>) ..
Counter.put(cnt)

<a,usr>

user_action(i,usr) with new._user(usr) with
Counter.get(cnt) .. Counter.get(cnt) ..
a.start_user_action(i,<cnt,self>) .. a.start_new-DSGammaClientApp(
port,host,<cnt,self>) ..

a.end new-DSGammaClientApp(
<cnt,self>) ..

Counter.put(cnt)

a.end_user_action(<cnt,self>) ..
Counter.put(cnt)

Figure 3. Abstraction Al: overall system

Informal requirements [1] to [4] are specified
each with a dedicated CO-OPN/2 method of the
DSGammaSystem class. new_user(usr) inserts the new
user usr into the system and creates an applet a ded-
icated to this user. The identity of a user is speci-
fied as an integer. user_action(i,usr) enables usr
to enter integer i in the system, this method informs
the applet a, dedicated to usr, that integer i enters
the system. result(i,usr) enables usr to obtain
a partial view of its local multiset, this method in-
forms the applet a, dedicated to usr, that usr wants
a result. user_exit(usr) removes usr from the sys-
tem and forwards this information to the correspond-
ing applet. Further abstraction steps keep the class
DSGammaSystem and its four methods.

3.4. Second abstraction A2:
communication layer abstraction

Abstraction A1 provides CO-OPN/2 specifications
very close to the Java program and its semantics.

Abstraction A2 removes the programming language
and the socket layer. This step provides the most
abstract specification of the application viewed as a
client/server application.

3.4.1. Abstraction process. We throw away all
specific constructs required by the target programming
language, here Java. The notions of Java object, Java
thread, Java socket, and Java applet disappear. We
keep only the skeleton of the application, i.e. we keep
the (distributed) architecture and behavior which are
specific to the application but not specific to the Java
programming language.

Besides the abstraction from the programming lan-
guage, we abstract the communication layer provided
by the sockets. The applets, instead of reading and
writing data from and to sockets, directly receive and
send data from and to the server. Thus, we keep a
client/server architecture with one server and several
applets, but without sockets and threads dedicated to
the socket’s handling.

The server has become very simple, it has been
shrunk to the GlobalRelay functionality,i.e. the server
acts as a FIFO buffer, where every applet directly de-
posits integers, and from where every applet directly
takes off integers. Similarly, at the user’s side, the ap-
plet and the chemical reactions, become more simple.
The applet handles a local multiset in the following
manner: (1) new integers coming in from the user are
inserted into the local multiset, (2) integers stored in
the local multiset are taken off the local multiset and
sent to the server, and (3) pairs of integers coming from
the server are collected, their sum is computed, and in-
serted into the local multiset, (4) the applet has to cor-
rectly send its local multiset of integers to the server,
once the user wants to leave the system, (5) the ap-
plet has to avoid a deadlock situation occurring when
the number of integers present in the whole system is
smaller than the number of applets.

3.4.2. CO-OPN/2 specification. Abstraction
A2 is given by three CO-OPN/2 classes, (1) the
DSGammaSystem, (2) the GlobalRelay, and (3) the
Applet classes (figures 4, 5 and 6).

System operations: The overall DSGamma sys-
tem is specified by the DSGammaSystem class, it keeps
the same CO-OPN/2 methods than abstraction A1l.

The new-DSGammaSystem CO-OPN/2 constructor re-
quires that, as soon as a DSGamma system ex-
ists, a GlobalRelay buffer gr is created (calling
gr.create), where gr is a CO-OPN/2 object of
class GlobalRelay, and create is the default con-
structor. The object identity gr is then stored in
the GR place. The new_user(usr) method implies

the dynamic creation of a new applet a (calling
a.new-Applet(gr)). It stores the pair <a,usr> in
the store-applets place. The user_action(i,usr)
method checks whether the pair <a,usr> already
exists, and if so forwards the action to the dedi-
cated applet, a (calling a.user_action(i)). The
result(i,usr) method checks if usr already exists
and requires the result from the usr’s dedicated applet,
a (calling a.result(i)). The user_exit (usr) method
removes the pair <a,usr> from the store-applets
place, if it exists; and forwards this information to usr’s
dedicated applet, a (calling a.user _exit).

Class DSGammaSystem

user_exit(usr)
with a.user_exit

new-DSGammaSystem
with gr.create

i
|

store-applets:
CP(Applet,Integer)

<a,usr>
result(i,usr) <a,usr>

with a.result(i) GR:Globalkelay

<a,usr>

Y N

user_action(i,usr)
with a.user_action(i)

new_user(usr)
with a.new-Applet(gr)

Figure 4. Abstraction A2: overall system

State and internal behavior: A local multiset
is given by the MSInt place of type Integer of the
Applet class. It stores integers. The global multiset
is given by the union of these places, but also by sev-
eral other places: first of type Integer in Applet
class, and by buffer of FIFO(Integer) type in class
GlobalRelay. The FIFO of integers is specified with an
algebraic specification. An integer goes from an MSInt
place of an applet directly to buffer, and from there
it goes to a first place of another applet, waiting for
a second integer, their sum then goes into the MSInt
place of this applet.

The internal behavior is specified by classes
GlobalRelay and Applet. The GlobalRelay class
specifies a FIFO buffer of integers. An integer i is
inserted into this FIFO by the means of the put(i)
method, and is removed by the means of the get(i)

method.
Class GlobalRelay

get(i) b+i b+i put(i)
empty-fifo

buffer:
FIFO(Integer)

Figure 5. Abstraction A2: server side

The Applet class specifies three CO-OPN/2 meth-
ods: user_action(i), user_exit, result(i), and one
non default constructor new-Applet(gr). As soon as
a new user enters the DSGamma system, a new ap-
plet is created by the means of the new-Applet(gr)
constructor. The constructor creates a CO-OPN/2 ob-
ject of the class Applet, stores the gr object identity
of the GlobalRelay in the place store-gr, initializes
the end place with false, and the beginning place
with true. The end place stores the value false if
the user is currently in the system and stores the value
true if the user exits. The beginning place stores the
value true if a first integer has to be requested, and
stores nothing if a first integer has already been ob-
tained. This place is used to ensure that a new first
integer is requested only after the previous sum has
been computed. The user_action(i) method inserts
the integer i into the local multiset specified with the
MSInt place. The user_exit method replaces the to-
ken false by the token true in place end.

Class Applet

new-Applet(gr)

T

user—exit

m

true false

H end:Boolean

getfirst with
gr.get(i) // ,
random (millis) // clock(hour)

false

false gr store-gr:
8r Globalkelay
true i
N
$
beginning: 7(5 [first:Integer
& Boolean s
rue E
<
8" gr BT
true
true
—= . getsecond
getfirst o imeout: a with gr.get(j)
H Intege N
E 1
° i+i
put with
l HSInt: gr.put(i)

hour > d => tik
with clock(hour)

Figure 6. Abstraction A2: client side

Integer _ i
i
t .
i . l%—/
——
user_action (i) result(i)

The chemical reactions are specified by means of the
four CO-OPN/2 transitions: getfirst, getsecond,
tik, put. The getfirst transition is responsible for
obtaining the first integer being involved in a sum; as
soon as it obtains a first integer it enables a timeout.
The getsecond transition is responsible for removing a
second integer from the FIFO gr, and for disabling the
timeout. The tik transition handles a timeout event
occurring before a second integer can be obtained by
the getsecond transition. It is responsible for disabling
the timeout and for inserting the first integer (instead

of a sum) into the local multiset. This timeout is neces-
sary, because a deadlock occurs as soon as the number
of integers present in the global multiset (the union
of the local multisets) is smaller than or equal to the
number of users. The put transition randomly removes
integers from the local multiset, and sends them to the

FIFO buffer.

3.5. Third abstraction A3:
client /server abstraction

Abstraction A2 provides a client/server view of the
application. Abstraction A3 abstracts the notion of
client/server that had been imposed by the Java pro-
gramming language, because applets can connect only
to the host where they come from. This step pro-
vides the most abstract specification of the application
viewed as a distributed application.

3.5.1. Abstraction process. We remove the
server as well as the applets. We keep just the no-
tion of distributed local multisets, each of them related
to a user. Data travels directly from one local multiset
to another, without traveling through a server.

The chemical reactions are no longer distributed. A
chemical reaction is specified as an atomic action which
takes two integers from possibly two different local mul-
tisets, and which inserts their sum into another local
multiset. Several chemical reactions may occur concur-
rently. There are several types of chemical reactions
according to how they remove integers from the local
multisets.

The multiset of integers is physically distributed over
several different locations. We call local multiset, the
portion of the multiset present in a given location, and
we call the global multiset, the multiset obtained by the
union of all the local multisets.

3.5.2. CO-OPN/2 specification. Abstraction
A3 consists of the DSGammaSystem class depicted by
figure 7. This class maintains several users and their
related multisets. All possible chemical reactions are
specified on those multisets.

System operations: The new_user(usr) method
inserts <usr,@> into the MSInt place. A new user
joins the system with an empty bag, representing
an empty local multiset. The user_action(i,usr)
method checks if usr has already entered the system,
i.e. removes the pair <usr,bag> from the place MSInt,
and inserts the i value into bag, i.e. inserts the pair
<usr,bag+i> into MSInt. bag+i stands for a new bag
made of the union of bag and the set {i}. This method
cannot be fired if usr has not already joined the system.
The result(i,usr) can be fired iff the bag of user usr

contains exactly one element 1 (i.e. @ + 1i). It is worth
noting that due to the CO-OPN/2 semantics, after each
firing of the chemical reactions, only one integer re-
mains in one local bag. The user_exit(usr) method
inserts the usr value into the place UsrToExit. The
exit transition then removes the pair <usr,bag> from
the MSInt place and inserts it into the MSIntToEmpty
place. After having exited the system, a user may no
longer enter new integers, nor get the result, nor exit
the system, unless it reenters the system, and the sys-
tem itself cannot insert integers into the user’s local

multiset.
Class DSGammaSystem

user-action(i,usr) new_user(usr) result(iusr) user_exit(usr)

/ ! / ug, \
at i:
N A 4 ™ GarTokxit:
N ¢ <
¢ X g ® :\ . Integer
"A(4? IR q;/\ exit
] @
AN & g~ <usrbag>
)5\) v I P l HSIntToEmpty:
o° CP(Integer,Bag)
CR4
—
CR3 HSInt:CP(Integer,Bag)
— A
CR2 P] = —
a
Ny LYY A CRs8
2 2
2 4 %, PO |
* A "4 g u -
& 7@ 9, s CR7
4 < Y, %, LI —]
< * S, X + *
&) ‘e “.] CRé
v,
I 2 & QN
K a N
[[\\

aQ

2
Q
!
ot

)

Figure 7. Abstraction A3: DSGammaSystem

State and internal behavior: The MSInt place
stores the local multiset of users currently in the sys-
tem, while the MSIntToEmpty place stores the local
multiset of users wishing to leave the system. They are
of type CP(Integer,Bag),an algebraic specification for
Cartesian products of Integers and Bags; they store
pairs <usr,bag>. Bags are specified with an algebraic
specification.

Four chemical reactions (CR1 to CR4) have been de-
fined on MSInt only. They describe the four possible
ways of removing two integers from one or two bags and
inserting their sum into a (possibly other) bag. Four
chemical reactions (CR5 to CR8) have been defined on
both MSInt and MSIntToEmpty. They are basically the
same as the four chemical reactions defined on MSInt
only, except for the fact that they have to remove in-
tegers from local multisets stored in the MSIntToEmpty
place, and they have to insert integers into local mul-
tisets stored in the MSInt place. These four chemical
reactions specify the fact that once a user has decided
to leave the system, then his local multiset has to be

emptied, no new integers may be inserted into his lo-
cal multiset. Figure 7 depicts the behavior of chem-
ical reactions CR1 and CR5: (CR1) two integers 1i,j
are removed from the same local multiset, and their
sum is inserted into this local multiset; (CR5) two inte-
gers i,j are removed from the same local multiset in
MSIntToEMpty, and their sum is inserted into another
local multiset in MSInt.

3.6. Fourth abstraction A4:
data distribution abstraction

Abstraction A3 abstracts the notion of distributed
computing, but the notion of distributed data is kept.
Abstraction A4 abstracts the notion of distributed
data. This step provides the most abstract specifica-
tion of the application when it is not distributed.

3.6.1. Abstraction process. There is a global
(not distributed) multiset and only one type of chemi-
cal reactions. Abstraction A4 contains only one class,
the DSGammaSystem, which maintains several users and
only one global multiset. One type of chemical reac-
tion is defined on the global multiset, which removes
two integers from the multiset and inserts their sum
into the multiset.

3.6.2. CO-OPN/2 specification. The class
DSGammaSystem is depicted by figure 8.

Class DSGammaSystem

new._user(usr)

N e T

usr Integer usr

NS

user_exit(usr)

usr usr

wsr HSInt:Integer ~ . o

P>
. ~
i i

result(i,usr) user_action(i,usr)

i+i oy i

\ ChemicalReaction /

Figure 8. Abstraction A4: DSGammaSystem

System operations: The new_user(usr) method
inserts the users’ identity, usr, into the users place.
The user_action(i,usr) method checks if usr has al-
ready entered the system (i.e. if usr is in the place
users), and inserts the i value, into the multiset MSInt.
If the user usr has not yet entered the system, the
method cannot be fired, thus the i value is not in-
serted into the multiset. The result(i,usr) method
checks if usr has already entered the system, and reads
one integer i in the place MSInt. If usr is in the users

place, the user_exit (usr) method removes usr.

State and internal behavior: a multiset of inte-
gers stores the integers entered in the system by all the
users. The CO-OPN/2 MSInt place, of type Integer,
models this multiset (the type Integer is specified
using algebraic specifications as equivalent to natural
numbers). Due to the CO-OPN/2 Petri net semantics
of places, the content of a place is always given by a
multiset. The CO-OPN/2 place users of type Integer
stores the identity of the users.

The CO-OPN/2 ChemicalReaction transition mod-
els the chemical reaction. It takes two integers i, j
from the MSInt place, and inserts their sum i+j into
MSInt.

4. Towards a formal verification of
stepwise refinements in CO-OPN/2

We intend to develop a methodology which can be
used during a development process: a CO-OPN/2 spec-
ification is refined into another CO-OPN/2 specifica-
tion and some desired properties are preserved during
the refinement step. In addition, the methodology can
be used for validating properties on previously imple-
mented applications: a reverse engineering process is
performed and properties are studied during the ab-
straction process.

In this section, we firstly underline some problems
that arise when Petri nets, and more particularly CO-
OPN/2 specifications are refined. Secondly we give
the lines of the methodology for both the refinement
case and the reverse engineering case. Finally, in order
to show the interest of this methodology, we list some
properties and follow informally their evolution during
the abstraction process of the DSGamma application.

4.1. Related work

Refinement of Petri nets. Usually, the refinement
of a Petri net consists of the replacement of a transition
or a place by a net. The two usual interpretations of re-
finement of Petri nets are: (1) a net and its refinement
have the same behavior wrt safeness or liveness proper-
ties (preservation of behavior), or (2) two semantically
equivalent nets are refined into two semantically equiv-
alent nets (preservation of behavior equivalence) [4].

Refinement of algebraic specifications. Usually,
an algebraic specification Spec’ is a refinement of Spec
if both specifications have the same signature and if all
the models of Spec’ are models of Spec [11].

Refinement of CO-OPN/2 specifications. The
refinement of an algebraic Petri net combines both the
replacement of transitions or places by an algebraic
net, and the replacement of algebraic specifications by

other algebraic specifications. The CO-OPN/2 lan-
guage structures algebraic Petri nets with a synchro-
nization mechanism. The refinement of a CO-OPN/2
specification by another CO-OPN/2 specification can
be obtained by the refinement of an algebraic net, or
more generally by the replacement of a CO-OPN/2
specification by another CO-OPN/2 specification.

Temporal logic and Petri nets. Several ap-
proaches [10, 12] combine Petri nets and temporal
logic [7] in order to define and verify properties of
distributed systems described with Petri nets. 7Z and
VDM have many results concerning refinement and
proofs, including proofs of temporal logic formulae over
the specifications [8].

4.2. A refinement methodology

The proposed refinement methodology is based on
the joint use of the CO-OPN/2 formal specification
language and of a temporal logic. The behavior of
a system is specified by means of CO-OPN/2 speci-
fications, while properties expected by the system are
expressed by means of temporal logic formulae. These
properties do not reflect the whole behavior of the sys-
tem, they only reflect the behavior part that must be
preserved during all subsequent refinement steps. The
range of properties we are interested to verify covers
functional local properties of a CO-OPN/2 object and
global properties involving several parts of the system.
A refinement is then defined as the replacement of a
specification by a new one which respects the proper-
ties required by the replaced specification and which
takes into account implementation constraints.

The refinement process starts with a pair (So, Py),
where Sp is an abstract CO-OPN/2 specification of the
system, and Py is a set of temporal logic formulae ex-
pressed on the basis of Sy. The set of temporal logic
formulae has to be proven on Sy. This set of temporal
logic formulae expresses the minimal set of properties
that the desired system has to verify during the whole
refinement process. At each refinement step, both the
formal specification and the set of temporal logic for-
mulae of the previous step are refined. Thus, each re-
finement step ¢ is given by a pair (Refs,, Refp,) which
produces, from a pair (S;_1, P;_1), a pair (S;, P;). The
refinement process stops when the specification S; is
expressed by the means of predefined building blocks.
These building blocks are CO-OPN/2 components that
take into account the targeted programming language.
In addition, each refinement step has to provide the
proof that P; is satisfied by S;. Indeed, given the proof
Proof;_q that P;_; is satisfied by S;_1, and the pair of
refinements (Refs,, Refp,), then the methodology has
to bring the proof Proof; that P; is satisfied or not by

S;. (See figure 9.)

Proof;_
Si—1 #’ P

Refpl

Figure 9. A refinement step

If Proof; brings the proof that S; satisfies F;, then
we say that S; is a refinement of S;_1 wrt P;_1, because
the properties required by P;_; are preserved. If the
sequence of specifications Sy, ... ,S, is such that Vi €
{1,...,n},S;is arefinement of S;_1, then S,, preserves
at least the initial set of properties Pjy.

It is important to note that we do not require the
preservation of the whole behavior of a refined specifi-
cation during the refinement process. We only require
the preservation of the behavior that is described by
the temporal logic formulae expressing the properties.

The methodology provides: (1) a formal specifica-
tion language (CO-OPN/2) for expressing the behav-
ior of a system; (2) a temporal logic for expressing the
properties expected by the system; (3) a set of building
blocks suitably specified for the targeted programming
language; (4) guidelines for refining abstract specifica-
tions into concrete specifications built exclusively with
the building blocks; (5) a refinement process that leads
to concrete specifications (close to a program) satisfy-
ing the desired properties expected by the system.

4.3. The methodology and the reverse
engineering

The proposed methodology can be applied to the de-
velopment of an application. It can also be applied to
prove that an already implemented application satisfies
some desired properties. Indeed, we propose the follow-
ing reverse engineering process: starting from the ap-
plication’s program, a very concrete CO-OPN/2 spec-
ification is derived which uses exclusively the build-
ing blocks, we can call it S,,; several abstraction steps
are then performed, leading to more and more abstract
CO-OPN/2 specifications. Once a sufficiently abstract
CO-OPN/2 specification, called Sp, is reached, the de-
sired properties are expressed for this abstract specifi-
cation. The set of properties is called Py. The refine-
ment methodology is then applied, starting from the
pair (Sg, Pg). The refinement path for the CO-OPN/2
specifications is given by the CO-OPN/2 specifications
obtained during the reverse engineering process. Dur-
ing the refinement process,; the set of properties P; is

computed from FP;_; and from the transformation of
S;_1 to S;. If it is possible to prove that S,, satisfies Py
then, we say that the program satisfies the set of the
desired properties.

Section 3. describes the reverse engineering process
performed on the CO-OPN/2 specifications. Abstrac-
tions A4 to A1 can be used as the refinement path for
the specification part of the methodology. The building
blocks are given by the CO-OPN/2 classes specifying
the Java basic classes. Starting from A4, and perform-
ing several (other) refinement steps, a new implemen-
tation of the DSGamma system, based on Coordinated

Atomic Actions (CAAs) has been provided [5].

4.4. The case of the DSGamma system

We present some properties and we follow them dur-
ing the abstraction process described in section 3. Some
of these properties are true for all abstractions, while
others are true for some of them only. We explain in-
formally the evolution of the properties on the basis
of the transformation of the Petri nets, the algebraic
specifications, and the CO-OPN/2 specifications.

Subsequently, we assume the following:

“There exists a time T, such that after 7', no
new integer is entered in the system.”

4.4.1. Abstraction Al. Abstraction Al is the
immediate translation of the Java program into CO-
OPN/2 specifications. It is constructed on the basis of
the building blocks (CO-OPN/2 classes specifying the
Java basic classes). Among others we are interested in
the following properties:

P1. “After T, the system computes the sum
of the remaining integers distributed among
(1) the MSInt of each DSGammaClientApp, (2)
the GlobalRelay FIFO, (3) the two buffers of
each Socket.”

Property P1 expresses the fact that abstraction A1 has
to be able to compute the correct sum of all the inte-
gers remaining in the whole system after 7. Property
P1 is true if at least one user remains in the system:
the TakeoffGlobal thread of each applet removes two
integers from the global multiset and inserts the sum
into the local multiset MSInt of the DSGammaClientApp.
Property P1 is not true if all the users leave the sys-
tem at the same time: the GlobalRelay FIFO buffer
will store their integers. The sum will continue to be
computed only when a new user enters the system.

P2. “Every integer received by the
GlobalRelay FIFO has to be taken by exactly
one of the OutputRelay threads.”

Property P2 expresses the fact that the server defined
by abstraction A1 must neither lose an integer nor du-
plicate an integer. This property is true, because just
one OutputRelay thread can call method get(i) of
the GlobalRelay FIFO at once. Indeed, the get(i)
method cannot be fired twice simultaneously, because
each firing requires the buffer b in the place buffer.
The GlobalRelay FIFO of abstraction A1 is specified
as that of abstraction A2 (figure 5).

P3. “Every user can see at any moment an

integer that is in the MSInt maintained by its

DSGammaClientApp applet.”
Property P3 expresses the fact that the result(i,usr)
method of the DSGammaSystem class can always be
fired. This method forwards to the DSGammaClientApp
the information that the user wants to see an in-
teger. In order to read an integer in MSInt, the
DSGammaClientApp needs an access to the whole
Vector specifying the local multiset (the CO-OPN/2
class for the Java Vector class). Thus, property P3
is not true: the user can read an integer in its local
multiset provided he is not currently inserting a new
integer with the user_action(i,usr) method, or if
the DSGammaClientApp is not involved in a chemical
reaction.

4.4.2. Abstraction A2. The abstraction step
from abstraction A1l to abstraction A2 preserves the
same algebraic specification for the GlobalRelay FIFO
(FIFO(Integer)). On the contrary, the MSInt place of
the Applet class in abstraction A2 stores Integers,
while the MSInt place of the DSGammaClientApp class
in abstraction A1l stores an algebraic specification of
type Vector. Thus, in abstraction A1, an access to
an integer in the MSInt place implies an access to the
Vector storing the whole multiset of integers. In ab-
straction A2, each integer in the MSInt place can be
accessed separately. Properties P1, P2, and P3 are ex-
pressed now on the basis of the specifications provided
by abstraction A2.

P1. “After T', the system computes the sum

of the remaining integers distributed among

(1) the MSInt of each Applet, and (2) the

GlobalRelay FIFO.”
The socket layer has disappeared, thus the integers re-
main in the Applets or in the GlobalRelay. Property
P1 is true if at least one user remains in the system: the
getfirst and getsecond transitions will remove one
integer each from the global multiset, and insert the
sum into the local multiset. Property P1 is not true if
all the users leave the system: all the integers present
in the MSInt place of the Applets will be moved to the
GlobalRelay FIFO and will stay there until a new user
enters the system.

10

P2. “Every integer received by the
GlobalRelay FIFO has to be sent to exactly
one of the Applets.”

In abstraction A1l the DSGammaClientApps do not re-
quire themselves integers from the GlobalRelay FIFO.
An OutputRelay thread is responsible for that. In ab-
straction A2, the Applets themselves require integers
from the GlobalRelay FIFO. As for abstraction A1,
this property is true because of the specification of the
GlobalRelay FIFO: two or more accesses to the FIFO
are not allowed at the same time.

P3. “Every user can see at any moment an
integer that is in the MSInt maintained by its
Applet.”

Property P3 is not true, because due to the CO-OPN/2
semantics, the result (i) method of the Applet class
can be fired only if no internal transition of that class is
firable. As the internal transitions are used to compute
chemical reactions, it may happen that the result (i)
method is firable only after several chemical reactions
have been computed. The user cannot see at any mo-
ment an integer in its local multiset.

4.4.3. Abstraction A3. The abstraction step
from abstraction A2 to abstraction A3 changes the al-
gebraic specification for the MSInt place. In abstraction
A2 the MSInt place stores Integers. In abstraction
A3 the MSInt place stores algebraic specifications for
Cartesian products of users and bags of integers. Thus,
in abstraction A2, each integer in the MSInt place can
be accessed separately, while in abstraction A3 an ac-
cess to an integer in the MSInt place implies an access
to the <usr,bag> value storing the user identity and
the whole multiset of integers.

P1. “After T, the system computes the sum
of the remaining integers distributed among
the bag of each usr.”

The server layer has disappeared, thus integers remain
only in the bags of the users. Property P1 is true if at
least one user does not want to exit: the CRi transitions
are fired until only one integer remains in the union
of all the bags, i.e. in the global multiset. Each CRi
transition removes two integers from the global multiset
and inserts their sum into the global multiset.

Property P1 is false if all the users want to leave the
system, then all the pairs <usr,bag> will be moved to
the MSIntToEmpty place, and none of the CRi can be
fired because they need a pair in the MSInt place. The
system is blocked until a new user enters the system.

P2 is no longer necessary, indeed P2 is intended to
verify if the server does not lose or duplicate integers
received from the applets. Abstraction A3 skips the
notion of server, thus this property disappears.

P3. “Every user can see at any moment an
integer that is in its bag.”

This property is not true, because the user can see the
final result (the sum), and only if the result is in its
bag. Indeed, due to the CO-OPN/2 semantics, the
result(i,usr) method can be fired only if none of the
CRi transitions is firable. These transitions are firable
as long as there are at least two integers in the union
of all bags. The sum of all integers is in exactly one of
the bags, the other bags are empty.

4.4.4. Abstraction A4. In abstraction A3 the
MSInt place stores algebraic specifications for Cartesian
products of users and bags of integers. In abstraction
A4 the notion of distributed multiset disappears, only
a global multiset remains. The MSInt place of abstrac-
tion A4 stores Integers. In abstraction A3 an access
to an integer in the MSInt place implies an access to the
<usr,bag> value, while in abstraction A4 each integer
is accessed separately.

P1. “After T', the system computes the sum
of the integers present in the MSInt place of
the DSGammaSystem.”

This property is true, because the ChemicalReaction
transition removes two integers from the MSInt
place and inserts their sum into that place. The
ChemicalReaction transition stops being fired when
only one integer remains in the place. This integer is
the result. Property P1 is true even if all the users
wants to leave the system, because the sum is com-
puted independently of the users.

P3. “Every user can see at any moment an
integer that is in MSInt.”

Due to the CO-OPN/2 semantics, the sum is com-
pletely computed before one of the methods of the
DSGammaSystem class of abstraction A4 can be fired.
As there is one copy of the sum in the MSInt place, one
user only can see it at once. In abstraction A3 only
the user whose bag contains the sum can see the sum.
In abstraction A4 all the users can see the sum but not
at the same time.

5. Conclusion

We have presented the following case study: starting
from a real Java program, we have performed several
abstraction steps using the CO-OPN/2 formal speci-
fication language. Several properties expected by the
implementation have been informally studied during
the reverse engineering process. This case study is a
preliminary work towards the assessment of a refine-
ment methodology for distributed applications.

11

References

[1] Ken Arnold and James Gosling. The Java Program-
ming Language. The Java Series. Addison-Wesley,
1996.

J.-P. Banatre and D. Le Métayer. Gamma and the
Chemical Reaction Model: Ten Years After. In J.-
M. Andreoli, C. Hankin, and D. Le Métayer, editors,
Coordination Programming: Mechanisms, Models and
Semantics, pages 3—41. Imperial College Press, 1996.

Olivier Biberstein, Didier Buchs, and Nicolas Guelfi.
Object-oriented nets with algebraic specifications: The
CO-OPN/2 formalism. In G. Agha and F. De Cindio,
editors, Advances in Petri Nets on Object-Orientation,
volume to appear of Lecture Notes in Computer Sci-
ence. Springer-Verlag, 1997.

Wilfried Brauer, Robert Gold, and Walter Volger. A
survey of behaviour and equivalence preserving refine-
ment of Petri nets. In Advances in Petri Nets 1990,
volume 483, pages 1-46. Lecture Notes in Computer
Science, 1992.

G. Di Marzo Serugendo, N. Guelfi, A. Romanovski,
and A. Zorzo. Formal development and validation of
the DSGamma system based on CO-OPN/2 and Co-
ordinated Atomic Actions. Technical Report of the
Esprit Long Term Research Project 20072 "Design For
Validation’, University of Newcastle Upon Tyne, De-
partment of Computer Science, 1997.

(2]

Giovanna Di Marzo Serugendo and Nicolas Guelfi. For-
mal development of Java programs. Technical Report
97/248, Software Engineering Laboratory, Swiss Fed-
eral Institute of Technology, Lausanne, Switzerland,
1997.

Leslie Lamport. The temporal logic of actions. Tech-
nical Report 79, Digital Equipment Corporation, Sys-
tems Research Centre, 25 December 1991.

K. Lano. Formal Object-Oriented Development.
Springer-Verlag, London, 1995.

Wolfgang Reisig. Petri nets and algebraic specifica-
tions. In Theoretical Computer Science, volume 80,
pages 1-34. Elsevier, 1991.

N. Uchihira and S. Honiden. Verification and syn-
thesis of concurrent programs using Petri nets and
temporal logic. The transaction of the institute of

electronics, information and communication engineers,
E73(12):2001-2009, December 1990.

Martin Wirsing. Algebraic specification.
Leeuwen, editor, Handbook of Theoretical Computer
Science, volume B: Formal Methods and Semantics,
chapter 13, pages 675-788. North-Holland, Amster-
dam, 1990.

P. Yurkowski and C. M. Laucht. Combining Petri nets
and temporal logic to model and analyse distributed
systems. In Proc. of the Fifteenth Manitoba Conf. on
Numerical Mathematics and Computing, pages 211—
227, 1986. NewsletterInfo: 30.

[10]

In J. van

[11]

[12]

