Communication Messengers as a Basis for
Distributed Algorithms*

Giovanna Di Marzo, Muhugusa Murhimanya, Christian F. Tschudin,
David Billard, Jurgen Harms

Centre Universitaire d’Informatique, University of Geneva

e-mail: dimarzo@cui.unige.ch

http://cuiwww.unige.ch/tios/msgr/home.html

Abstract

The messenger paradigm is one of the earliest models
which propose the exchange of code to implement com-
puter communication. Code becomes mobile and mo-
bile code is now considered a promising alternative for
the implementation of distributed applications. One
application of mobile code is in the implementation
of software agents which themselves are used to im-
plement complex distributed applications. However,
efficient execution environments for mobile code are
needed before mobile code can be considered a true
technology for distributed applications. Our messen-
ger project has focused at identifying and providing,
both at the operating system level and at the language
level, the necessary mechanisms for the efficient sup-
port of distributed applications built with messengers.

Since the project has reached a global consistent
point, this paper, that can be considered as a posi-
tion paper, provides an overview of the theoretical and
practical aspects of the whole project. The main result
of our work is the definition and implementation of an
environment for the execution of messengers and the
corresponding language for expressing the messenger
behavior, called respectively the M@ platform and the
M@ language. In both the language and the environ-
ment, minimality and efficiency have been the leitmo-
tiv.

1 Introduction

Traditional approaches on mobile code focus
on demonstrating “working applications” imple-
mented with mobile code (the feasibility and vi-
ability of mobile code) and the fundamental work
of efficient support of mobility is relegated to a

*Published in the proceedings of the 2nd European Re-
search Seminar on Advances in Distributed Systems (ER-

SADS’97), 1997

second plan; i.e. the work of (a) identifying the
different issues of mobility, (b) determining mech-
anisms that are needed to support efficiently mo-
bility and (c) devising an efficient implementation
for the different mechanisms identified in (b). This
fundamental work has to be done at both the run-
time environment level (platform level) and the
language level.

Our research tries to avoid this “shortcut” and
alms at exploring these fundamental issues. Our
work is based on a small micro-kernel (platform for
the execution of messengers) for supporting code
mobility. In the micro-kernel, different mecha-
nisms can be implemented and evaluated in respect
to their effectiveness and pertinence to code mo-
bility. At the same time, we focus on mechanisms
at the language level by enhancing and extending
the language used to express applications’ behavior
with mobile code. As a consequence, there is a con-
stant feedback between the micro-kernel and the
language; mechanisms identified at the language
level are used to enhance the kernel and those iden-
tified at the kernel level can be evaluated to assess
how they can support the language.

The results are a distributed micro-kernel to sup-
port mobile code (MOS) and the underlying lan-
guage (MB) to express mobile code behavior. More-
over, the need for new paradigms for expressing
and implementing distributed applications with
mobile code has been identified. We also focus
on determining and developing an architecture for
building distributed applications with mobile code.

Both theoretical and practical aspects of mo-
bility are considered, the theoretical part of the
work being concerned with deriving a formaliza-
tion for messengers that can be used to reason
about single messengers and families of messen-
gers. In both parts, we make an effort [10, 11] to
position our approach to code mobility with re-



spect to similar efforts such as the Actor model [1]
used for structuring distributed applications, the
Linda/Polis paradigm [3, 5] used for coordinat-
ing applications through shared tuple spaces, but
also to other machine-independent environments
for mobile code, such as TACOMA [14], Obliq [2],
Telescript [30], Java [12], and to mobile agents [13,
15, 29, 4].

The paper is organized as follows. Section 2 de-
scribes the messenger paradigm and sections 3 and
4 present the results of a two years work, classified
from either their practical or theoretical aspects.
Of course, the efforts pursued in the two parts aim
at understanding and clarifying the same subject
and are necessarily complementary. The last sec-
tion concludes this paper.

2 The Messenger Paradigm

Messengers [21, 7] are mobile threads of execu-
tion useful for structuring distributed algorithms
for both high- and low-level applications, i.e. com-
puter communications [23] and distributed appli-
cations. The execution of a messenger takes place
inside a messenger platform. Several messenger
platforms are connected by unreliable channels
through which messengers are sent as simple data
packets.

Inside a given platform, messengers are sequen-
tial processes executing concurrently and in paral-
lel. They coordinate their execution by the means
of (1) a shared dictionary, and (2) messenger
queues. The shared dictionary is a data structure
accessible to all messengers and where a messenger
can insert, change or remove data. A messenger is
able to insert itself in a queue, its execution is then
stopped until it reaches the head of the queue.

Messengers can create at runtime (1) new data,
(2) new messengers in the platform where they are
executing, and they can move themselves or send
other messengers to other platforms. The com-
munication between platform is restricted to the
exchange of messengers, if data has to be sent to
another platform, it is encapsulated in a messen-
ger, which will retrieve the data from its code once
it has arrived in the platform.

To summarize, messengers are anonymous and
autonomous sequential processes, executing in par-
allel without central control, able to move between
platforms and to cooperate and coordinate their
work by the means of shared data structures and
messenger queues. Messenger platforms enable
messenger to execute and move freely between het-

erogeneous machines.

3 Practical

sengers

aspects of Mes-

As said above, the main result of our work is
(a) a distributed micro-kernel [25] called MOS
(Messenger—Based Operating System) designed for
supporting mobile code and (b) the underlying lan-
guage called M@ [22], for expressing messenger be-
havior.

MOS

The fundamental features of MOS are high gener-
icity and flexibility because no protocol are wired
inside the micro-kernel. The basic idea is that the
micro-kernel must provide only local services to
messengers running on the platform. Messengers
themselves cooperate for realizing services that
span the network, i.e. services that require the
collaboration of multiple nodes. Therefore, collab-
oration protocols needed to realize such services
are shifted from the micro-kernel to the messen-
gers'. Since there are no hard-wired protocols in-
side MOS, various operating systems can be imple-
mented on top of the MOS micro-kernel. Currently
an effort is pursued to emulate a UNIX operating
system on top of MOS [19]. Moreover, it is possi-
ble to achieve interoperation between different OSs
implemented on top of MOS without resorting to
other gateway mechanisms.

The MOS micro-kernel provides only manage-
ment of local resources which comprises: messen-
ger creation and scheduling, local memory man-
agement, execution of native code, basic mecha-
nisms to implement security policies and code exe-
cution on a remote node. A currency mechanism is
used as a common and uniform way for managing
the platform (MOS) resources [26]: messengers pay
for resources they consume. Currently, this mech-
anism is applied to CPU-time, and memory. We
plan to apply it to other resources, one adequate
candidate being network bandwidth. Messengers
interact with the micro-kernel on the node they are
executing through the messenger language that is
shared by all the nodes to express messenger be-
havior.

L A minimal set of messengers is provided, implementing
basic communication protocols, synchronization, . ..



Messenger-Based Services

Most distributed applications are structured under
the client/server model that relies on the message-
passing paradigm. Message-passing can be ex-
plicitly handled by the application or can be hid-
den in language level mechanisms, or runtime en-
vironments which translate high-level constructs
in the exchange of messages. One such mech-
anism is the remote procedure call (RPC). The
client/server model and the RPC mechanism seem
overly restrictive for implementing distributed ap-
plications with mobile code. This is because they
require static preconfiguration of entities (client
and server) which exchange messages using a pre-
established protocol. To benefit from the flexibil-
ity of mobile code, a more flexible architecture for
distributed applications is currently investigated.

Indeed, we are developing an architecture for
building distributed applications by composition
of different services. This architecture allows the
secure publication of services offered by service
providers. In addition, it allows the clients (users
of the service) to discover available published ser-
vices and to determine which information is needed
in order to interact with them. For that purpose,
the user of the service determines at runtime the
service’s interface. This interface is described us-
ing the messenger interface description language
that must be understood by both service providers
and clients. We propose to identify ways to ex-
press “semantical”, “operational” and “manage-
ment” interfaces of distributed applications using
a simple but extensible language.

Our messenger interface language (M-IDL) is a
means comparable with the Interface Definition
Language (IDL) [28] of CORBA. CORBA IDL
and M-IDL have the same purpose, i.e. to help
clients to use services offered by servers. How-
ever, CORBA IDL is based on the client/server
paradigm and is a specification explaining how a
server has to publish its services and how a client
accesses them. M-IDL explains how a messen-
ger can publish in its interface the way how other
messengers can access its services and how other
messengers can retrieve this information from the
interface. CORBA advocates interface standard-
ization to allow interoperability between heteroge-
neous software. Messengers execute in platforms
which offer them an homogeneous environment in
a network of hosts; focus is given on how a mes-
senger, that only knows the name of a service, can
nevertheless interact appropriately with it.

Dynamicity and Changing Environments

Till now, most distributed systems are rather
static; dynamicity is not commonly handled au-
tomatically (e.g. manual shutdown of nodes). But
this vision of distributed systems is now completely
outdated with the new technology trends such as
the advent of mobile (or nomadic) computing (e.g.
laptops with wireless interfaces accessing fixed net-
works), where connection/disconnection or shut-
down/startup are normal operations, since it is es-
sential for these devices to save power or band-
width.

Therefore, real messenger based distributed ap-
plications will execute in complex and dynamic en-
vironments where the available resources provided
by the running nodes dynamically change, for ex-
ample as the result of new nodes being booted and
some nodes being shut down. In such environ-
ments, the flexibility of mobile code allows mes-
sengers to move through the network of nodes to
search for resources and information they need to
accomplish their task.

So it is now required that distributed applica-
tions be able to work smoothly in such dynamic
environments. Therefore we should provide, in our
messenger environment, mechanisms for managing
system dynamicity. It is clear, following our phi-
losophy of providing only local services at the MOS
level, that management of system dynamicity has
to be provided at the language level (messenger
level) and not at the runtime level (the MOS level)
because dynamicity management requires strong
cooperation between different nodes.

Implementation

Currently, two messenger platforms have been im-
plemented: (1) the M@ platform mentioned above,
and (2) the MSGR-S platform. In the M@ plat-
form, the messenger language, M@, is based on
PosTtScripT. The M@ platform runs on both
the Unix operating system and on MOS. In the
MSGR-S platform [27], a functional approach is
used and the messenger language is based on
SCHEME. Moreover, to allow users to experiment
with messenger programming using a more com-
fortable language, a Pascal to M@ compiler, called
PTOM, has been implemented [24].

Another important part of the project was the
implementation of applications with the aim to de-
termine mechanisms needed to support them effi-
ciently. The implementation serves as a feedback
to enhance both the messenger based operating



system and the messenger language. We have im-
plemented two basic services, namely a distributed
semaphore service [17] and a distributed shared
memory service. The distributed semaphore ser-
vice allows messengers to synchronize their execu-
tion independently of their physical location; and
the distributed shared memory service allows mes-
sengers running on different nodes to share infor-
mation. We have developed a memory consistency
model called Access Consistency [18] that supports
mobility and which is well suited for the implemen-
tation of distributed shared memory in a messen-
ger environment.

Open Questions

Clearly, the mobile code approach is a promising
alternative for the implementation of distributed
applications. Nevertheless, building distributed
applications using the client/server model and the
underlying message-passing mechanism is well un-
derstood and can be an attractive alternative. In
some situations, the client/server approach can be
more efficient, even though the mobile code ap-
proach can be more flexible. As a consequence,
applications built using the mobile code approach
have to coexist and certainly to interact with
client/server based applications. This requires to
determine and to implement an interface between
messengers and the external world to them. More
clearly, the following problems have to be solved:
(a) how can applications built with messengers ac-
cess the external world, and how can they coexist
with other applications not necessarily expressed
in terms of messengers? (b) how can other applica-
tions access services implemented by messengers?

4 Theoretical implications of
Messengers

Messengers can be considered under different point
of views: (1) a messenger can spread several other
messengers through a network, therefore messen-
gers can be viewed as concurrent distributed pro-
cesses; (2) messengers can move themselves au-
tonomously, thus they can be seen as mobile
agents; (3) messengers interact with each other to
realize their own goal or to participate in a global
application, so they are considered under a coor-
dination and compositional point of view.

Mobile Agent Theories and Coordination

A mathematical formalization of the messenger
paradigm has been given in [6]. The devised op-
erational semantics of the messenger paradigm, in
terms of transition systems, will be useful for com-
paring messengers with other paradigms.

Features of messengers are mobility, creation of
new messengers at runtime, interaction through
a shared memory, no central control, composi-
tion of messengers into families and collabora-
tion between messengers. An analysis and com-
parison of the messenger paradigm with similar
paradigms, through a survey of existing theories
can be found in [10], where we present paradigms
and formalisms related to one or more of these
features. This helps us to position the messenger
paradigm among other existing paradigms. Mes-
sengers as mobile processes are investigated with
m-calculus [16]; messengers as distributed concur-
rent processes are compared to actors; messengers
as coordinated processes are compared to the PoliS
paradigm; messengers as collaborative agents are
investigated with temporal logic for agents. We
also explain informally how two formalisms can be
applied to messengers: (1) the m-calculus, which
focuses on process mobility, and (2) the algebra for
generative communication, which focuses on pro-
cess coordination through a shared memory.

New formalisms related to mobility can be de-
vised: (1) Petri nets and mobility: the idea is to
allow tokens to be whole petri nets, a token which
crosses a transition will cause a new net to appear;
(2) Mix of higher-order m-calculus (HOw) and al-
gebra for generative communication: the idea is
to use the mobility feature of HO7 (process pass-
ing), and the process coordination through shared
memory of generative communication, to obtain a
formalism exactly suited to messengers.

Once a formalism has been chosen, and has
demonstrated to be well suited for messengers, it
will be useful to provide a tool which translates
messenger specifications into messenger programs.

In [9] we list what, at our sense, should be the
components of a multi-agent system and give some
hints on how elements of category theory can be
applied to formalize these components.

PDU-based protocols and messenger-based
protocols

A preliminary work towards a translation of PDU-
based protocols in messenger-based protocols has
been realized. Rules for translating protocols ex-



pressed with the exchange of messages in equiv-
alent protocols expressed in terms of messengers
have been proposed in [20]. The final goal is to
implement an automated tool that can realize such
transformations.

Open Questions

Messengers can work alone, but can also interact
with each other through messenger queues and the
shared dictionary. These interactions occur at run-
time and without any central control. The behav-
ior of the whole system results from the work of
all messengers. Questions naturally arise: how to
derive properties of the whole system? What is
the global behavior of the whole system? How is
it possible to extend a formalism for messengers to
a formalism for families of messengers?

We have made the observation that most for-
malisms and paradigms related to parallel dis-
tributed applications share some common notions
as: composition of components, encapsulation of
the components’ behavior, interface, emergence of
properties, etc. We are interested in generalizing
all these notions, inside a meta-formalism in order
to derive the semantics of systems working with
“components” (objects, agents, messengers, etc.)
of some kind. Some ideas on how to realize a meta-
formalism for composition which goes beyond the
notions of processes, objects, messengers or agents,
and which captures the semantics of distributed
systems build with “components” are listed in [8].

5 Conclusion

In this paper, we have presented a general overview
of the messenger project conducted at the Uni-
versity of Geneva. We gave emphasis on the re-
sults obtained after a two years period, the ongoing
work and the future research we aim to achieve.
We grouped the results into practical, z.e. re-
sulting from the design and implementation of the
M@ platform and M@ language, and theoretical, i.e.
results about the mathematical formalization of
the messenger paradigm, the automated transla-
tion of PDU-based protocol into messengers-based
protocol and the application of existing formalisms
or theories to the formalization of messengers.
The ongoing work and the future research fo-
cus on families of messengers (inter-messengers re-
lationships) for both the practical and theoreti-
cal aspects. In the practical part, we advocate
for the development of an architecture for build-

ing messenger-based distributed applications, that
have to be aware of the dynamic aspect of their en-
vironment and able to cooperate with traditional
client/server applications. In the theoretical part,
we have done a preliminary work to devise for-
malizations for reasoning about messengers (at the
intra-messenger level) and show how they can be
extended to cope with families of messengers (at
the inter-messenger level).

References

[1] G. Agha. Actors: A Model of Concurrent Compu-
tation in Distributed Systems. MIT Press, 1986.

[2] L. Cardelli. A language with distributed scope.
Computing Systems, 8(1):27-59, January 1995.

[3] Nicholas Carriero and David Gelernter. LINDA in
context. Communications of the ACM, 32(4):444-
458, April 1989.

[4] David Chess, Benjamin Grosof, Colin Harrison,
David Levine, Colin Parris, and Gene Tsudik.
[tinerant agents for mobile computing. Technical
Report RC 20010, IBM, T. J. Watson Research
Center, Yorktown Heights, New York, March
1995.

[5] P. Ciancarini. Distributed Programming with
Logic Tuple Spaces. Technical Report UBLCS-
93-7, University of Bologna, 1993.

[6] G. Di Marzo, M. Muhugusa, and C. F. Tschudin.
Mathematical Formalization of the Messenger
Paradigm. Technical Report Cahier du CUI No
100, University of Geneva, 1996.

[7] G. Di Marzo, M. Muhugusa, C. F. Tschudin, and
J. Harms. The Messenger Paradigm and its Im-
pact on Distributed Systems. In Claus Unger and
loan Alfred Letia, editors, ICC’95 International
Workshop on Intelligent Computer Communica-
tion, pages 79-94, June 1995.

[8] G. Di Marzo, M. Muhugusa, C. F. Tschudin, and
J. Harms. Formalization of Agents and Multi-
Agent Systems. The Special Case of Category
Theory - Working Paper. Technical Report Cahier
du CUI No 109, University of Geneva, 1996.

[9] G. Di Marzo, M. Muhugusa, C. F. Tschudin, and
J. Harms. Meta-Formalism for the Composition
of Objects - Working Paper. Technical Report
Cahier du CUI No 108, University of Geneva,
1996.

G. Di Marzo, M. Muhugusa, C. F. Tschudin, and
J. Harms. Survey of Theories for Mobile Agents.
Technical Report Cahier du CUI No 106, Univer-
sity of Geneva, 1996.

[10]



[11]

[12]

[13]

[14]

[15]

[16]

18]

[19]

(20]

(21]

(22]

(23]

[24]

(23]

Giovanna Di Marzo, Murhimanya Muhugusa, and
Christian F. Tschudin. Agent Mobility, chap-
ter 20, pages 375-406. Sams.net, 1996. In Bots
and other Internet Beasties. Joseph Williams.

J. Gosling and H. McGilton. The Java Language
Environment: A White Paper. Sun Microsystems,
Inc.

Colin G. Harrison, David M. Chess, and Aaron
Kershenbaum. Mobile Agents: Are they a good
idea? Technical report, IBM, T. J. Watson
Research Center, Yorktown Heights, New York,
March 1995.

D. Johansen, R. van Renesse, and F. B. Schneider.
An Introduction to the TACOMA Distributed
System. Technical report, University of Tromso,
June 1995.

A. Lingnau and O. Drobnik. An Infrastructure for
Mobile Agents: Requirements and Architecture.
Technical report, University of Frankfurt, 1995.

R. Milner, J. Parrow, and D. Walker. A Calculus
of Mobile Processes I and II. Journal of Informa-
tion and computation, 100(1):1-40,41-77, 1992.

M. Muhugusa, G. Di Marzo, C. F. Tschudin,
and J. Harms. Distributed Semaphore in a Mes-
senger Environment. In Decentralized Intelligent
and Multi-Agent Systems DIMAS 95. Institute of
Computer Science, AGH - Technical University of
Mining and Metallurgy, Krakow, Poland, Novem-
ber 1995.

M. Muhugusa, G. Di Marzo, C. Tschudin, and
J. Harms. Access Consistency Memory Model for
Messengers. Technical Report Cahier du CUI No
107, University of Geneva, 1996.

Guy Neuschwander. Exécution du code natif dans
I’environnement MOS. Master’s thesis, University
of Geneva, November 1996.

Louis Armand Soavelo. Transformation de spé-
cifications de protocoles en messagers. Master’s

thesis, University of Geneva, April 1996.
C. F. Tschudin. On the Structuring of Com-

puter Communications. PhD thesis, Université de
Geneéve, 1993. These No 2632.

C. F. Tschudin. An Introduction to the M Mes-
senger Language. Technical Report No 86 (Cahier
du CUI), University of Geneva, 1994.

C. F. Tschudin.
Kommunikationsboten.
Chemnutz, 1995.

C. F. Tschudin. PTOM - A Pascal Translator for
Mobile Code. Technical Report ifi-96.06, Institut
fur Informatik, University of Zirich, July 1996.

C. F. Tschudin, G. Di Marzo, M. Muhugusa, and
J. Harms. A distributed micro-kernel for commu-

nications messengers. Technical Report No 110
(Cahier du CUI), University of Geneva, 1996.

Protokollimplementierung mit
In KiV5°95-Tagung,

[26]

28]

[29]

30]

Christian F. Tschudin. Open resource allocations
for mobile code. In Proceedings of Mobile Agents
97, apr 1997.

R. Lino Valverde. MSGR-S: Un environnement
d’exécution de messagers basé sur un interpréteur
Scheme paralléle. Diploma thesis, University of
Geneva, 1994.

Steve Vinoski. Corba: Integrating diverse appli-
cations within distributed heterogeneous environ-
ments. [EEE Communications Magazine, 14(2),
1997.

P. Wayne. Agents away. BYTE, pages 118-133,
May 1994.

J. E. White. Telescript Technology: The Founda-
tion for the Electronic Marketplace. White paper,
General Magic, Inc., 2465 Latham Stree, Moun-
tain View, CA 94040, 1994.



