Formal Development and Validation of
Java Dependable Distributed Systems

Giovanna Di Marzo Serugendo!, Nicolas Guelfi?,

Alexander Romanovsky?®, Avelino Francisco Zorzo®

4

1 LGL-DI, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland
2 Institut Supérieur de Technologie, L-1359 Luxembourg-Kirchberg

3 Department of Computing Science, University of Newcastle upon Tyne, NE1 7RU, UK
4 Faculdade de Informética, PUCRS, Porto Alegre, 90619-900, Brazil

Abstract

The rapid expansion of Java programs into software
market is often not supported by a proper development
methodology. Here, we present a formal development
methodology well-suited for Java dependable distributed
applications. It is based on the stepwise refinement of
model-oriented formal specifications, and enables vali-
dation of the obtained system wrt the client’s require-
ments.

Three refinement steps have been identified in the
case of fault-tolerant distributed applications: first,
starting from informal requirements, an initial formal
specification is derived. It does mot depend on imple-
mentation constraints and provides a centralized solu-
tion; second, dependability and distribution constraints
are integrated; third, the Java implementation is re-
alised. The CO-OPN/2 language is used to express
specifications formally; and the dependability and dis-
tribution design is based on the Coordinated Atomic ac-
tion concept. The methodology and the three refinement
steps are presented through a very simple fault-tolerant
distributed Java application.

Keywords: Structuring Complex Concurrent Sys-
tems, CO-OPN/2, Formal Development, Stepwise Re-
finement, Design for Validation, Coordinated Atomic
Actions, Java.

1. Introduction

The engineering of dependable distributed systems
should be based on a development methodology with a
design phase relying on well-established design princi-
ples and formal enough for a serious verification phase
to be defined.

This paper presents a formal development method-
ology based on the joint use of synchronized Petri nets
and temporal logic formulae. It defines a whole de-
velopment process (analysis, design, implementation)

with a design phase relying on the stepwise refinement
of synchronized Petri nets. The correctness of the re-
finement steps is verified on the basis of the logical
formulae.

Synchronized Petri nets are expressed using Concur-
rent Object-Oriented Petri Nets (CO-OPN/2) [4]. CO-
OPN/2 is an object-oriented formal specification lan-
guage that allows concurrent systems to be described
in terms of structured Petri nets for the behaviour part,
and algebraic specifications for the data structures used
to define values managed by the Petri nets. Tempo-
ral logic formulae used for the refinement steps are ex-
pressed by means of the Hennessy-Milner logic (HML).

The methodology proposed in this paper is well
suited for the development of distributed applications.
In the particular case of dependable distributed appli-
cations, a design phase has been identified where the
dependability and distribution constraints are built ac-
cording to the Coordinated Atomic action concept.

The Coordinated Atomic (CA) action model [1] pro-
vides structuring primitives and support for error re-
covery in designing systems composed of several con-
current interacting entities. The model distinguishes
between cooperative concurrency, which is expressed
using conversations [2], and competitive concurrency,
which is expressed using transactions [3]. The CA ac-
tion model makes it possible to design specific fault
tolerance mechanisms to cover both hardware and soft-
ware faults.

The design phase of dependable distributed applica-
tions using the CA action concept is as follows: (1)
a set of informal application requirements is stated; it
includes validation objectives expressed by a set of de-
sired properties; (2) an initial CO-OPN/2 specification
is built; it gives a model of the application, which is
abstract enough to be as independent as possible of im-
plementation constraints; (3) a refinement of the initial
specification is realised; it provides CO-OPN/2 speci-

fications of the CA action design of the application;
(4) finally, the Java implementation is derived. Every
specification, as well as the Java program, validates the
initial requirements and the desired properties.

The structure of this paper is as follows. Sec-
tion 2 describes the formal development methodology,
presents the formal specification language CO-OPN/2,
and explains the CA action concept. Section 3 illus-
trates the proposed formal development methodology
and the design phase using the CA action concept ap-
plied to a very simple example. Section 4 presents re-
lated work.

2. Development Methodology

The methodology proposed in this paper addresses
three classical phases of the development process of dis-
tributed applications: the analysis phase, the design
phase, and the implementation phase.

After the analysis phase, informal requirements are
determined. The design phase consists of the stepwise
refinement of CO-OPN/2 specifications. The method-
ology advocates for this phase the joint use of CO-
OPN/2 specifications and HML formulae. The be-
haviour of a system is specified by means of CO-OPN/2
specifications. Such specifications provide a model of
the system, and implicitly define a set of properties
corresponding to the behaviour defined by the specifi-
cation. During a refinement step it is not always neces-
sary to preserve the whole behaviour proposed by the
specification. Therefore, essential properties expected
by the system are explicitly expressed by means of a
set of HML formulae, called contract. A contract does
not reflect the whole behaviour of the system, it reflects
only the behaviour part that must be preserved during
all subsequent refinement steps. A refinement is then
defined as the replacement of an abstract specification
by a more concrete one, which respects the contract of
the abstract specification, and takes into account im-
plementation constraints.

Finally, the implementation phase is treated in a sim-
ilar way as the design phase. At the end of the design
phase, a concrete CO-OPN/2 specification is reached,
it is implemented, and the obtained program is consid-
ered to be a correct implementation if it satisfies the
contract of the most concrete specification.

Figure 1 shows the three phases. On the basis of the
informal requirements, an abstract CO-OPN/2 specifi-
cation Spec, is devised. Its contract Contracto formally
expresses the requirements. During the design phase,
several refinement steps are performed, leading to a
concrete CO-OPN/2 specification Spec,, and its con-
tract Contract,. The implementation phase then pro-
vides the program Program and its contract Contract.

A refinement step is correct if the concrete contracts
contain the abstract contracts.

Analysis Informal Requirements

Design o I Comra:to

Spec,
Refinement Based on Contracts \L 3 $
Spec

Contracto [(:ontram1 —= Correct

1 : Contract 1

v ‘ v Contract | T Contract ~— —* Correct
! Contract

&En : ontre Y

Implementation i
' Contract ~ © Contract — Correct
Implementation Based on Contracts onracy, = Lo

Figure 1. Development Methodology

In the case of dependable distributed systems, a de-
sign phase with particular refinement steps has been
identified. An initial specification provides a central-
ized system that is as much as possible independent of
implementation constraints. The corresponding con-
tract expresses the requested functionality of the sys-
tem. A second specification, which integrates depend-
ability and distributivity constraints, is then built. The
CA action concept is used to devise this specification.
Indeed, CA actions provide built-in features to achieve
fault tolerance. Therefore, the design and the verifica-
tion of dependable systems become easier. The third
and last step is provided by the Java implementation.

The rest of this section briefly defines CO-OPN/2
specifications, HML formulae, and the CA action con-
cept.

2.1. CO-OPN/2

CO-OPN/2 is an object-oriented formal specification
language [4] that integrates Petri nets used to describe
concurrent behaviours and algebraic specifications [7]
of structured data evolving in Petri nets. An object
is considered to be an independent entity composed of
an internal state which provides some services to the
exterior. The only way to interact with an object is
to invoke one of its services; the internal state is thus
protected against uncontrolled accesses. CO-OPN/2
defines an object as an encapsulated algebraic net in
which places compose the internal state and transitions
model the concurrent events of the object. A place
consists of a multiset of algebraic values. Transitions
are divided into two groups: parameterised transitions,
also known as methods, and internal transitions. The
former correspond to the services provided to the out-
side, while the latter describe the internal behaviour of
an object. Unlike methods, internal transitions are in-

visible to the exterior world and spontaneous (they are
fired as soon as their pre-conditions are satisfied). An
object method can only be fired if no further internal
transition can. A class describes all the components
of a set of objects and is considered to be an object
template. Thus, all the objects of one class have the
same structure. Objects can be dynamically created.
Objects are also called class instances. Each class in-
stance has an identity, which is also called an object
identifier, that can be used as a reference.

When an object requires a service, it asks to be
synchronised with the method (parameterised transi-
tion) of the object provider. The synchronisation pol-
icy is expressed by means of a synchronisation expres-
sion, which can involve many partners joined by three
synchronisation operators (one for simultaneity (//),
one for sequence (..), and one for alternative or non-
determinism (+)). For instance, an object may simul-
taneously request two different services of two different
partners, followed by a service request to a third object.

CO-OPN/2 specifications are graphically noted in
the following manner: a CO-OPN/2 class is depicted as
a rectangle with a circle for each place inside, a white
rectangle for each internal transition, and, on its sides,
a black rectangle for each method. Labelled arrows be-
tween places and internal transitions or between places
and methods give the flow relations (what is consumed
and what is added to a place when an internal transi-
tion or a method is fired).

2.2. Hennessy-Milner Logic

HML formulae are expressed on CO-OPN/2 specifi-
cations. An HML formula is a sequence (or a conjunc-
tion (A), or an alternative (+)) of observable events.
Such an event is either the firing of a single method
of a CO-OPN/2 object, or the parallel firing of several
methods. An HML formula is satisfied by the model of
a CO-OPN/2 specification if the sequence of events de-
fined by the formula correspond to a possible sequence
of events of the model of the specification.

2.3. Dependable Design:
Coordinated Atomic Actions

The CA action [1, 8] concept was introduced as a
unified approach for structuring complex concurrent
activities and supporting error recovery of multiple in-
teracting objects in an object-oriented system. This
paradigm provides a conceptual framework for dealing
with both kinds of concurrency (cooperative and com-
petitive) by extending and integrating two complemen-
tary concepts — conversations [2] and transactions [3].
CA actions have properties of both conversations and

transactions. Conversations are used to control coop-
erative concurrency and to implement coordinated and
disciplined error recovery while transactions are used
to maintain the consistency of shared resources in the
presence of failures and competitive concurrency.

Each CA action has a set of roles that are acti-
vated by action participants (external activities such
as threads, processes), which cooperate within the CA
action scope. Logically, a CA action starts when all
roles have been activated and finishes when all of them
have reached the CA action end. A CA action can be
completed either when no error has been detected, af-
ter successful recovery, or when the recovery fails and
a failure exception is propagated to the containing CA
action (CA actions can be nested).

External (transactional) objects can be used con-
currently by several CA actions in such a way that
information cannot be smuggled among these CA ac-
tions and that any sequence of operations on these ob-
jects bracketed by the start and completion of a CA
action has the ACID (atomicity, consistency, isolation
and durability) properties [3] with respect to other se-
quences. To the outside world, the execution of a CA
action looks like an atomic transaction. One way of im-
plementing these semantics is to use a separate transac-
tional support mechanism that provides these proper-
ties. This support mechanism can offer the traditional
transactional interface, i.e. operations start, abort and
commit, that are called (either by the CA action sup-
port or by CA action participants) at the appropriate
points during the CA action execution.

The state of a CA action is represented by a set of lo-
cal objects; each CA action deals with these objects to
guarantee their state restoration if error recovery is to
be provided. Local objects are the main means for par-
ticipants to interact and to coordinate their execution
(external objects can be used as well).

The CA action mechanism also provides a basic
framework for exception handling, which can support
a variety of fault tolerance mechanisms aimed at toler-
ating both hardware and software faults [9, 10].

3. A Complete Example

In order to present the proposed methodology and
the CA action design, we consider the following simple
example: computing the sum of the integers present
in a multiset. The computing of the sum follows the
Gamma paradigm [6]: a chemical reaction removes two
values from a multiset, computes their sum and inserts
the result into the multiset. Figure 2 shows a multiset
and a possible Gamma computation achieving result 8.

Global Multiset

Figure 2. Addition according to the Gamma

paradigm

3.1. Informal Requirements

We intend to develop an application allowing several
users to insert integers into a distributed multiset ac-
cording to the Gamma paradigm. We call Distributed
Gamma (DSGamma) system, the system composed of
users, a distributed multiset and chemical reactions.
The informal requirements are as follows: the first part
describes the system operations to be provided to users,
the second part describes the details of data and of in-
ternal computations, and the third part describes the
fault model.

System Operations: (1) A new user can be added
to the system at any moment; (2) A user may add new
integers to the system at any moment between his/her
entering and exit time; (3) A user may exit the system
provided he/she has entered the system; (4) A user
may see the computed result at any moment.

State and Internal Behaviour: (5) The integers
put in by users are stored in a multiset; (6) The ap-
plication computes the sum of all integers put in by all
users; (7) The sum is calculated by chemical reactions
in accordance to the Gamma paradigm; (8) A chem-
ical reaction removes two integers from the multiset,
adds them up, and inserts the sum into the multiset;
(9) There is only one type of chemical reaction, but
several of them can occur simultaneously and concur-
rently in the multiset; (10) A chemical reaction may
occur provided there are at least two integers in the
multiset.

Fault Tolerance: (11) The addition operation can
fail; (12) Storing integers in the multiset can fail; (13)
Removing integers from the multiset can fail.

Because these operations are executed only inside
CA actions, the entire system fault tolerance is pro-
vided within the CA action framework. Computer
hosts and network do not fail.

3.2. Initial Specification:
Centralized View

The initial CO-OPN/2 specification is given by two
classes: the DSGammaSystem class specifying the ser-
vices offered by the system to users; and the Users
class, specifying the users behaviour.

Figure 3 shows the DSGammaSystem class. The four
system operations (1) to (4) provided to the users are
specified by four CO-OPN/2 methods. The state and
internal behaviour ((5) to (10)) are specified using:
place users for storing users identity; place MSInt for
storing integers entered by the users; and internal tran-
sition ChemicalReaction that actually performs the
Gamma chemical reactions: it removes two integers
from place MSInt, sums them up, and inserts the re-
sult into the place.

Class DSGammaSystem

new_user(usr) user_exit(usr)

(X T)

usr Users usr

N

usr usr

usr ~MSInt:Integer . .
. T i i . .
result(i,usr) user_action (i,usr)

it 5 i
k ChemicalReaction j

Figure 3. Underlying System

Figure 4 depicts the Users class. At creation time a
user registers itself to the DSGamma system; then it is
able to insert integers, get the result or leave the sys-
tem. Every action performed by the user is forwarded
to DSG - a static instance of the DSGamma system.

Class Users

exit with
DSG.user_exit(self)

~

I insert(i) with

DSG.user_action(i,self)

Init:
blacktocken

result (i) with I

@
DSG.result(i,self) l

—
init with
DSG.new_user(self)

g J

Figure 4. Users

3.2.1. Contract. In order to remain concise, we
present a contract ¢y, corresponding to the initial spec-
ification, made of only two HML formulae: ¢y, and ¢r,.
It is obvious that a larger contract is necessary to en-
sure all the informal requirements (1) to (10).

Formula ¢1, states that after the creation of a DS-
GammaSystem DSG, it is possible to create a first user
usry, and a second user usrs, after that usr; inserts in-
teger ¢ in the system, usry inserts integer j, and wusrsy
can see the correct result ¢ 4+ j. This formula addresses
requirement (4).

Formula ¢y, is similar but usr; leaves the system be-
fore usry sees the result. The exit of usr; does not af-
fect the computing of the sum. This formula addresses
requirements (3) and (4) simultaneously.

¢1, = <DSG.create><usri.create><usrz.create>
<usry. user_action(i)><usrs.user_action(j)>
<usrg.result(i + j)>

¢12 = <DSG@.create><usri.create><usrsy.create>
<wusry . user_action()><usrs. user_action(j)>

<usry.user_exit><usry.result(i 4+ j)> .

Contract ¢p is actually satisfied by the model of the
initial specification.

3.3. Refinement R1:
CA Action Design

As mentioned in Section 2.3., the CA action mech-
anism provides a well-structured way of dealing with
faults that may happen during a cooperative activity.
In this section, we use CA actions to design the DS-
Gamma system. Fault tolerance is provided by the CA
actions.

3.3.1. System Design. The system is composed
of a set of participants (located on different hosts), a
CA action scheduler (located on a separate computer)
and a set of CA actions (see Figure 5). A participant
starts when it is loaded into a client computer and es-
tablishes a connection with the CA action scheduler. A
participant works on behalf of a user. Each participant
has a local multiset ParticipantQueue, i.e. a queue in
which part of the global multiset is kept.

There are three types of CA action: GammaAction
(executes the Gamma computation - chemical reac-
tion); FinishAction (enables a user to leave the sys-
tem); and, InsertNumberAction (enables a user to in-
sert a new integer in the system).

A CA action scheduler is responsible for receiving in-
formation from all participants about any new number
they have in their local queues. The CA action sched-
uler also starts a new GammaAction with three roles

GammaAction

GammaAction

Figure 5. DSGamma System

whenever there are at least two new numbers in the
local multisets. There can be as many GammaActions
active concurrently as there are pairs of integers in all
local multisets at a given time. For example, it is al-
lowed to have several active GammaActions in which
the same participant takes part (if there are several
numbers in its local multiset). Each participant can
be involved in several actions at once playing different
roles. This approach allows a better parallelisation of
the Gamma computation.

3.3.2. GammaAction. GammaAction is a CA ac-
tion used to perform a DSGamma chemical reaction.
It has three roles: FirstProducer, SecondProducer, and
Consumer. FirstProducer and SecondProducer take in-
tegers from their ParticipantQueues and send them to
Consumer. Consumer sums the integers up and stores
the result in its ParticipantQueue (see Figure 6). Local
multisets ParticipantQueue are external objects in our
design. They can be accessed only within CA actions.
Their consistency and integrity is guaranteed by the
CA action support in such a way that several actions
can take integers from the same multiset and add new
integers in it (during the Gamma reaction) without in-
terference.

The CA action mechanism provides a framework for
dealing with exceptions that happen during the execu-
tion of the system. In our DSGamma system, when
the addition operation fails inside a GammaAction, an

time
ParticipantQueue
(from First oducer

L

Ll
Y

FirstProducer 7

Y

Send
first
number
Consumer
‘Send
second
SecondProducer number

§

Add up numbers and
storetheresult

Y

Y

ParticipantQueue
(From or%Producer)r

- 1
famae - e
L

Y

[W

Figure 6. GammaAction

exception, called ReactionException, is raised in the
thread executing a role in the action. In Figure 7, we
represent the ReactionException being raised by the
Consumer.

time
ParticipantQueue
(from FirstProducer) [‘]
: Read number J
T
| Recovery
I
FirstProducer
| S —_—
Send
first Recovery
Consumer number EXCEPTION } j
. : : —
Send : Recove :
SecondProducer Aﬁgﬂr | : !
A - V‘ : %
ParticipantQueue " Read Number Write Number |
(From gecor%Producer) [. ! !]
| Write Numi
ParticipantQueue | i
(from Consumer) [v v]

Figure 7. Forward Error Recovery in GammaAction

In accordance to the CA action concept, we attach
exception handlers to each role. In Figure 7, for exam-
ple, after an exception ReactionException has been
raised, the CA action support mechanims interrupts
all the roles in the CA action and calls the handler
for this exception in each one of them. Our design
decision for the ReactionException is to use forward
error recovery in the following way: when the reaction
(addition) fails, the consumer keeps both integers by
inserting them into its local multiset whilst the pro-
ducers complete the CA action as if nothing had hap-
pened. Thus, if the addition operation fails during the

CA action execution, the consumer recovers the sys-
tem, but in this case two new integers appear in the
consumer local multiset. We use a special outcome for
GammaAction to inform about these new integers in
the local multiset of the consumer.

GammaActions are atomic with respect to faults in
the chemical reaction: exception handlers guarantee
“nothing” semantics for the global multiset (although
local multisets are modified during this recovery). Fail-
ures in storing, or removing, integers in the multiset
are dealt with in a similar way. Due to space limit, we
will concentrate, in the rest of this paper, only on the
ReactionException.

3.3.3. CO-OPN/2 Specification. For each com-
ponent of the CA action design, a CO-OPN/2 speci-
fication is provided. In this paper, we present some
of these CO-OPN/2 classes; the complete set of CO-
OPN/2 specifications together with informal proof of
properties can be found in [11].

The DSGammaSystem class, shown in Figure 8, de-
picts the overall system with CA action design. It only
creates an instance of the CA action scheduler that
participants can use in the sequel.

Class DSGammaSystem

(inie:)
blacktocken

init with @
SC.create ¢

SC
store-sc:
CAAScheduler 17

g J

Figure 8. Refinement R1: Overall System

The Users class of the initial specification is replaced
by the Participant class partially given in Figure 9.
At creation time, the participant registers itself to the
CA action scheduler. It forwards the user’s exit request
to the CA action scheduler, and furnishes the result by
reading in its queue.

The GammaAction class, shown in Figure 10, speci-
fies GammaAction. The new-GammaAction constructor
causes the creation of a channel ch, used as a local ob-
ject. The channel is a queue of integers. The creation
of a new instance of the GammaAction class is triggered
by the CA action scheduler.

The inAction method is used to instruct the CA
action about which thread will perform which role in
that CA action. The CA action is actually performed
by the Action transition that first calls all the roles

Class Participants

exit with
SC.endParticipant(self)

4)

Init:
blacktocken

result(i) with I) I insert(i) with
Q.read(i)

init with
SC.newParticipant(self)

-

Figure 9. Refinement R1: Participant

in order to let them enter (by calling Enter) the CA
action simultaneously, and then sequentially calls all
the roles in order to let them leave (by calling Leave)
the CA action simultaneously.

The call to the Enter method of a role causes that
role to perform some work; the end of this work causes
the enabling of the Leave methods. The roles work be-
tween the calls to the Enter methods and the calls to
the Leave methods. If the Leave method of one role
cannot be fired, then the entire Action transition is not
fired at all. The Action transition together with the
specification of the participant queue ensures that CA
actions have the ACID properties. Indeed, CO-OPN/2
semantics ensures that either the Action transition to-
gether with its required synchronisations is completely
fired, or the Action transition is not fired at all (hence
none of its required synchronisations are).

This CA action is also able to cope with one ex-
ception, ReactionException, incoming from roles. If
ReactionException has been raised, the Action tran-
sition does not call the Leave methods of the roles but
the ReactionException method. This will cause the
exception handler of the roles to be activated.

The TConsumer class, shown in Figure 11, specifies
the thread performing the Consumer role of GammaAc-
tion. TConsumer has to collect two integers from a
channel provided by the CA action (received as a local
object), sums them up and inserts the sum into its par-
ticipant queue. It receives the reference of the queue
(at creation time).

The new-TConsumer (SC,P, Q) constructor stores the
CA action scheduler identity SC, the participant iden-
tity P, and the participant queue identity Q.

A GammaAction,e.g. GA, calls the Enter (ch) method
in order to enable the role to begin its execution. The
ch object is a local object used to communicate with
the producer roles.

The put transition is then firable. This transition

Class GammaAction

inAction(TC,Consumer) new-GammaAction with inAction(TP,Producer)

TC ch TP

l Consumer : TConsumer l Producers:TProducer l

Channel:
Queue(Integer)

TC ch TP2

\% TP1
Action with

(TP1.Enter(ch) // TP2.Enter(ch) // TC.Enter(ch)) ..
((TP1.Leave // TP2.Leave // TC.Leave) +
(TP1.ReactionException // TP2.ReactionException //

K TC.ReactionException)) j

Figure 10. Refinement R1: GammaAction Class

has two possible behaviours: either it correctly does
the sum, and enables the role to correctly end, or
it does not do the sum and causes the role to raise
ReactionException.

In the first case, the put transition takes a first inte-
ger from the channel (by calling ch.get(i)), a second
integer from the channel (by calling ch.get(j)), and
stores their sum into its participant queue (by calling
Q.put (i+j)); finally it makes the firing of the Leave
method possible by inserting the true token into the
end place.

In the second case, the put transition takes a first
integer from the channel (by calling ch.get (1)), a sec-
ond integer from the channel (by calling ch.get(j)),
and stores them into the store-Int place, making it
possible to fire the ReactionException method.

Only one of these put can be fired at a time, and
the choice between them is non-deterministic. Depend-
ing on which of them has been fired, either the Leave
method or the ReactionExceptionis firable. This will
cause the GammaAction GA to call the firable one.

When no exception has occurred, the Leave method
is called by GammaAction, GA, in order to let the role
leave the action. The Leave method informs the CA
action scheduler SC that the participant has one new
integer in its queue (by calling SC.newNumber (P,1)),
and informs the participant that the action is fin-
ished and the number of actions involving the par-
ticipant has to be decremented by one (by calling
P.decNumberOfAction).

When an exception has occurred, the
ReactionException method is called by GammaAction
GA. This method performs the recovery of the error and
enables the role to leave the action: it removes the two
integers from the store-Int place and stores them,

Class TConsumer
Leave with
SC.newNumber(P,1) //

new-TConsumer(SC,P,Q) P.decNumberOfAction

(/ V&C

store-Q: Q 93 Og /

Queue (Integer) / N /2
ch.get(i) .. ch.get(j)

Q Q.put(i+j)
Enter(ch) Channel:Queue(Integer)
ch ch true
end :Boolean

%,

5

S
“ ch *559
N

put with

store-Int:Integer

P —
; /(k
put with ’

begin:Boolean

k ch.get(i) .. ch.get(j) zl

ReactionException with
Q.put(i) .. Q.put(j) ..
(SC.newNumber(P,2) // P.decNumberOfAction)

Figure 11. Refinement R1: TConsumer Class

without adding them up, in the participant queue Q.
After that it informs the CA action scheduler SC that
the participant has two new integers in its queue(by
calling SC.newNumber(P,2)), and decrements the
number of actions the participant is involved in.

The TProducer class, shown in Figure 12, specifies
the thread performing the Producer role of GammaAc-
tion. The TProducer has to remove one integer from its
participant queue and send it to the channel provided
by the action (received as a local object).

Class TProducer

Leave with

new-TProducer(P,Q) P.decNumberOfAction

e PN

Queue: Q P

Queue(ln:eger)<j<
Q
Enter(ch) Channel :Queue(Integer end :Boofean
ch —()—— ¢ch true
&,
k7
‘e get with
Q.get(i) .. ch.put(i)
true

begin:Boolean

N N

ReactionException with
P.decNumberOfAction

store-P:
Participant

Figure 12. Refinement R1: TProducer Class

The get transition is then firable; it takes an integer
from the participant queue and stores it in the channel
(by calling Q.get (i) ch.put(i)), finally it makes
the firing of both Leave and ReactionException
methods possible by inserting the true token into the
end place.

When no exception has been raised by the
TConsumer role, the Leave method is called by
GammaAction GA in order to let the role leave the action.
The Leave method informs the participant that the ac-
tion is finished and the number of actions involving the
participant has to be decremented by one.

When an exception has been raised by the
TConsumer role, the ReactionException method is
called by GammaAction GA in order to let the role per-
form some error recovery. In the case of the TProducer
role, there is no need to perform error recovery, and
the ReactionException method behaves just like the
Leave method.

3.3.4. Contract. Contract ¢r; corresponding to
refinement R1 is made of four formulae. The first two
®R1,, PR1,, are similar to those of Contract ¢y, except
that the users instances are replaced by participant in-
stances.

Formula ¢ri1, states that: (1) three participants p;
(1 <€ i < 3) and their respectives queues g; are cre-
ated; (2) two TProducer threads instances TP, TP,
are created, and a TConsumer thread instance T'C is
created; (3) integer ¢ is put into queue ¢;, and integer
Jj into queue g2; (4) a GammaAction instance GA is cre-
ated; (5) the roles are announced with the respective
threads; (6) finally there are two possible outcomes af-
ter the CA action ends: either the consumer queue g3
contains the sum i+ j, or there has been some problem
and the queue g3 contains both ¢ and j.

Formula ¢r1, is similar to formula ¢ri,. It states
that it is not possible that after the end of GammaAction
G A the three queues are empty, (two integers ¢ and j
lost), or queue g3 contains only ¢ (integer j lost).

¢Rr1; = <DSG. create><p;.create><ps. create>
<p1.user_action(z)><pa. user_action(j)>
<pz.result(i + j)>

PRrR1, = <DSG. create><p;. create><pz.create>
<p1.user_action(z)><psz. user_action(j)>
<p1.user_exit><pa.result(i + 5)>

PR1; =V (<q3.get(i + 7)> + (<g3. get(i)><gs. get(5)>))

or1, =9 —((<q1.isEmpty><q2.isEmpty><g3.isEmpty>) +
(<q1.isEmpty><g2.isEmpty>
<gq3.get(i)><q3.isEmpty>))

where:

Y = <DSG. create>
<p1.create><p2.create><ps.create>
<q1.create><gs. create> <gs. create>
<TP;.new-TProducer(p1,¢1)>
<T P,. new-TProducer(p2, g2)>
<T'C.new-TConsumer(SC, p3,q3)>
<q1.put(i)><go. put(j)><GA.new-GammaAction>
<GA.inAction(TP1, Producer)>
<GA.inAction(T P,, Producer)>
<GA.inAction(T'C, Consumer)> .

Refinement R1 actually satisfies this contract. It is
a correct refinement of specification I since contract ¢
is included (modulo renaming) in contract ¢gri.

3.4. Java Implementation

In this section we show how we have implemented the
DSGamma, system using the Java programming lan-
guage [13] (Java ORB Remote Method Invocation -
RMI is used to distribute objects).

The CA action scheduler has been implemented as a
remote object that can be accessed by the participants
to inform the scheduler when they are joining the sys-
tem, when they are willing to leave the system, and
every time they get a new number in their local queue.

Participants are implemented as remote applets that
can be accessed by the CA action scheduler or by other
participants. Each participant has a local queue (lo-
cal object) that stores the numbers of its local multi-
set. This local queue implements its operations (put,
get) using a monitor style approach (all methods are
Java synchronized methods). Each participant has
also a list of GammaAction objects in which it always
performs the consumer role, i.e. when a CA action in
that participant is activated, then it participates in the
GammaAction as consumer (the CA action scheduler
will set that).

Figure 13 shows the GammaAction object and its
roles. The CA action object is composed of a set of
internal objects, which are used only by the CA ac-
tion roles in order to exchange values, i.e. to com-
municate; a set of external objects that the roles will
access in an atomic way; a manager that is responsi-
ble for recovering the CA action from possible errors,
and for pre-synchronising and post-synchronising the
participants; and the roles that the participants will
execute. In order to execute a role in a CA action,
the participants must be informed about the action
and the role they have to execute; such information
will be provided by the CA action scheduler using the
sendGammaAction method of the participants. Once

localQueue

localQueue
i : 1
N

'

N | Ve
O O O extemal objects

inf].out[])

local Queue

sendGammaA ction(where,role,cald)

4

internal objects:

NS

channel participant

h
sendGammaAction(where,role,cal d)

methods(roles):

firstProducer

S
participan
<
participant
SN

GammaAction

sendGammaAction(where,role,cal d)

Figure 13. The GammaAction Object

the participants know the action and the role they
have to execute, they activate the action by calling the
inAction method in the action object sending infor-
mation about their local queues. These local queues
are bound to CA actions dynamically. The inAction
method handles the tasks of the CA action manager
as described above, and enables the participants to
perform their role by calling the methods consumer,
firstProducer, and secondProducer.

All CA actions in our system are implemented as
objects, and the roles of such actions are implemented
as methods of these objects (action is an object; role
is a method of this object). Different approaches for
implementing CA actions can be found in [19)].

The code for the consumer role of the GammaAction
class is shown below. As shown in Figure 6, the con-
sumer first receives an integer from each of the two
producers. After the consumer has received both num-
bers, it sums them up and then stores the result in its
local multiset. If anything goes wrong during the con-
sumer activity, then an exception is raised and stored
in the exception variable (see catch (Exception e)
block below). Before the consumer can finish its ac-
tivity, it executes the finally block. In this block it
notifies the CA action manager about any exception
that has been raised during the execution of its code
by calling the exceptionResolution method. If the
consumer has not raised any exception, then the call-
ing of the exceptionResolution method is used by
the CA action manager to notify the consumer about
possible exceptions raised by the producers. If no-one
has raised any exception in the GammaAction, then the
consumer can finish its execution. In the code below
we also show how the exception ReactionException

would be handled, i.e. the two integers are stored in
the queue of the participant performing the consumer
role. Any exception raised during the handling of an
exception will cause the CA action mechanism to raise
a failure exception to the enclosing context [8].

private void consumer(Participant p) throws Exception {
Exception exception = null;
Integer numl, num2;

int sum;

try {
numl = (Integer) piChannel.receive();
num2 = (Integer) p2Channel.receive();

sum = numl.intValue() + num2.intValue();
p.remoteQueuePut (sum) ;
} catch (Exception e) {
exception = e;
} finally {

try {
exceptionResolution(exception);

} catch (ReactionException e) {
p.remoteQueuePut (numl);
p.remoteQueuePut (num2) ;

} // handling for other ezceptions

The code for the firstProducer role of the
GammaAction class is shown below. Notice that any
exception raised in the role, or in the GammaAction, is
dealt with in the same way as in the consumer role.

private void firstProducer(Participant p) throws
Exception {

Exception exception = null;

int num;

try {
piChannel.send(new Integer(p.remoteQueueGet()));

} catch (Exception e) {
exception = e;
} finally {

try {
exceptionResolution(exception);

} catch (ReactionException e) {
// do nothing.
} // handling for other ezceptions

}
}

3.4.1. Contract. Contract ¥prog, corresponding
to the Java program, is made of four formulae corre-
sponding to the four formulae of contract ¢ri. The
syntax of the formulae is slightly different since it is
adapted to the program. The creation of the system is
represented by the start of the main method of the pro-
gram (provided by Class CASchedulerServer). The
creation of instances is noted by i.ClassName. For in-
stance instruction: p; = new ParticipantApplet() is
noted in HML by p;.ParticipantApplet. The interac-
tion with the user by means of the GUI is expressed by

means of the Java action method that intercepts the
events (e.g. a user entering an integer in a TextField).
In HML it is noted with the name of the corresponding
GUI component.

YProg, = <CASserver.main><p;. ParticipantApplet>
<p2.ParticipantApplet><pi. action_newNumber(z)>
<p2.action_newNumber(j)><p2. action_result(: + j)>

YProg, = <CASserver. main><pi. Participant Applet>
<p2.ParticipantApplet><p;. action_.newNumber(z)>
<p2.action_newNumber(j)>
<p1.action_Finish><p>. action_result(z + 5)>

YProgs =% (<q3-get(i + j)> + (<g3. get(i)><qg3-get(j)>))

YProg, =% —((<q1.isEmpty><g2.isEmpty><gs. isEmpty>) +

(<q1.isEmpty><gqz.isEmpty>
<q3. get(1)><gs.isEmpty>))

where:

¥ = <CASserver. main><p. Participant Applet>
<p2.ParticipantApplet><ps3. Participant Applet>
<q1.PQueue><g2. PQueue><g3. PQueue>
<TP;.Thread(p1, q1)><TP>. Thread(p2, ¢2)>
<T'C.Thread(SC, ps, g3)><q1.put(i)><g2. put(j)>
<GA.GammaAction><GA.inAction(T Py, Producer)>
<GA.inAction(T Ps, Producer)>
<GA.inAction(T'C, Consumer)> .

This contract is actually satisfied by the program, since
it relies on several properties guaranteed by the CA ac-
tions (ACID property, the recovery when the Consumer
cannot make the sum, and the fact that no number is
lost during the computation). This contract includes
(modulo renaming) contract ¢r1. Therefore, the Java
program is a correct implementation of CO-OPN/2
specification R1, and hence of the initial specification.

4. Related Work

Formal methods traditionally use a single formal
specification language for expressing both the require-
ment specifications, and the system specifications.
When the chosen formal specification language is a log-
ical language, the specification task is more difficult,
but the verification task is reduced to showing logi-
cal implications. When the chosen formal specification
language is model-oriented, specifications are more eas-
ily and powerfully expressed, but the verification task
is difficult and usually follows an informal way (e.g.
simulation).

In order to bring a solution to the problem of
the choice between a model-oriented and a property-
oriented formal specification language, some model-
oriented specification languages have acquired a
property-oriented specification language. This is

known as the two languages framework described,
among others, by Pnueli in [17]: a logical language is
used for expressing requirements, and a model-oriented
language is used for describing models or implementa-
tions. In addition, the logical language is also used for
translating the system specification into logical prop-
erties, and the verification task is then realized in the
logical framework. Among others, the VDM** [16]
language and the temporal Petri nets [14] use this ap-
proach. The methodology proposed in the current pa-
per follows the two languages framework. Its particu-
larity is that it goes a step further, since the contracts
explicitly point out the essential properties to be veri-
fied.

The verification that a program is correct wrt sys-
tem specifications is a problem similar to the one of
verifying that system specifications are correct wrt the
requirement specifications. Thus, the use of a logical
language in addition to a programming language should
help the verification task. In the last decades, only few
attempts have been undertaken to consider the idea
of integrating assertions into programs. More recently,
Meyer [15] has promoted this idea, and even goes a step
further. Indeed, he advocates that, in order to face
the problem of correctness, every program operation
(instruction or routine body) should be systematically
accompanied by a pre- and a post-condition.

5. Conclusions

This paper presents a methodology for developing
distributed programs based on the stepwise refinement
of formal specifications. It advocates the use of specific
temporal properties for guiding and verifying refine-
ment steps. In addition, for dependable applications, a
design phase using the CA action concept is promoted.

The complete development of a small system is de-
scribed: starting from informal requirements a Java
implementation is reached, and every step is formally
proved.

We think that the combined use of CA action de-
sign and CO-OPN/2 specification makes it easier to
prove formally that the system has certain properties.
Indeed, CO-OPN/2 specifications providem a mathe-
matical framework, and each CA action guarantees a
set of properties. These can be used to construct the
proof of global system properties.

The methodology presented here, in the special case
of the CO-OPN/2 language, is part of a more gen-
eral theory [12] that adds a contract (made of logi-
cal properties) to a model-oriented formal specification,
and that enables to prove the correctness of refinement
steps formally.

Further research will consider:

e a general definition of semantics for the CA ac-
tion model by giving a denotational semantics of
a core CA action language to CO-OPN/2 formal
specification [18];

o the verification of distributed systems designed us-
ing the CA actions by applying the test method
defined for CO-OPN/2 [5];

e the Hennessy-Milner logic used to express the con-
tracts is a very simple logic that enables to build
tools for verification easily. However, it lacks ex-
pressivity, since any invariant needs an infinite set
of formulae to be described. We are now consider-
ing improving this logic with some temporal oper-
ators, or even using another logic in the framework

of CO-OPN/2;

¢ this paper only shows proofs 'made by hand’; au-
tomated verification, and construction of contracts
are being investigated.

6. Acknowledgements

We are grateful to Robert Stroud at the University of
Newcastle upon Tyne for his fruitful comments. This
research has been supported by ESPRIT Long Term
Research Project 20072 on “Design for Validation”
(DeVa) (http://www.newcastle.research.ec.org/deva).
Avelino F. Zorzo is supported by CNPq (Brazil) under
grant number 200531/95.6.

References

[1] J.Xu, B. Randell, A. Romanovsky, C. Rubira, R. J. Stroud,
and Z. Wu: ‘Fault tolerance in concurrent object-oriented
software through coordinated error recovery’, 25th Inter-
national Symposium on Fault-Tolerant Computing, 1995,
Pasadena, USA, 1995, pp. 450-457.

[2] B. Randell: ‘Systems structure for software fault tolerance’,
IEEE Transactions on Software Engineering, 1975, 1(2) pp.
220-232.

[3] J. Gray, and A. Reuter: ‘Transaction processing: concepts
and techniques’, Morgan Kaufmann Publishers, San Mateo,
CA, USA, 1993, 2nd edn.

[4] O. Biberstein, D. Buchs, and N. Guelfi: ‘CO-OPN/2: A
concurrent object-oriented formalism’, in Proc. Second IFIP
Conference on Formal Methods for Open Object-Based Dis-
tributed Systems (FMOODS). Chapman and Hall, 1997.

[5] C. Péraire, S. Barbey, and D. Buchs: ‘Test selection for
object-oriented software based on formal specifications.’
Second Year Report of Esprit Long Term Research Project
20072 “Design For Validation” (DeVa), Department of
Computing Science, University of Newcastle Upon Tyne,
1997 (also in PROCOMET"98).

[6] J.-P. Banitre, and D. Le Métayer: ‘Gamma and the chem-
ical reaction model: ten years after’, in J.-M. Andréoli, C.
Hankin, and D. Le Métayer (Eds): ‘Coordination Program-
ming: Mechanisms, Models and Semantics’, IC Press, 1996.

(7]

(10]

(11]

(12]

(13]

(14]

(19]

M. Wirsing: ‘Algebraic specification’, in J. Van Leeuwen
(Ed.): ‘Handbook of Theoretical Computer Science, volume
B: Formal Methods and Semantics’, North-Holland, Ams-
terdam, 1990.

B. Randell, A. Romanovsky, R. J. Stroud, J. Xu, and A. F.
Zorzo: ‘Coordinated atomic actions: from concept to imple-
mentation.” Technical report TR 595, Department of Com-
puting Science, University of Newcastle upon Tyne, 1997.
(http://www.cs.ncl.ac.uk/research /trs/papers/595.ps)

R. H. Campbell, and B. Randell: ‘Error recovery in asyn-
chronous systems’, IEEE Transactions on Software Engi-
neering, 1986, 12(8), pp. 811-826.

P. A. Lee, and T. Anderson: ‘Fault tolerance: principles
and practice’, Springer-Verlag, Berlin, 1990.

G. Di Marzo Serugendo, N. Guelfi, A. Romanovsky, and
A. F. Zorzo: ‘Formal development and validation of the
DSGamma system based on CO-OPN/2 and Coordinated
Atomic actions.” Technical Report 98/265, Software Engi-
neering Laboratory, Swiss Federal Institute of Technology,
Lausanne, Switzerland, 1998.

G. Di Marzo Serugendo: ‘Stepwise Refinement of Formal
Specifications Based on Logical Formulae: from CO-OPN/2
Specifications to Java Programs’, Swiss Federal Institute of
Technology in Lausanne, Phd thesis no 1931, 1999.

J. Gosling, J. Bill, and G. Steele: ‘The Java language spec-
ification’ (The Java Series, Addison-Wesley, Massachusetts,
1996).

M. Felder, D. Mandrioli, and A. Morzenti: ‘Proving Prop-
erties of Real-Time Systems Through Logical Specifications
and Petri Net Models’, IEEE Transactions on Software En-
gineering, 1994, 20 (2), pp.127-141.

B. Meyer: ‘Object-Oriented Software Construction’, Pren-
tice Hall, 1997.

K. Lano: ‘Formal Object-Oriented Development’, Springer-
Verlag, 1995.

A. Pnueli: ‘System Specification and Refinement in Tempo-
ral Logic’, LNCS 652, pp. 1-38, 1992.

J. Vachon, D. Buchs, M. Buffo, G. Di Marzo Serugendo, B.
Randell, A. Romanovsky, R. Stroud, and J. Xu, ‘COALA -
A Formal Language for Coordinated Atomic Actions’, DeVa
Third Year Report, Deliverables: Part 2 (Papers), Decem-
ber 1998.

A. F. Zorzo: ‘Dependable Multiparty Interactions: A
Case Study’, 29th Conference on Technology of Object-
Oriented Languages and Systems - TOOLS29-Europe,
Nancy, France, June, 1999.

