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Abstract

The need for flexible protocol stacks in communication software,
instead of static, predefined protocol stacks, has been more and
more asserted these last years. We present here a new envi-
ronment, COMSCRIPT, which addresses the implementation of
flexible protocol stacks directed by the application. COMSCRIPT

is a new programming language, derived from POSTSCRIPT,
which follows an interpretative approach to perform protocols.
COMSCRIPT is also an interpreter, that lets execute concurrently
event driven processes, whose communications occur, either syn-
chronously or quasi-asynchronously, through synchronization
points linked to gates. This paper explains these concepts and
shows that the COMSCRIPT language is suited for the implemen-
tation of communication protocol entities. It also shows how the
COMSCRIPT environment uses these concepts to achieve dynamic
protocol stack configuration.
Keywords: computer communications, protocol implementa-
tion, protocol stack configuration, COMSCRIPT.

1 Introduction

Computer communication software is currently based on the
classical OSI [Rose 90] and TCP/IP [Comer 86] models. These
models structure the communication software linearly in lay-
ers, forming a protocol stack. Each layer is responsible for
a predefined set of communication services. For two hosts to
communicate, they must have identical preconfigured protocol
stacks.

The whole protocol stack is seen by an application as a black
box capable of realizing a certain service. This means that an ap-
plication can neither modify the protocol stack,nor configure it to
meet its own requirements. As different applications have differ-
ent communication requirements, these classical frameworks for
computer communication software seem very restricted. More-
over, they are very rigid due to the fact that identical preconfig-
ured stack must exist in the two communicating hosts.

More interest is now given to the appropriate usage of ‘useful’
protocols; i.e, their configuration to achieve the required com-
munication service efficiently. Thus the approach of static, pre-
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configured stacks is increasingly questioned and new approaches
have been proposed:

� Inside existing operating systems, a need has been identified
to separate communication software more clearly from the
OS’s kernel, the STREAMS concept represents an important
example of this approach [Strea 90].

� Dynamically adaptable protocol stacks are proposed as a
means to overcome the problems of interworking of differ-
ent protocol architectures [Tschu 91].

� A highly layered stack architecture and the use of both ‘mi-
cro protocols’ and ‘virtual protocols’ have been devised and
implemented, showing similar or even better performance
than monolithic protocol stacks [OMall 91].

� In the area of high speed networking, the assembly of pro-
tocol entities in a entire communication stack based on
an application’s requirements is proposed as a means to
overcome the performance bottleneck of protocol software
[Plage 92].

All these approaches to communication protocol implemen-
tation go beyond the classical reference models which assume
a restricted and fixed number of layers through all implemen-
tations; they surely bring some degree of flexibility. Section 5
presents and discusses current work in this area and shows how
it relates to COMSCRIPT.

The COMSCRIPT approach brings more flexibility by allowing
an application to dynamically (re)configure an entire protocol
stack to its specific needs. An application can not only choose
what services the protocol stack has to offer, but the application
can also specify how the protocol stack can best fulfill its needs.
For example, an application can download a whole protocol stack
into a remote host before starting the data exchange.

The COMSCRIPT philosophy is based on the two following
principles:

1. the possibility of protocol interpretation instead of restric-
tion to precompiled protocol functionalities;

2. the application is able to configure the best protocol stack.

The interpretative aspect of COMSCRIPT allows then an appli-
cation to dynamically configure the protocol stack if necessary.



Section 2 gives an overview of COMSCRIPT; section 3 dis-
cusses interprocess communication in COMSCRIPT; section 4
shows how COMSCRIPT achieves protocol stack configuration
and we conclude this article in section 6 after discussing re-
lated work in section 5. We give in the appendix an ex-
ample of COMSCRIPT code showing a simple protocol stack
(re)configuration.

2 An overview of COMSCRIPT

We named our environment COMSCRIPT, by analogy with
POSTSCRIPT1. COM stands for computer communications to
stress the fact that COMSCRIPT is a language designed for net-
work programming. SCRIPT stresses two things (a) the way
protocol entities can be implemented: the language allows a
simple, rapid and incremental implementation of protocol enti-
ties similar to shell scripts and (b) the way protocol stacks are
(re)configured using an interpreted language.

As we said before, COMSCRIPT is both a language and an
executing environment.

� The COMSCRIPT language is derived from POSTSCRIPT

[Adobe 90]. Just like POSTSCRIPT is used for page descrip-
tion and for printing, COMSCRIPT is intended to be used for
protocol implementation and stack (re)configuration. Being
derived from POSTSCRIPT, COMSCRIPT inherits its simple
execution model, its syntax, and some of its data structures
and operators. All POSTSCRIPT graphics related operators
have been removed and new operators have been added to
support concurrency and interprocess communication.

� The COMSCRIPT environment is an interpreter executing
processes written in the COMSCRIPT language. In the
COMSCRIPT environment, a communication protocol entity
can be implemented as a process; but a COMSCRIPT process
can also be used to implement a whole protocol stack. Both
low level (e.g ARP) and high level (e.g FTP) protocols have
been implemented in COMSCRIPT.

Applications which need to communicate with others should
access all the communication functionalities through the
COMSCRIPT environment. To achieve this, the COMSCRIPT en-
vironment should interface with both (a) the host’s Operating
System—to get access to the communications facilities imple-
mented in the OS—and (b) the applications—to allow them to
(re)configure the communication facilities as needed. The cur-
rent implementation of COMSCRIPT runs in user space; actually,
the application runs on top of the COMSCRIPT environment and is
seen as an extension to it. Figure 1 shows (a) the way COMSCRIPT

should interface with the OS and the applications and (b) the cur-
rent software structure within a host running COMSCRIPT.

In this section, we present the basic concepts underlying
COMSCRIPT; the first part is concerned with the process hier-
archy adopted, the second presents how events are signaled to
a process with the synchronization points, the third part covers
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Figure 1: The software structure within a host running
COMSCRIPT.

the configuration links between processes and the notion of gate,
the fourth part explains how events are handled by processes.
Finally, the last part describes the access to the world outside
COMSCRIPT using device drivers.

2.1 Processes hierarchy

As stated before, COMSCRIPT allows multiple processes to exe-
cute concurrently. COMSCRIPT enforces a hierarchical structure
on processes; each process other than the RootProcess (the first
process created by the environment itself) is explicitly created by
another process executing the fork operator. Adequate operators
are provided to allow a process to manipulate a whole subprocess
tree.

2.2 Synchronization Points and Guards

A COMSCRIPT process can be seen as an agent with attached
synchronization points called s-points which allow it to interact
with internal and external events. These s-points can be seen as
sensors by which events are signaled to the process. Each event
can convey one of the following meanings:

� a requested data exchange, with another process or with the
outside world, has occurred;

� a requested synchronization with another process has oc-
curred (no data exchange);

� the timeout period requested by the process has elapsed.

S-points are either external or internal. External s-points deal
with events external to the process, those in which a process
other than a child process is involved. Internal s-points are only
concernedwith events which result from the interactions between
the process and its children or the COMSCRIPT environment.

Each s-point has associated to it a guard. This is a flag which
determines whether the s-point is activated or not. Only ‘acti-
vated’ s-points can trigger events; all others are ignored by the



COMSCRIPT environment. This mechanism allows a process to
choose at any moment the set of events to which it wants to
respond.

2.3 Gates and Links

Processes, that want to communicate, must be connected. These
connections are established of links between s-points and gates.
A gate implements a queue of length over or equal to zero.
In a communication between two sibling processes, the parent
process is responsible for correctly configuring communications.
The parent links an s-point of one of the children to a gate. It then
links an s-point of the other child to the same gate. Once this
operation is completed, the children areable to either synchronize
their execution or exchange data.

Figure 2 shows a configuration link between two processes � 1

and � 2, linked in order to exchange data. The s-point /!out of
� 1 is linked to gateg, the s-point/?in of � 2 is linked to the same
gate g. � 1 is offering data, while � 2 is accepting data. Note

handler
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/!out /?in

P1 P2

P gate
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Figure 2: Processes linked through s-points and gates.

that two processes may be involved in a communication, without
being aware of their partner. Only the parent process knows the
configuration links between its children, and may change them
when it wants.

2.4 Event driven programming

Another view of a COMSCRIPT process is that of a finite state
machine (FSM) [Hopcr 79]. COMSCRIPT processes are event
driven. This is to say that most of the time, a process is blocked
waiting for an event to occur on one of its s-points; when this
happens, the process is woken up to handle the event and subse-
quently goes back to a wait state. A process is thus composed of
two logically distinct parts:

� an initialization code which is executed once after the pro-
cess is created, and which is responsible for the creation of
s-points;

� a number of event handlers: an event handler being the
code associated to an s-point and which is executed by
the process to handle an event occurring on the s-point.
Thus, handling an event is synonymous with executing or
activating the event handler associated to the s-point where
the event occurs.

For any running process, only one event can occur at a time, and
thus only one event handler is active inside a process. Moreover,
while executing the event handler, the process is allowed to block
on some other events if it wishes to do so. Figure 3 shows the
different states of a COMSCRIPT process.
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Figure 3: The states of a COMSCRIPT process

This process model is well suited to the implementation of
FSMs which themselves are used to describe and to implement
a large number of computer protocols. Like a COMSCRIPT pro-
cess, a computer communication protocol entity is waiting for
an incoming service request. The request is handled and the
protocol entity returns to a wait state.

2.5 Access to the outside world

“Device drivers” allow COMSCRIPT processes to synchronize
their execution and to exchange data with the “world” outside
the COMSCRIPT environment. All device drivers are accessed
in a uniform way: they are seen as “external” processes with
synchronization points attached to them and accessible to pro-
cesses running in the COMSCRIPT environment. Instances of
these synchronization points are dynamically created on demand
by a COMSCRIPT process.

Actually a device driver is seen as an array of s-points each
implementing a defined functionality of the driver. A device
for accessing the file system for example, would contain among
others, an s-point for opening a file, and another for reading
from the opened file. Reading the file is only possible if the file
is already open. This means that the synchronization with the
s-point responsible for reading from the file would be possible
only after the synchronization with the s-point responsible for
opening the file.

Although some devices are likely to be implemented in every
COMSCRIPT environment, such as devices for accessing the file
system or the system console, the number of devices available
and the complexity of the services they offer can vary greatly
from one environment to another. The DeviceDictionary is a
global data structure containing all the device types known in
the system. A COMSCRIPT process can define and add new
devices to the DeviceDictionary, in order to make them usable
by other processes. Similar to POSTSCRIPT fonts, each device
has a name which uniquely identifies it.



Currently, our COMSCRIPT environment contains devices ac-
cessing:

1. the file system for creating, reading and writing files and
directories;

2. the connectionless sockets for datagrams;

3. the connection oriented sockets for the implementation of
client processes and the connection oriented sockets for the
implementation of server processes;

4. the NIT device for access to the raw Ethernet on SUN.

3 Interprocess Communication in
COMSCRIPT

We described above the COMSCRIPT components necessary to
perform interprocess communication (IPC). These elements,
s-points and gates, when correctly linked, establish channels
between processes. The exchanged data can then transit through
these channels. This same means allows for the synchronization
of processes. Let us now see, exactly how data moves from one
process to another process, and how two processes synchronize
their execution.

This section first presents how synchronous and asynchronous
communications are realized, it then explains the IPC mecha-
nism, i.e. exactly how a synchronization or a data exchange is
performed, and finally some additional considerations concern-
ing this IPC are presented.

3.1 Synchronous and Asynchronous IPC

Beyond the task of linking s-points, a ‘gate’ contains a queue
which is used to buffer data exchanged between processes. When
pure synchronization or synchronous data exchange is needed,
a gate of zero length queue is used. On the contrary, when
asynchronous data exchange is desired, a gate of non-zero length
queue should be employed.

3.2 How does interprocess communication take
place?

After the preparatory work has been done, i.e. complementary
s-points linked through an appropriate gate, the two processes
can then request to be synchronized or to exchange data through
these s-points.

If a gate of zero length queue is used (case of pure synchro-
nization or synchronous data exchange), the first process to ex-
ecute its synchronization request is blocked by the COMSCRIPT

environment until the other process executes the equivalent syn-
chronization request. Then a rendez-vous takes place between
the two processes and if requested, data is moved from the ‘out-
putting’ process to the appropriate buffer in the ‘inputting’ pro-
cess. The two processes then resume their execution; this is done
by activating in each process the event handler associated to the
s-point used to catch this event.

If on the contrary, a gate of non zero length queue is used,
the gate buffers the data to be exchanged. In this case, the
‘inputting’ process is blocked only if the gate queue is empty;
and the ‘outputting’ process is blocked only in the case of a
full gate queue. In this way, some degree of asynchronism is
achieved.

3.3 The flexibility of the COMSCRIPT interprocess
communication model

We have so far presented how basic interprocess communication
is realized in COMSCRIPT. The power and the flexibility of this
interprocess communication model lie in the following aspects:

1. The possibility to request synchronization on multiple
events: Multiple s-points can be involved in a synchro-
nization request or data exchange request. If one or more
events can be realized when the process request is han-
dled by the COMSCRIPT environment, one of these events is
picked up in a non deterministic way and is returned to the
requesting process. The other events are discarded. If on
the contrary, the requesting process is blocked because none
of the events can be immediately realized, the first event to
occur later on is transmitted to the requesting process and
the others are discarded. This functionality is similar to that
offered by the select construction in Ada programming lan-
guage [Cohen 86] with the difference that the COMSCRIPT

select is symmetric, i.e. it can handle both data input and
data output requests, while the Ada select can handle only
data input requests (accept).

2. The possibility to link more than two s-points to the
same gate: There is no one-to-one correspondence be-
tween s-points. An s-point can be linked to only one gate,
but it is common to have multiple s-pointslinked to the same
gate. In this case, an s-point is logically seen as ‘attached’
to many others. This configuration is used in COMSCRIPT

to synchronize one process or to allow it to exchange data
in a non deterministic way with one process belonging to a
group of processes. With this configuration no “broadcast”
is achieved: COMSCRIPT does not allow either a synchro-
nization or a simultaneous data exchange involving more
than two processes. Figure 4 shows three s-points linked
through the same gate. A data value outputted by � 1 is
input by either process � 2 or � 3; the same value is never
read by the two processes.

3. Control over the communication patterns of child pro-
cesses: In COMSCRIPT, direct interprocess communication
is restricted (a) between a process and its parent or chil-
dren and (b) between children of the same process. In each
case, a process is responsible for providing the necessary
gates and also for realizing the appropriate links between
the s-points of its children and the gates. This gives a
COMSCRIPT process complete control over the interactions
of its children. The process can dynamically alter the dif-
ferent s-point-gate links used by its children without the
children being aware of that change. This restriction of
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Figure 4: Multiple s-points linked through the same gate.

direct interprocess communications to some processes does
not impose a great penalty on COMSCRIPT for the following
reasons:

(a) In computer communication software, each layer of
a protocol stack usually communicates only with the
neighbor layers using the encapsulation mechanism.

(b) Data exchanges with other processes (which do not
belong to the restricted set of processes with which
direct interaction can occur) can be done using a chain
of intermediary data exchanges.

(c) COMSCRIPT offers a bypass mechanism by which a
process can delegate to a child the handling of events
occurring at one of its s-points. Figure 5 shows a chain
of bypassed s-points. Process � 1 delegates the han-
dling of events occurring at s-point /?in1 to its child

� 2 which itself delegates the handling to its own child
� 3. In this way, s-point /!out, belonging to P, and
s-point /?in, belonging to � 3, are linked through the
gate. Now a communication can take place between
those two processes, without the intervention of the
intermediary processes ( � 1 and � 2).

P3P2P1P

/?in

/!out

bypass

/?in1

Figure 5: A chain of bypass between s-points /!out and /?in

4 From basic concepts to stack
(re)configuration

In COMSCRIPT, the “gate” concept plays a central role in the
reconfiguration process. The gate is the stable part of a link

between processes through their s-points.
When two sibling processes communicate (synchronize their

execution or exchange data), they are linked through a gate be-
longing to their parent. None of these two processes is aware of
its partner in the communication under way. The parent process
can configure the link of its children i.e. attach new s-points to
the link or detach some of them in a completely transparent way
to its children. The parent process can even replace one of the
partners in the communication without the other being aware of
that fact. Figure 6 shows a dynamic reconfiguration of a commu-
nication link. An event is triggered by s-point /?in belonging
to process P, and its handler is executed. First, process P breaks
the link between process � 1 and � 2 by detaching the s-point of

� 2 from the gate. Then, P links � 1 with process � 3. This sim-

b) after link reconfigurationa) before link reconfiguration

/?in

P

/?in

P

P1 P2 P1 P2

P3P3

Figure 6: A dynamic reconfiguration of a communication link
of process � 1 by its father P

ple reconfiguration mechanism is the basis for building flexible
protocol stacks [Tschu 91].

A simple example will show how a COMSCRIPT process can
configure its local protocol stack to meet its own requirements; a
second one will present how configuration of a remote protocol
stack is achieved.

4.1 Local stack (re)configuration: A simple ex-
ample

Building a flexible protocol stack is a simple and straightforward
task in COMSCRIPT as the following example illustrates. We will
build a protocol stack where protocol entities can be dynamically
added, removed or replaced by others in an efficient way.

Our example mimics and extends the UNIX SYSTEM V
STREAMS concept. The STREAMS approach allows a user to
customize a protocol stack by pushing and/or popping the ade-
quate packet processing modules on the stream head. A number
of such modules (example buffering module, filtering module)
are compiled in the kernel. They all have a uniform interface. In
each module there is a two way flow of information. An up flow
to move data and control information from the network interface
(STREAMS bottom) to the application which interfaces with the
stack at the STREAMS head; and a down flow to move informa-
tion in the opposite direction. Using a common and uniform
interface, makes it possible to either add or remove a module in



a transparent way to the peer modules since the interface they
use to exchange data remains stable.

In our COMSCRIPT example, the user is not limited to push/pop
operations, he can add or move any module at any level of the
stack. Our protocol stack is represented as an array of processes
controlled by a stack handler; each process representing a proto-
col entity. The stack handler interfaces with the application and
carries out on the stack the operations requested by the applica-
tion. All the processes share the same interface: four s-points.
/?upin and /!downout to move information towards the
bottom of the stack, and /?downin and /!upout to move
information to the top of the stack. A dictionary, let us say,
/stackgates, associating a protocol entity with an array of
gates linked to the module, is maintained by the stack handler.

The first operation is a reset operation: it is requested
through the /?reset s-point, in order to initialize the stack
by specifying the device driver which is used to connect the
stack to the network. The reset operation opens the specified
device and links it through two gates to the application inter-
face. The application interfaces with the stack modules by two
s-points, one for inputting /?in and the other /!out for out-
putting. The gates are put in the /stackgate dictionary to
reflect the current links.
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/?reset

Application
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Handler

{ M1 1 insert}

Initialisation First Module Inserted

Figure 7: Initialization of a protocol stack and pushing of the
first layer

Theaddoperation allows the addition a module onto the stack.
A process having the required interface is supplied, together with
the level in the stack where the module it implements is to be
inserted. The stack handler creates the necessary gates to link
the new module. Figure 7 shows the initialization of the protocol
stack and the adding of a first module M1. In figure 8 module M2
is added on top of the protocol stack and in figure 9 the middle
module of a three layer stack is removed.

A remove operation is indicated to the stack handler through
an event occurring on its /?remove s-point. The position of
the module to be removed is specified. The stack handler breaks
the links of the module, removes it from the stack, reconfiguring
as appropriate the links of the neighbor modules and updating
the /stackprocess and /stackgate data structures.

While in the STREAMS approach, a user is limited by the num-
ber of available modules compiled in the kernel, the number of
different usable modules is not limited in COMSCRIPT. Indeed,
the modules are dynamically created when needed and must not
be preconfigured in the kernel. This is possible because the mod-
ules are defined in terms of a COMSCRIPT procedure that defines
the module’s behavior. Thus our example extends the STREAMS
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Figure 8: Pushing a layer on top of the protocol stack
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Figure 9: Removing the middle layer of a three layer stack

approach by allowing insertions and deletions of protocol enti-
ties at each level of the protocol stack and brings more power
because the number of configurable entities is unlimited.

4.2 Configuration of a remote protocol stack

Now that we have seen how simple the reconfiguration of a
local protocol stack is, let us see how a protocol stack resid-
ing in a remote host can be configured. To achieve this, the
remote host must also be running a COMSCRIPT environment.
COMSCRIPT allows an application running in one machine to
access a COMSCRIPT environment running in another host. The
remote COMSCRIPT environment is used as a server to which the
application can send requests. Each request is itself COMSCRIPT

code which is executed by the server when it reaches its destina-
tion.

Using the configuration mechanism presented above an appli-
cation can configure a remote protocol stack. It even becomes
possible to realize a data exchange between two hosts that do
not have identical preconfigured protocol stacks. The following
example shows how this can be done.

An application running on host A establishes a communica-
tion with a COMSCRIPT server (CS) on the remote machine B
by opening two connections, one for control information and the
other for data exchange. The control connection is used by the
application to send requests to the remote server. The applica-



tion then downloads its own code to host B using the control
channel. The execution of this code in the remote host results in
the creation of a protocol stack which can then be used by the
application to exchange data with host B.
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Figure 10: Configuring a remote protocol stack

The remote stack is controlled by the remote server which
accepts requests from our application. Whenever the application
needs a stack reconfiguration, it sends the appropriate request
to the server, i.e. the code necessary to carry out the desired
reconfiguration. The server initiates the reconfiguration in the
remote host, while the application applies the same reconfigura-
tion process to its local protocol stack (see figure 10).

5 Related Work and Current State

With the development of high-speed networks and distributed
multimedia, more and more applications will be developed
having different and sometimes contradictory requirements and
needs. Developing a specialized, dedicated and optimized pro-
tocol for each application or class of applications is a complex
task and surely not a satisfactory solution to this problem. The
configuration of ‘useful’ protocols for their efficient use is thus
given more and more attention: many research proposals have
investigated (many numerous studies propose) an approach of
general and flexible light-weight protocol entities which must be
configured into a protocol stack or protocol graph which realizes
the desired communication service. The proposed solutions vary
greatly in the way that configuration can be done.

5.1 Related Work and Discussion

O’Malley and Peterson [OMall 91][OMall 92] propose the con-
struction of a protocol graph, implemented on x-kernel, from a

set of micro and virtual protocols. The protocol graph represents
the set of protocols which can be derived from the composition
of the different micro and virtual protocols. The actual protocol
to be used is determined at the initialization time of the com-
munication service, by choosing the most efficient ‘path’ in the
protocol graph, i.e, the path which best fulfills the requirements
of the application. This approach brings a limited degree of
flexibility, but no further reconfiguration is possible after the set
up.

The UNIX System V STREAMS approach [Strea 90] is another
operating system approach which offers a framework for the
composition of protocols. Protocol modules can be dynamically
pushed/popped to/from a protocol stack at run time to realize the
desired communication service. The main goal of this approach
is to simplify protocol implementation; its ability to dynami-
cally push/pop protocol modules at run time can be used for the
configuration of a protocol stack.

Plagemann and Plattner [Plage 93] use a three layer approach
in Da CaPo. The middle layer is responsible for configuring
a protocol stack which meets the requirements of an applica-
tion, using the resources available in the host and the network.
A negotiation protocol allows the two communicating hosts to
choose, according to the application requirements and resources
available in each host, a common protocol for data exchange.
If the monitor embedded in the middle layer detects a degrada-
tion of the quality of service beyond the limits specified by the
application, the reconfiguration process is initiated again, and
another protocol stack is chosen to ensure that the application’s
requirements are always satisfied. The bottom layer called the T
layer represents the existing and connected transport infrastruc-
tures and is determinant in the number of protocol graphs which
can be configured, while the approach of O’Malley and Peterson
presented above is constrained to only one protocol graph.

In [Plage 94], Plagemann and al. propose CoRA, a heuristic
for the stack reconfiguration in Da CaPo. This heuristic is based
on the classification of protocol entities and their resource usage.
The aim of the approach is to ensure that the requirements of the
application are met in a very fast way.

All these approaches require that the same software exists in
the two communicating hosts. They allow, to different degrees,
the hosts to combine the existing software in the most efficient
way. Moreover, the constructed protocol graph/stack remains
a black box offering a desired service with the required quality
for the application; however, there is no way the application can
reconfigure the protocol stack itself, should it wish to change its
communication requirements. All the work is done in a totally
transparent way to the application, without interaction with it.

Among all these approaches, the CoRA/Da CaPo one seems to
be the most flexible implementation of flexible protocol stacks.
Indeed, it allows the building of a protocol stack which meets
the requirements of an application and ensures that these require-
ments remain satisfied even if the availability of network or host
resources degrades. However, some aspects of the implementa-
tion considerably restrict its power and its flexibility:

� All selectable protocol modules must be precompiled and
preinstalled in the host: the number of possible protocol



combinations is thus limited. Moreover, adding a new pro-
tocol entity can not be done at running time. The module
must be compiled, its“quality” must be evaluated in some
way, and installed to be accessible by the configuration
system.

� All the configuration work is done by the middle layer
having as a consequence that the configuration process is
very complex. This single layer contains the connection
managementmodule, the resource managementmodule and
the heuristic module. All these modules are complex and
interact in a complex way to achieve stack reconfiguration.

� The approach detects what are the application’s require-
ments and attempts to offer in, a transparent way, a service
which fulfills those requirements. To achieve this, a sin-
gle negotiation protocol and one heuristic mechanism are
implemented in the middle layer of Da CaPo. Thus, it
becomes difficult to extend this approach to cope with all
possible applications. There is no way to specify the use of
an alternative ‘heuristic function’ nor the possibility to use a
different negotiation protocol in the configuration process.

COMSCRIPT, on the other hand, tries to avoid transparency. In-
deed COMSCRIPT uses a quite different approach allowing the ap-
plication to “explicitly” configure itself its communication needs
as necessary. The application uses the power of the COMSCRIPT

programming language to “do” the configuration of the protocol
stack “how” it likes. There is no fixed protocol to negotiate the
configuration process, nor the necessity for a heuristic module
to reduce the complexity of the configuration task as in CoRA.
Each application establishes its own policy for the reconfigura-
tion task, in this way, all kinds of applications can be dealt with.
Any application can implement its own heuristics for use in the
stack reconfiguration if necessary.

5.2 Current State of COMSCRIPT

We have implemented a COMSCRIPT prototype to experiment
with the concepts of flexible protocol stacks presented in this
paper. We modified the public domain POSTSCRIPT interpreter
GHOSTSCRIPT [Ghost 91]2 by removing all graphic related op-
erators. The addition of concurrency has been inspired from the
NEWS extension to POSTSCRIPT.

The aim of the current prototype is to gain confidence that we
have made the right conceptual choices. Our implementation,
being only a prototype, does not pay any particular attention to
optimization considerations. Moreover, some important aspects
which should be provided by a productive COMSCRIPT environ-
ment have not been implemented yet.

Currently, the COMSCRIPT environment runs in user space as
a single process at the OS level that we will call the COMSCRIPT

interpreter. This interpreter is responsible for the scheduling and
the synchronization of all the COMSCRIPT processes running in
the COMSCRIPT environment. All the COMSCRIPT processes can
be seen as different “threads” of the COMSCRIPT interpreter.

2We would like to thank Peter Deutsch for allowing us to use and modify the
GHOSTSCRIPT sources.

To schedule a particular process, the COMSCRIPT interpreter
switches control to the appropriate thread. The scheduling used
is non preemptive, i.e. a running COMSCRIPT process is not in-
terrupted by the interpreter until the process explicitly releases
control by executing the COMSCRIPT “pause” operator or until it
blocks waiting for an event to occur.

Although the COMSCRIPT language contains the appropriate
“hooks” to control access to devices such as the file system, the
network etc., our prototype does not use them. No validation is
done before executing COMSCRIPT code; a process executing in-
valid COMSCRIPT code enters the “error” state and is suspended
by the interpreter. This behavior is not satisfactory in a commu-
nity of COMSCRIPT environments where COMSCRIPT code can
be downloaded for execution in a remote environment.

Experiments have been carried out on communities of
COMSCRIPT environments. In such a community, a COMSCRIPT

application running in some environment can “connect” itself
to a COMSCRIPT server running in a remote host. It can send
COMSCRIPT code which will be executed by the remote environ-
ment. Two types of servers have been implemented: one type
of server listens to a TCP socket and is instantiated each time
a client tries to connect to the COMSCRIPT service. The other
server type is installed once and waits for UDP packets. Each
UDP packet is assumed to consist of COMSCRIPT code which is
simply executed. The main difference is that the second type of
server is shared by many different applications while in the first
case each client has its own server instance.

We will not close this section without a few words about per-
formance considerations. Some preliminary measurements have
been done using a simplified implementation of the FTP server
in COMSCRIPT. This implementation uses the socket interface
contained in the host’s OS. What has been measured is the over-
head introduced by the configuration process of COMSCRIPT and
the interpretation approach. A 9MB file has been transferred
(a) using the COMSCRIPT FTP server and (b) using the FTP
server provided by SunOS. The measurements showed that the
COMSCRIPT FTP server implementation has about 0.1% less per-
formance than the implementation of the FTP server of SunOS.
We conclude from this, that only little overhead is introduced by
the configuration process of the COMSCRIPT implementation of
FTP.

6 Conclusions

A primary goal of the COMSCRIPT approach is to make protocol
stacks truly configurable at run time. We expect from this ap-
proach some solutions to interworking problems: applications
can mix and match protocol functionality according to their re-
quirements and network availability. Another contribution con-
sists in the separation of a maximum of protocol logic from the
rest of an application: application specific stack extensions can
be run inside the stack instead of having to program protocols
inside the application.

With the COMSCRIPT approach, an application can interact
directly with its protocol stack by means of the COMSCRIPT pro-
gramming language. The language itself is based on POSTSCRIPT



but has been significantly extended with protocol specific con-
structions while all graphics related operators have been re-
moved. Concurrent processes have been inspired by the
NEWS [NEWS 90] extension to POSTSCRIPT. However, an event
driven approach to processes has been privileged because it al-
lows quite a direct translation between an FSM description of
a protocol entity and its implementation in COMSCRIPT. Pro-
cess interactions follow the process hierarchy and are achieved
through s-points linked to gates. Self-containing protocol enti-
ties can be implemented and can be dynamically configured to
meet the specific needs of a running communication software.

Experiments have been made with open communities of
COMSCRIPT environments. In such a community, a COMSCRIPT

application can access another COMSCRIPT environment run-
ning on a remote machine. It becomes possible to establish a
data exchange between two hosts without having similar precon-
figured protocol stacks installed (although we need a common
transport infrastructure to exchange COMSCRIPTcommands). In-
deed, an application can download COMSCRIPT code to a remote
COMSCRIPT environment which, when executed inside the re-
mote host, will configure a whole protocol stack; afterwards, a
classic data exchange can proceed between the two hosts, using
the newly created communication environment.

Our first COMSCRIPT interpreter was implemented to experi-
ment with flexible protocol stacks. Being an experimental tool,
no particular attention has been given to optimization consid-
erations, error handling and recovery. Memory management is
rudimentary and security questions have currently not been ad-
dressed. For a tool which must be used in a real environment, all
of these aspects need a more careful treatment. Nevertheless, the
environment has proved to be suitable for the implementation of
both low-level and high-level protocol entities. Successful ex-
periments carried out with the environment suggest that the right
choices have been taken at the conceptual level.
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Appendix: An Example of Simple Protocol
Stack Configuration

We give in this section an example (see Fig. 11) that mimics
the UNIX System V STREAMS approach, but in a simplified and
simultaneously more powerful form. A ‘stream’ will be modeled
by a COMSCRIPT process with a fixed set of external s-points.
The s-points /?in and /!out are used to connect a client to
the bidirectional data stream and represent the stream head. A
synchronization with /?push allows to insert a new processing
module, the / pop s-point is used to remove the module at the
top of the stack. The /?reset s-point is used to ‘ground’ the
stream: an arbitrary device may be declared to be the bottom
of the stack. The insertion of a new COMSCRIPT process which
mimics a device is also permitted.

There are evident limitations in our ‘implementation’: there
is no error treatment nor access control code built in, we also
do not support parallel streams inside our COMSCRIPT process
and multiplexors. However, the non-trivial but still compact
example given below demonstrates the flexibility we gained by
the fact that gates and s-points have become manipulable objects
in COMSCRIPT.

..

.

/?push

/_pop

/?reset

[ ]

/?in /!out

/?downin

/!upout/?upin

/!downout.

Figure 11: A Protocol Stack to Push and Pop Protocol Entities

For this example we do not use a FSM support – all event han-
dlers and guards are directly defined inside the synchronization
points. Rather than following the code line by line, we explain
the basic organization of the data structures used and expected.

� The stack of modules will be represented by an array named
/stack of fixed size. /top always points to the top
element or is -1 if the stack is empty.

� The reset operation expects as exchanged data value a
procedure, which must – once executed – return an array
with two s-points. An array with these two s-points will
be installed as the ‘device driver’ in the first stack position.
Note that this procedure can either instantiate a device or
create a new child process which acts like a device or installs
one inside etc.

� The push operation will receive as data value the ini-
tialization code of the module to be inserted. Our main
process will fork this code and create a new processing
module which must install four external s-points with the
well defined names /?upin, /!upout, /?downin
and /!downout.

� Each stack entry corresponding to a processing module is
an array with three elements: first we have the two upper
external s-points followed by the module process itself.

1 /protocolStack {
2 clear
3

4 /getchildsync { exch /syncdict get exch get } def
5 /removetop {
6 % kills the top protocol entity and
7 % reestablishes the attachement
8 i detach o detach
9 stack top get 2 get kill

10 /top top 1 sub def
11 stack top get 0 2 getinterval dup { unlink }
12 forall
13 aload pop o exch attach i exch attach
14 } def
15 /linkwithtop {
16 stack top get exch get
17 3 1 roll getchildsync
18 0 creategate exch 1 index link link
19 } def
20 /attachhead { aload pop o exch attach i exch
21 attach } def
22

23 /stack 10 array def
24 /top -1 def
25

26 /?in 1 createsync dup /i exch def begin
27 /guard false def
28 end
29 /!out 2 createsync dup /o exch def begin
30 /guard false def
31 end
32 /?reset 1 createsync begin
33 /handler { /data get exec
34 top 0 gt { top { removetop } repeat } if
35 top 0 eq { i detach o detach } if
36 dup attachhead
37 stack exch 0 exch put
38 /top 0 def
39 } def
40 end
41 /?push 1 createsync begin
42 /guard { pop top -1 gt stack length top gt
43 and } def
44 /handler { /data get fork dup wait
45 [ 1 index /?upin getchildsync 2 index
46 /!upout getchildsync 3 index ]
47 dup stack exch top 1 add exch put
48 i detach o detach
49 0 2 getinterval attachhead
50 dup /!downout 0 linkwithtop /?downin 1
51 linkwithtop
52 /top top 1 add def
53 } def
54 end
55 /_pop 0 createsync begin
56 /guard { pop top 0 gt } def
57 /handler { pop removetop } def
58 end
59 } def

The interpretation of the code above is now straight forward.
The /?reset event handler first executes the received device
driver creation procedure (line 33), then removes any remaining
old modules, and finally attaches the device to the external /?in
and/!out s-points (line 36, procedure/attachhead). Push-
ing a new module is only possible if a device driver is installed
and there is a free entry remaining on the stack (line 42). In this
case we fork the received initialization code, extract the upper
s-point and attach them to the ‘stream head’ (lines 44-49) and
link the lower s-points via newly created gates to the former top
s-points (procedure /linkwithtop).


