ComMScRIPT*: An Environment for the Implementation
of Protocol Stacks and their Dynamic Reconfiguration

Murhimanya Muhugusa, Giovanna Di Marzo, Christian Tschudin,
Eduardo Solana and Jurgen Harms
Centre Universitaire d' Informatique, University of Geneva

nmuhugusa@ui .

Abstract

The need for flexible protocol stacksin communication software,
instead of static, predefined protocol stacks, has been more and
more asserted these last years. We present here a new envi-
ronment, COMSCRIPT, which addresses the implementation of
flexible protocol stacks directed by the application. CoMSCRIPT
is a new programming language, derived from POSTSCRIPT,
which follows an interpretative approach to perform protocols.
CoMScRIPT isalso an interpreter, that |ets execute concurrently
event driven processes, whose communicationsoccur, either syn-
chronously or quasi-asynchronously, through synchronization
points linked to gates. This paper explains these concepts and
shows that the CoMm SCRIPT languageis suited for the implemen-
tation of communication protocol entities. 1t also shows how the
CoM SCRIPT environment usesthese conceptsto achieve dynamic
protocol stack configuration.

Keywords. computer communications, protocol implementa-
tion, protocol stack configuration, COMSCRIPT.

1 Introduction

Computer communication software is currently based on the
classical OSl [Rose 90] and TCP/IP [Comer 86] models. These
models structure the communication software linearly in lay-
ers, forming a protocol stack. Each layer is responsible for
a predefined set of communication services. For two hosts to
communicate, they must have identical preconfigured protocol
stacks.

The whole protocol stack is seen by an application as a black
box capable of realizing acertain service. Thismeansthat an ap-
plication can neither modify the protocol stack, nor configureit to
meet itsown requirements. Asdifferent applicationshavediffer-
ent communication requirements, these classical frameworksfor
computer communication software seem very restricted. More-
over, they arevery rigid dueto the fact that identical preconfig-
ured stack must exist in the two communicating hosts.

Moreinterest isnow given to the appropriate usage of ‘ useful’
protocols; i.e, their configuration to achieve the required com-
munication service efficiently. Thus the approach of static, pre-

*This work is supported by Swiss National Fund for Scientific Research
(FNSRS) grant 20- 34’ 070. 92

uni ge. ch

configured stacksisincreasingly questioned and new approaches
have been proposed:

¢ Insideexisting operating systems, aneed hasbeen identified
to separate communication software more clearly from the
OS's kernel, the STREAMS concept represents an important
example of this approach [Strea 90].

e Dynamically adaptable protocol stacks are proposed as a
means to overcome the problems of interworking of differ-
ent protocol architectures [Tschu 91].

¢ A highly layered stack architecture and the use of both * mi-
cro protocols' and ‘virtual protocols have been devised and
implemented, showing similar or even better performance
than monolithic protocol stacks[OMall 91].

¢ Inthe area of high speed networking, the assembly of pro-
tocol entities in a entire communication stack based on
an application’s requirements is proposed as a means to
overcome the performance bottleneck of protocol software
[Plage 92].

All these approaches to communication protocol implemen-
tation go beyond the classical reference models which assume
a restricted and fixed number of layers through all implemen-
tations; they surely bring some degree of flexibility. Section 5
presents and discusses current work in this area and shows how
it relatesto COMSCRIPT.

The ComMScRIPT approach brings more flexibility by allowing
an application to dynamically (re)configure an entire protocol
stack to its specific needs. An application can not only choose
what services the protocol stack has to offer, but the application
can also specify how the protocol stack can best fulfill its needs.
For example, an application can download awhole protocol stack
into a remote host before starting the data exchange.

The CoMmScRIPT philosophy is based on the two following
principles:

1. the possibility of protocol interpretation instead of restric-
tion to precompiled protocol functionalities;

2. the application is able to configure the best protocol stack.

The interpretative aspect of CoMScRIPT allows then an appli-
cation to dynamically configure the protocol stack if necessary.



Section 2 gives an overview of COMSCRIPT; section 3 dis-
Cusses interprocess communication in COMSCRIPT; section 4
shows how COMSCRIPT achieves protocol stack configuration
and we conclude this article in section 6 after discussing re-
lated work in section 5. We give in the appendix an ex-
ample of COMSCRIPT code showing a simple protocol stack
(re)configuration.

2 An overview of COMSCRIPT

We named our environment COMSCRIPT, by analogy with
PosTScrIPT!. CoM stands for computer communications to
stress the fact that COMSCRIPT is a language designed for net-
work programming. SCRIPT stresses two things (a) the way
protocol entities can be implemented: the language allows a
simple, rapid and incremental implementation of protocol enti-
ties similar to shell scripts and (b) the way protocol stacks are
(re)configured using an interpreted language.

As we said before, COMSCRIPT is both a language and an
executing environment.

e The COMSCRIPT language is derived from POSTSCRIPT
[Adobe 90]. Just like POSTSCRIPT is used for page descrip-
tion and for printing, COMSCRIPT isintended to be used for
protocol implementation and stack (re)configuration. Being
derived from PosTSCRIPT, COMSCRIPT inherits its simple
execution model, its syntax, and some of its data structures
and operators. All POSTSCRIPT graphics related operators
have been removed and new operators have been added to
support concurrency and interprocess communication.

e The COMSCRIPT environment is an interpreter executing
processes written in the COMSCRIPT language. In the
COMSCRIPT environment, a communication protocol entity
can beimplemented as a process; but a CoMSCRIPT process
can also be used to implement awhol e protocol stack. Both
low level (e.g ARP) and high level (e.g FTP) protocolshave
been implemented in COMSCRIPT.

Applications which need to communicate with others should
access all the communication functionaities through the
CoMSCRIPT environment. To achieve this, the COMSCRIPT en-
vironment should interface with both (a) the host’s Operating
System—to get access to the communications facilities imple-
mented in the OS—and (b) the applications—to allow them to
(re)configure the communication facilities as needed. The cur-
rent implementation of COMSCRIPT runsin user space; actually,
theapplication runsontop of the CoM SCRIPT environmentand is
seenasanextensiontoit. Figure 1 shows(a) theway COMSCRIPT
shouldinterface with the OS and the applicationsand (b) the cur-
rent software structure within a host running COMSCRIPT.

In this section, we present the basic concepts underlying
CoMScRIPT; the first part is concerned with the process hier-
archy adopted, the second presents how events are signaled to
a process with the synchronization points, the third part covers

1postScriPT® isa registered trademark of Adobe Systems Incorporated.

User Space User Space
Application Application
Application | | accessing Application | | accessing
ComSkcript ComScript
m m
. ComScript
Operaing | comscript
System
-
/[\ Operating System
A
¢ DEVICES \l/ ¢ DEVICES

(a) Planned software structure  (b) Current software structure

Figure 1:
COMSCRIPT.

The software structure within a host running

the configuration links between processes and the notion of gate,
the fourth part explains how events are handled by processes.
Finally, the last part describes the access to the world outside
COMSCRIPT using device drivers.

2.1 Processeshierarchy

As stated before, Com ScrIPT allows multiple processesto exe-
cute concurrently. COMSCRIPT enforces a hierarchical structure
on processes; each process other than the RootProcess (the first
process created by theenvironment itself) isexplicitly created by
another process executing the fork operator. Adequate operators
areprovidedto alow aprocessto manipulateawhol e subprocess
tree.

2.2 Synchronization Points and Guards

A COMSCRIPT process can be seen as an agent with attached
synchronization points called s-points which alow it to interact
with internal and external events. These s-points can be seen as
sensors by which events are signaled to the process. Each event
can convey one of the following meanings:

¢ arequested data exchange, with another process or with the
outside world, has occurred;

e arequested synchronization with another process has oc-
curred (no data exchange);

o thetimeout period requested by the process has el apsed.

S-points are either external or internal. External s-points deal
with events externa to the process, those in which a process
other than a child processisinvolved. Interna s-points are only
concernedwith eventswhich result fromtheinteractionsbetween
the process and its children or the CoMSCRIPT environment.

Each s-point has associated to it aguard. Thisisaflagwhich
determines whether the s-point is activated or not. Only ‘acti-
vated’ s-points can trigger events; all others are ignored by the



CoMSCRIPT environment. This mechanism allows a process to
choose at any moment the set of events to which it wants to
respond.

2.3 Gatesand Links

Processes, that want to communicate, must be connected. These
connections are established of links between s-points and gates.
A gate implements a queue of length over or equal to zero.
In a communication between two sibling processes, the parent
processisresponsiblefor correctly configuring communications.
The parent linksan s-point of one of thechildrento agate. It then
links an s-point of the other child to the same gate. Once this
operationiscompleted, thechildren areabl eto either synchronize
their execution or exchange data.

Figure 2 shows a configuration link between two processes P;
and P, linked in order to exchange data. Thes-point/ ! out of
Pyislinkedtogateg, thes-point/ ?i n of P islinkedtothesame
gate g. P; is offering data, while P, is accepting data.  Note

ate
P

/! out

/?in

Figure 2: Processes linked through s-points and gates.

that two processes may beinvolved in acommunication, without
being aware of their partner. Only the parent process knowsthe
configuration links between its children, and may change them
when it wants.

2.4 Event driven programming

Another view of a COMSCRIPT process is that of a finite state
machine (FSM) [Hopcr 79]. COMSCRIPT processes are event
driven. Thisisto say that most of the time, aprocessis blocked
waiting for an event to occur on one of its s-points; when this
happens, the processis woken up to handle the event and subse-
quently goes back to await state. A processis thus composed of
two logically distinct parts:

e aninitialization code which is executed once after the pro-
cessis created, and which is responsiblefor the creation of
s-points,;

e anumber of event handlers: an event handler being the
code associated to an s-point and which is executed by
the process to handle an event occurring on the s-point.
Thus, handling an event is synonymous with executing or
activating the event handler associated to the s-point where
the event occurs.

For any running process, only one event can occur at atime, and
thus only one event handler isactiveinside aprocess. Moreover,
while executing the event handler, the processisallowed to block
on some other events if it wishesto do so. Figure 3 shows the
different states of a COMSCRIPT process.

/ executing
tinitialisation!
‘. code

executing
T handler 1

end of initia-

lisation code

executing
handler n

block on event x

Figure 3: The states of a COMSCRIPT process

This process model is well suited to the implementation of
FSMs which themselves are used to describe and to implement
alarge number of computer protocols. Like a COMSCRIPT pro-
Ccess, a computer communication protocol entity is waiting for
an incoming service request. The request is handled and the
protocol entity returnsto await state.

2.5 Accesstotheoutsideworld

“Device drivers’ allow COMSCRIPT processes to synchronize
their execution and to exchange data with the “world” outside
the COMSCRIPT environment. All device drivers are accessed
in a uniform way: they are seen as “external” processes with
synchronization points attached to them and accessible to pro-
cesses running in the CoOMSCRIPT environment. Instances of
these synchronization pointsare dynamically creasted on demand
by a COMSCRIPT process.

Actually a device driver is seen as an array of s-points each
implementing a defined functionality of the driver. A device
for accessing the file system for example, would contain among
others, an s-point for opening a file, and another for reading
from the opened file. Reading the file isonly possibleif thefile
is aready open. This means that the synchronization with the
s-point responsible for reading from the file would be possible
only after the synchronization with the s-point responsible for
opening thefile.

Although some devices are likely to be implemented in every
COMSCRIPT environment, such as devices for accessing the file
system or the system console, the number of devices available
and the complexity of the services they offer can vary grestly
from one environment to another. The DeviceDictionary is a
global data structure containing all the device types known in
the system. A COMSCRIPT process can define and add new
devices to the DeviceDictionary, in order to make them usable
by other processes. Similar to POSTSCRIPT fonts, each device
has a name which uniquely identifiesit.



Currently, our COMSCRIPT environment contains devices ac-
cessing:

1. the file system for creating, reading and writing files and
directories,

2. the connectionless sockets for datagrams;

3. the connection oriented sockets for the implementation of
client processes and the connection oriented socketsfor the
implementation of server processes;

4. the NIT device for accessto the raw Ethernet on SUN.

3 Interprocess Communication in

COMSCRIPT

We described above the COMSCRIPT components necessary to
perform interprocess communication (IPC). These elements,
s-points and gates, when correctly linked, establish channels
between processes. The exchanged data can then transit through
these channels. This same means alowsfor the synchronization
of processes. Let us now see, exactly how data moves from one
process to another process, and how two processes synchronize
their execution.

This sectionfirst presentshow synchronousand asynchronous
communications are realized, it then explains the IPC mecha-
nism, i.e. exactly how a synchronization or a data exchange is
performed, and finally some additional considerations concern-
ing this IPC are presented.

3.1 Synchronousand Asynchronous|PC

Beyond the task of linking s-points, a ‘gate’ contains a queue
whichisusedto buffer dataexchanged between processes. When
pure synchronization or synchronous data exchange is needed,
a gate of zero length queue is used. On the contrary, when
asynchronous dataexchangeis desired, agate of non-zero length
gueue should be employed.

3.2 How does inter process communication take
place?

After the preparatory work has been done, i.e. complementary
s-points linked through an appropriate gate, the two processes
can then request to be synchronized or to exchange data through
these s-paints.

If a gate of zero length queue is used (case of pure synchro-
nization or synchronous data exchange), the first process to ex-
ecute its synchronization request is blocked by the CoMmScRrIPT
environment until the other process executes the equivalent syn-
chronization request. Then a rendez-vous takes place between
the two processes and if requested, datais moved from the ‘ out-
putting’ process to the appropriate buffer in the ‘inputting’ pro-
cess. The two processesthen resumetheir execution; thisisdone
by activating in each process the event handler associated to the
s-point used to catch this event.

If on the contrary, a gate of non zero length queue is used,
the gate buffers the data to be exchanged. In this case, the
‘inputting’ process is blocked only if the gate queue is empty;
and the ‘outputting’ process is blocked only in the case of a
full gate queue. In this way, some degree of asynchronism is
achieved.

3.3 Theflexibility of the COMSCRIPT inter process
communication model

We have so far presented how basi ¢ interprocess communication
isrealized in COMSCRIPT. The power and the flexibility of this
interprocess communication model lie in the following aspects:

1. The possibility to request synchronization on multiple
events. Multiple s-points can be involved in a synchro-
nization request or data exchange request. If one or more
events can be realized when the process request is han-
dled by the CoMScRIPT environment, one of these eventsis
picked up in anon deterministic way and is returned to the
requesting process. The other events are discarded. If on
thecontrary, therequesting processis blocked because none
of the events can be immediately realized, thefirst event to
occur later on is transmitted to the requesting process and
theothersarediscarded. Thisfunctionality issimilar tothat
offered by the select construction in Adaprogramming lan-
guage [Cohen 86] with the difference that the CoMScRrIPT
select is symmetric, i.e. it can handle both data input and
data output requests, while the Ada select can handle only
data input requests (accept).

2. The possibility to link more than two s-points to the
same gate: There is no one-to-one correspondence be-
tween s-points. An s-point can be linked to only one gate,
but it iscommonto havemultiple s-pointslinked to the same
gate. Inthis case, an s-point islogically seen as ‘attached’
to many others. This configuration is used in COMSCRIPT
to synchronize one process or to allow it to exchange data
in anon deterministic way with one process belonging to a
group of processes. With this configuration no “broadcast”
is achieved: CoMScRIPT does not allow either a synchro-
nization or a simultaneous data exchange involving more
than two processes. Figure 4 shows three s-points linked
through the same gate. A data value outputted by P; is
input by either process P, or Ps; the same value is never
read by the two processes.

3. Control over the communication patterns of child pro-
cesses: In COMSCRIPT, direct interprocess communication
is restricted (a) between a process and its parent or chil-
dren and (b) between children of the same process. In each
case, a process is responsible for providing the necessary
gates and also for realizing the appropriate links between
the s-points of its children and the gates. This gives a
COMSCRIPT process complete control over the interactions
of its children. The process can dynamically alter the dif-
ferent s-point-gate links used by its children without the
children being aware of that change. This restriction of



Figure4: Multiple s-points linked through the same gate.

direct interprocess communicationsto some processes does
not impose agreat penalty on CoMScRripPT for thefollowing
reasons:

(8 In computer communication software, each layer of
aprotocol stack usually communicates only with the
neighbor layers using the encapsul ation mechanism.

(b) Data exchanges with other processes (which do not
belong to the restricted set of processes with which
direct interaction can occur) can be doneusing achain
of intermediary data exchanges.

(c) CoMScRIPT offers a bypass mechanism by which a
process can delegate to a child the handling of events
occurring at one of itss-points. Figure5 showsachain
of bypassed s-points. Process P; delegates the han-
dling of eventsoccurring at s-point/ ?i n1 toitschild
P, which itself delegates the handling to itsown child
P3. Inthisway, s-point/ ! out , belonging to P, and
s-point/ ?i n, belonging to Ps, arelinked through the
gate. Now a communication can take place between
those two processes, without the intervention of the
intermediary processes (P; and Py).

Al

/! out

P2

P P1

Figure5: A chain of bypass between s-points/ ! out and/ ?i n

4 From Dbasc stack

(re)configuration

concepts to

In CoMScRIPT, the “gate” concept plays a central role in the
reconfiguration process. The gate is the stable part of a link

between processes through their s-points.

When two sibling processes communicate (synchronize their
execution or exchange data), they are linked through a gate be-
longing to their parent. None of these two processes is aware of
its partner in the communication under way. The parent process
can configure the link of its children i.e. attach new s-points to
thelink or detach some of them in a completely transparent way
to its children. The parent process can even replace one of the
partners in the communication without the other being aware of
that fact. Figure 6 showsadynamic reconfiguration of acommu-
nication link. An event istriggered by s-point / ?i n belonging
to process P, and its handler is executed. First, process P breaks
the link between process P; and P, by detaching the s-point of
P, from the gate. Then, P links P; with process P;. Thissim-

a) before link reconfiguration b) after link reconfiguration

Figure 6: A dynamic reconfiguration of a communication link
of process P; by itsfather P

ple reconfiguration mechanism is the basis for building flexible
protocol stacks [Tschu 91].

A simple example will show how a COMSCRIPT process can
configureitslocal protocol stack to meet its own requirements; a
second one will present how configuration of a remote protocol
stack is achieved.

4.1 Local stack (re)configuration: A simple ex-
ample

Building aflexible protocol stack isasimpleand straightforward
task in CoMScRIPT asthefollowing exampleillustrates. We will
build aprotocol stack where protocol entities can be dynamically
added, removed or replaced by othersin an efficient way.

Our example mimics and extends the UNIX SYSTEM V
STREAMS concept. The STREAMS approach allows a user to
customize a protocol stack by pushing and/or popping the ade-
guate packet processing modules on the stream head. A number
of such modules (example buffering module, filtering module)
are compiledinthekernel. They al haveauniforminterface. In
each module thereisatwo way flow of information. An up flow
to move dataand control information from the network interface
(STREAMS bottom) to the application which interfaces with the
stack at the STREAMS head; and a down flow to move informa-
tion in the opposite direction. Using a common and uniform
interface, makesit possible to either add or remove amodulein



a transparent way to the peer modules since the interface they
use to exchange data remains stable.

In our ComScRIPT exampl e, the user isnot limited to push/pop
operations, he can add or move any module at any level of the
stack. Our protocol stack is represented as an array of processes
controlled by a stack handler; each process representing a proto-
col entity. The stack handler interfaces with the application and
carries out on the stack the operations requested by the applica-
tion. All the processes share the same interface: four s-points.
[ ?upi n and / ! downout to move information towards the
bottom of the stack, and / ?downi n and / ! upout to move
information to the top of the stack. A dictionary, let us say,
/ st ackgat es, associating a protocol entity with an array of
gates linked to the module, is maintained by the stack handler.

The first operation is a r eset operation: it is requested
through the / ?r eset s-point, in order to initialize the stack
by specifying the device driver which is used to connect the
stack to the network. Ther eset operation opens the specified
device and links it through two gates to the application inter-
face. The application interfaces with the stack modules by two
s-points, one for inputting / ?i n and the other / ! out for out-
putting. The gates are put in the / st ackgat e dictionary to
reflect the current links.

Application
I7%n Tlout

Application Stack
/7n Nout Handler
‘e ° { M1 Linsert}
© /Ansert ; Itupout J2upin et
® /xemove . . ! Iv%nemave
® /reset 1 b
4 I2downin /'downout $ /et
e &7 -~ o
Device s-points -
Lo 4]
Initialisation First Module Inserted

Figure 7: Initialization of a protocol stack and pushing of the
first layer

Theadd operation alowstheaddition amoduleonto the stack.
A processhaving therequired interfaceis supplied, together with
the level in the stack where the module it implements isto be
inserted. The stack handler creates the necessary gates to link
thenew module. Figure 7 showstheinitialization of the protocol
stack and theadding of afirst moduleM1. Infigure8 moduleM2
is added on top of the protocol stack and in figure 9 the middle
module of athree layer stack is removed.

A r enpve operation isindicated to the stack handler through
an event occurring on its/ ?r enove s-point. The position of
the module to be removed is specified. The stack handler breaks
thelinks of the module, removesit from the stack, reconfiguring
as appropriate the links of the neighbor modules and updating
the/ st ackpr ocess and/ st ackgat e datastructures.

Whilein the STREAMS approach, a user islimited by the num-
ber of available modules compiled in the kernel, the number of
different usable modules is not limited in COMSCRIPT. Indeed,
the modules are dynamically created when needed and must not
be preconfiguredinthekernel. Thisispossible becausethe mod-
ules are defined in terms of a CoMSCRIPT procedure that defines
the modul€’' s behavior. Thus our example extends the STREAMS

Application

17n o [tout

Application Stack

/i _ lout

M2 2inser
(M22inser} Jdownin

"

@ /Znsert
@ /emove
® /7reset

® /7nsert
@ /emove
2upin ® reset

Figure 8: Pushing alayer on top of the protocol stack

Application

Application

/2in o /ot

@ /ZAnsert
@ /emove

® linstt ® /7reset

@ /emove
® /reset

{ 3remove}

Figure 9: Removing the middle layer of athree layer stack

approach by allowing insertions and deletions of protocol enti-
ties at each level of the protocol stack and brings more power
because the number of configurable entitiesis unlimited.

4.2 Configuration of aremote protocol stack

Now that we have seen how simple the reconfiguration of a
local protocol stack is, let us see how a protocol stack resid-
ing in a remote host can be configured. To achieve this, the
remote host must also be running a COMSCRIPT environment.
CoMScrIPT alows an application running in one machine to
access a COMSCRIPT environment running in another host. The
remote COM SCRIPT environment is used as a server to which the
application can send requests. Each request isitself CoMSCRIPT
code which is executed by the server when it reaches its destina-
tion.

Using the configuration mechanism presented above an appli-
cation can configure a remote protocol stack. It even becomes
possible to realize a data exchange between two hosts that do
not have identical preconfigured protocol stacks. The following
example shows how this can be done.

An application running on host A establishes a communica-
tion with a CoOMSCRIPT server (CS) on the remote machine B
by opening two connections, one for control information and the
other for data exchange. The control connection is used by the
application to send requests to the remote server. The applica-



tion then downloads its own code to host B using the control
channel. The execution of this code in the remote host resultsin
the creation of a protocol stack which can then be used by the
application to exchange data with host B.

Host A

Host B

Channel for control
information

4\ Channel for data exchange /I\
Channel for control
AP information
S
O oo
o0 o0
Y & Y &
@ o0
CSProcess | CSProcess
o © ®—©
@ o0
CSProcess CSProcess
O O
spoints  s-points spoints  s-points

Cs . Cs

s-points s-points spoints  s-points

e O

Figure 10: Configuring a remote protocol stack

Channel for data exchange

The remote stack is controlled by the remote server which
acceptsrequestsfrom our application. Whenever the application
needs a stack reconfiguration, it sends the appropriate request
to the server, i.e. the code necessary to carry out the desired
reconfiguration. The server initiates the reconfiguration in the
remote host, while the application applies the same reconfigura-
tion processto itslocal protocol stack (seefigure 10).

5 Reated Work and Current State

With the development of high-speed networks and distributed
multimedia, more and more applications will be developed
having different and sometimes contradictory requirements and
needs. Developing a specialized, dedicated and optimized pro-
tocol for each application or class of applicationsis a complex
task and surely not a satisfactory solution to this problem. The
configuration of ‘useful’ protocols for their efficient use is thus
given more and more attention: many research proposals have
investigated (many numerous studies propose) an approach of
general and flexiblelight-weight protocol entitieswhich must be
configured into aprotocol stack or protocol graph which realizes
the desired communication service. The proposed solutionsvary
gresatly in the way that configuration can be done.

5.1 Related Work and Discussion

O'Malley and Peterson [OMall 91][OMall 92] propose the con-
struction of a protocol graph, implemented on x-kernel, from a

set of micro and virtual protocols. The protocol graph represents
the set of protocols which can be derived from the composition
of the different micro and virtual protocols. The actual protocol
to be used is determined at the initialization time of the com-
munication service, by choosing the most efficient ‘path’ in the
protocol graph, i.e, the path which best fulfills the requirements
of the application. This approach brings a limited degree of
flexibility, but no further reconfiguration is possible after the set
up.

The UNIx System V STREAMS approach [Strea 90] is another
operating system approach which offers a framework for the
composition of protocols. Protocol modules can be dynamically
pushed/popped to/from a protocol stack at run timeto realize the
desired communication service. The main goal of this approach
is to simplify protocol implementation; its ability to dynami-
cally push/pop protocol modules at run time can be used for the
configuration of a protocol stack.

Plagemann and Plattner [Plage 93] use athree layer approach
in Da CaPo. The middle layer is responsible for configuring
a protocol stack which meets the requirements of an applica-
tion, using the resources available in the host and the network.
A negotiation protocol allows the two communicating hosts to
choose, according to the application requirements and resources
available in each host, a common protocol for data exchange.
If the monitor embedded in the middle layer detects a degrada-
tion of the quality of service beyond the limits specified by the
application, the reconfiguration process is initiated again, and
another protocol stack is chosen to ensure that the application’s
requirements are always satisfied. The bottom layer calledthe T
layer represents the existing and connected transport infrastruc-
tures and is determinant in the number of protocol graphswhich
can be configured, while the approach of O’ Malley and Peterson
presented aboveis constrained to only one protocol graph.

In [Plage 94], Plagemann and al. propose CoRA, a heuristic
for the stack reconfigurationin Da CaPo. This heuristic isbased
on the classification of protocol entities and their resource usage.
The aim of the approach isto ensurethat the requirements of the
application are met in avery fast way.

All these approaches require that the same software existsin
the two communicating hosts. They allow, to different degrees,
the hosts to combine the existing software in the most efficient
way. Moreover, the constructed protocol graph/stack remains
a black box offering a desired service with the required quality
for the application; however, thereis no way the application can
reconfigure the protocol stack itself, should it wish to changeits
communication requirements. All the work is donein atotally
transparent way to the application, without interaction with it.

Among all these approaches, the CoRA/Da CaPo one seemsto
be the most flexible implementation of flexible protocol stacks.
Indeed, it allows the building of a protocol stack which meets
the requirementsof an application and ensuresthat these require-
ments remain satisfied even if the availability of network or host
resources degrades. However, some aspects of the implementa-
tion considerably restrict its power and its flexibility:

o All selectable protocol modules must be precompiled and
preinstalled in the host: the number of possible protocol



combinationsis thuslimited. Moreover, adding anew pro-
tocol entity can not be done at running time. The module
must be compiled, its‘quality” must be evaluated in some
way, and installed to be accessible by the configuration
system.

e All the configuration work is done by the middle layer
having as a conseguence that the configuration process is
very complex. This single layer contains the connection
management modul e, the resource management moduleand
the heuristic module. All these modules are complex and
interact in acomplex way to achieve stack reconfiguration.

e The approach detects what are the application’s require-
ments and attempts to offer in, a transparent way, a service
which fulfills those requirements. To achieve this, a sin-
gle negotiation protocol and one heuristic mechanism are
implemented in the middle layer of Da CaPo. Thus, it
becomes difficult to extend this approach to cope with all
possible applications. Thereisno way to specify the use of
analternative heuristic function’ nor the possibility tousea
different negotiation protocol in the configuration process.

CoMScRrIPT, ontheother hand, triesto avoid transparency. In-
deed CoM SCRIPT uses aquitedifferent approach allowing the ap-
plicationto “explicitly” configureitself its communication needs
as necessary. The application uses the power of the CoMSCRIPT
programming language to “do” the configuration of the protocol
stack “how” it likes. Thereis no fixed protocol to negotiate the
configuration process, nor the necessity for a heuristic module
to reduce the complexity of the configuration task asin CoRA.
Each application establishes its own policy for the reconfigura-
tion task, in thisway, all kinds of applications can be dealt with.
Any application can implement its own heuristics for use in the
stack reconfiguration if necessary.

5.2 Current State of COMSCRIPT

We have implemented a COMSCRIPT prototype to experiment
with the concepts of flexible protocol stacks presented in this
paper. We modified the public domain POSTSCRIPT interpreter
GHOSTSCRIPT [Ghost 91]2 by removing all graphic related op-
erators. The addition of concurrency has been inspired from the
NEWS extension to POSTSCRIPT.

The aim of the current prototype isto gain confidence that we
have made the right conceptual choices. Our implementation,
being only a prototype, does not pay any particular attention to
optimization considerations. Moreover, some important aspects
which should be provided by a productive CoMmSCRIPT environ-
ment have not been implemented yet.

Currently, the COMSCRIPT environment runs in user space as
asingle process at the OS level that we will call the CoMScRrIPT
interpreter. Thisinterpreter isresponsiblefor the scheduling and
the synchronization of all the COMSCRIPT processes running in
the Com ScrIPT environment. All the COMSCRIPT processes can
be seen as different “threads’ of the COMSCRIPT interpreter.

2We would like to thank Peter Deutsch for alowing usto use and modify the
GHOSTSCRIPT sources.

To schedule a particular process, the COMSCRIPT interpreter
switches control to the appropriate thread. The scheduling used
is non preemptive, i.e. arunning COMSCRIPT processis not in-
terrupted by the interpreter until the process explicitly releases
control by executing the COMSCRIPT “ pause” operator or until it
blocks waiting for an event to occur.

Although the CoMmScRIPT language contains the appropriate
“hooks” to control access to devices such as the file system, the
network etc., our prototype does not use them. No validation is
done before executing COM SCRIPT code; a process executing in-
valid ComScRrIPT code enters the “error” state and is suspended
by the interpreter. This behavior is not satisfactory in acommu-
nity of COMSCRIPT environments where COMSCRIPT code can
be downloaded for execution in a remote environment.

Experiments have been carried out on communities of
COMSCRIPT environments. In such a community, a CoM SCRIPT
application running in some environment can “connect” itself
to a COMSCRIPT server running in a remote host. It can send
CoMScrIPT code which will be executed by the remote environ-
ment. Two types of servers have been implemented: one type
of server listens to a TCP socket and is instantiated each time
a client tries to connect to the COMSCRIPT service. The other
server type is installed once and waits for UDP packets. Each
UDP packet is assumed to consist of CoMSCRIPT code which is
simply executed. The main differenceis that the second type of
server is shared by many different applications while in the first
case each client has its own server instance.

We will not close this section without a few words about per-
formance considerations. Some preliminary measurements have
been done using a simplified implementation of the FTP server
in CoMSCRIPT. This implementation uses the socket interface
contained in the host’sOS. What has been measured is the over-
head introduced by the configuration process of CoMScRIPT and
the interpretation approach. A 9MB file has been transferred
(8 using the CoMmScrIPT FTP server and (b) using the FTP
server provided by SunOS. The measurements showed that the
CoMSCRIPT FTP server implementation has about 0.1% less per-
formance than the implementation of the FTP server of SunOS.
We concludefrom this, that only little overhead isintroduced by
the configuration process of the CoMSCRIPT implementation of
FTPR

6 Conclusions

A primary goal of the CoMSCRIPT approach is to make protocol
stacks truly configurable at run time. We expect from this ap-
proach some solutions to interworking problems: applications
can mix and match protocol functionality according to their re-
quirements and network availability. Another contribution con-
sists in the separation of a maximum of protocol logic from the
rest of an application: application specific stack extensions can
be run inside the stack instead of having to program protocols
inside the application.

With the CoMSCRIPT approach, an application can interact
directly with its protocol stack by means of the COMSCRIPT pro-
gramminglanguage. Thelanguageitself isbased on POSTSCRIPT



but has been significantly extended with protocol specific con-
structions while all graphics related operators have been re-
moved. Concurrent processes have been inspired by the
NEWS [NEWS 90] extension to POSTSCRIPT. However, an event
driven approach to processes has been privileged because it al-
lows quite a direct tranglation between an FSM description of
a protocol entity and its implementation in COMSCRIPT. Pro-
cess interactions follow the process hierarchy and are achieved
through s-points linked to gates. Self-containing protocol enti-
ties can be implemented and can be dynamically configured to
meet the specific needs of a running communication software.

Experiments have been made with open communities of
COMSCRIPT environments. In such a community, a CoM SCRIPT
application can access another COMSCRIPT environment run-
ning on a remote machine. It becomes possible to establish a
data exchange between two hostswithout having similar precon-
figured protocol stacks installed (although we need a common
transport infrastructure to exchange CoMScRIPT commands). In-
deed, an application can download CoM SCRIPT codeto aremote
CoMSCRIPT environment which, when executed inside the re-
mote host, will configure a whole protocol stack; afterwards, a
classic data exchange can proceed between the two hosts, using
the newly created communication environment.

Our first COMSCRIPT interpreter was implemented to experi-
ment with flexible protocol stacks. Being an experimental tool,
no particular attention has been given to optimization consid-
erations, error handling and recovery. Memory management is
rudimentary and security questions have currently not been ad-
dressed. For atool which must be used in areal environment, all
of these aspects need amore careful treatment. Nevertheless, the
environment has proved to be suitable for theimplementation of
both low-level and high-level protocol entities. Successful ex-
periments carried out with the environment suggest that the right
choices have been taken at the conceptual level.

Acknowledgements

We would like to thank very much Mrs. Susan Warwick-
Armstrong who corrected the text and suggested invaluable
grammatical improvements.

References

[Adobe90] Adobe Systems Incorporated, editor. PostScript
Language: Reference Manual, Addison-Wesl ey, fif-
teenth edition, 1990.

[Cohen 86] Cohen N. H., Ada as a second language, McGraw-
Hill, Inc. 1986.

[Comer 86] Comer D. E., Internetworking with TCP/IP; Vblume
I; Principles, Protocols, and Architecture, Second
edition, Prentice-Hall International, 1991.

[Ghost 91] Deutsch L. P. (Aladdin Enterprises), GhostScript—
An Interpreter for the PostScript Language, dis-
tributed under the GNU General Public License.

[Hopcr 79] Hoperoft J. E., Ullman J. E, Introduction to
Automata Theory, Languages, and Computation,
Addison-Wesley, 1979.

[Hutch 91] Hutchinson N. C., Peterson L. L., The x-kernel: An
Architecturefor implementing network protocols, In:
IEEE Transactions on Software Engineering, Jan.
1991, pp. 64-76.

[Muhu 92] Muhugusa M., Solana E., Tschudin Chr. F.,, Harms
J.,, ComScript — Implementation and Experiences,
Internal report, Université de Genéve, Nov. 1992.

[NeWs90] Sun Microsystems, Inc. NEWS 2.1 Programmer’s
Guide, June 1990.

[OMall 91] O’'Malley S. W., Peterson L. L.,A Highly Layered
Architecture for High-Speed Networks, In Marjory J.
Johnson, editor, Protocol sfor High-Speed Networks
I1, pp 141156, Elsevier, 1991.

[OMall 92] O'Malley S. W., Peterson L. L.,A Dynamic Network
Architecture, In: ACM Transactions on Computer
Systems, Vol. 10, No. 2, May 1992, pp. 110-143.
[Plage 92] Plagemann T., Plattner B., Vogt M., Walter T.,.A
Model for Dynamic Configuration of Light-Weight
Protocols, In: IEEE Third Workshop on Future
Trends of Distributed Computing Systems, Taipei,
Taiwan, April 1992, pp. 100-106.
[Plage 93] Plagemann T., Plattner B., Modules as Build-
ing Blocks for Protocol Configuration, Proceed-
ings International Conference on Network Proto-
cols, ICNP' 93, San Francisco, CA, Oct. 19-22,
1993, pp. 106-115.
[Plage 94] Plagemann T., Gotti A., Plattner B., CoRA — A
Heuristic for Protocol Configuration and Resource
Allocation, Submitted to IFIP Fourth International
Workshop on Protocols for High-Speed Networks,
Vancouver, Canada, Aug. 10-12, 1994.

[Rose90] Rose M. T., The open book: a practical perspective

on O, Englewood Cliffs: Prentice-Hall, Inc. 1990.

[Strea90] Sun Microsystems, Inc. STREAMS Programming

Manual, March 1990.

[Tschu 91] Tschudin Chr. F., Flexible Protocol Stacks, In SIG-
COMM’91 Conference on Communications Archi-
tectures & Protocols, pp. 197-204, Sept. 1991.

[Tschu 92] Tchudin Chr. F., MuhugusaM., SolanaE., Tschudin
Harms J., ComScript — Concept and Language, In-
ternal report, Université de Genéave, Nov. 1992.

[Tschu 93] Tschudin Chr. F., On the Structuring of Computer
Communications, Ph.D Thesisno. 2632, Université
de Genéve, 1993.



Appendix: An Example of Simple Protocol
Stack Configuration

We give in this section an example (see Fig. 11) that mimics
the UNIX System V STREAMS approach, but in asimplified and
simultaneously more powerful form. A *stream’ will bemodeled
by a ComScRrIPT process with a fixed set of externa s-points.
The s-points/ ?i n and / ! out are used to connect a client to
the bidirectional data stream and represent the stream head. A
synchronizationwith/ ?push allowsto insert anew processing
module, the/ _pop s-point is used to remove the module at the
top of the stack. The/ ?r eset s-point is used to ‘ground’ the
stream: an arbitrary device may be declared to be the bottom
of the stack. The insertion of a new CoMSCRIPT process which
mimicsadeviceis also permitted.

There are evident limitations in our ‘implementation’: there
is no error treatment nor access control code built in, we also
do not support parallel streams inside our COMSCRIPT process
and multiplexors. However, the non-trivial but still compact
example given below demonstrates the flexibility we gained by
thefact that gates and s-points have become manipul abl e objects
in COMSCRIPT.

/?in /!out
-0
/?upin /! upout
P P @® / ?push
) @/ _pop
/! downout 7 ?downi n

@ / ?reset

Figure 11: A Protocol Stack to Push and Pop Protocol Entities

For thisexamplewedo not useaFSM support —all event han-
dlers and guards are directly defined inside the synchronization
points. Rather than following the code line by line, we explain
the basic organization of the data structures used and expected.

o Thestack of moduleswill be represented by an array named
/ stack of fixed size. /top aways points to the top
element or is-1 if the stack is empty.

e Thereset operation expects as exchanged data value a
procedure, which must — once executed — return an array
with two s-points. An array with these two s-points will
beinstalled asthe ‘device driver’ in thefirst stack position.
Note that this procedure can either instantiate a device or
createanew child processwhich actslikeadeviceor installs
oneinside etc.

e The push operation will receive as data value the ini-
tialization code of the module to be inserted. Our main
process will f or k this code and create a new processing
module which must install four external s-points with the
well defined names / ?upi n, /!upout, /?downin
and/ ! downout .

o Each stack entry corresponding to a processing module is
an array with three elements. first we have the two upper
external s-points followed by the module processitself.

1 / protocol Stack {

2 cl ear

3

4 / getchildsync { exch /syncdict get exch get } def
5 /renovetop {

6 %Kkills the top protocol entity and

7 % reestablishes the attachenent

8 i detach o detach

9 stack top get 2 get kill

10 /top top 1 sub def

1 stack top get 0 2 getinterval dup { unlink }
12 forall

13 al oad pop o exch attach i exch attach

14 } def

15 /Tinkwithtop {

16 stack top get exch get

17 3 1 roll getchildsync

18 0 creategate exch 1 index link Iink

19 } def

20 /attachhead { al oad pop o exch attach i exch
21 attach } def

22

23 /stack 10 array def

24 /top -1 def

25

26 /?in 1 createsync dup /i exch def begin

27 /guard fal se def

28 end

29 /lout 2 createsync dup /o exch def begin

30 /guard fal se def

31 end

32 /?reset 1 createsync begin

k] /handl er { /data get exec

34 top O gt { top { renovetop } repeat } if
35 top 0 eq { i detach o detach } if

36 dup attachhead

37 stack exch 0 exch put

38 /top O def

39 } def

40 end

41 /?push 1 createsync begin

42 /guard { pop top -1 gt stack length top gt
43 and } def

a4 /handl er { /data get fork dup wait

45 [ 1 index /?upin getchildsync 2 index
46 /'upout getchildsync 3 index ]

47 dup stack exch top 1 add exch put

48 i detach o detach

49 0 2 getinterval attachhead

50 dup /!downout O linkwithtop /?downin 1
51 I'i nkwi t htop

52 /top top 1 add def

53 } def

54 end

55 /| _pop O createsync begin

56 /guard { pop top O gt } def

57 /handl er { pop renovetop } def

58 end

59 } def

The interpretation of the code above is now straight forward.
The/ ?r eset event handler first executes the received device
driver creation procedure (line 33), then removes any remaining
old modules, and finally attachesthe deviceto theexternal / ?i n
and/ ! out s-points(line36, procedure/ at t achhead). Push-
ing a new moduleis only possible if adevice driver isinstalled
and there is afree entry remaining on the stack (line 42). In this
case wef or k the received initialization code, extract the upper
s-point and attach them to the ‘stream head’ (lines 44-49) and
link the lower s-pointsvia newly created gatesto the former top
s-points (procedure/ | i nkwi t ht op).



